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Sequence space representations for (FN)-;lgebras :
of entire functions modulo closed ideals

by
REINHOLD MEISE (Dtsseldorf) and B. ALAN TAYLOR (Ann Arbor, Mich)

Abstract. Let AS denote the weighted (FN)-algebra of entire functions on C defined by an
appropriate weight system P. We prove that for every infinite-codimensional proper closed ideal
Iin AS the quotient A$/I is isomorphic to a K&the sequence space. In the interesting special
case that P is generated by a single weight function, A%/I is even isomorphic to a power series
space of finite type. From the sequence space representation we deduce that in all relevant
examples I is not complemented in 4$. Furthermore, it follows that all proper closed infinite-
dimensional translation invariant subspaces of certain weighted (DFN)-spaces of entire functions
have a Schauder basis but are not complemented.

Let P = (p)ken be a decreasing sequence of radial subharmonic functions
on C which satisfy some mild technical conditions. Denote by A} the vector
space of all entire functions on C satisfying sup |f (2) exp(—pi(2)) < oo for all

ke N. Under its natural locally convex topology A% becomes a nuclear
Fréchet algebra. Algebras of this type have been studied since a long time.
They arise in complex analysis and functional analysis.

In the present article we use results and methods of Berenstein and
Taylor [1] and Meise [7] to prove that for every proper closed infinite-
codimensional ideal I of A% the quotient space A}/I is isomorphic to a
nuclear K6the sequence space. If the weight system P is of the special form
P = (k™! p)en, then we derive that A%/I is isomorphic to a nuclear power
series space of finite type.

This sequence space representation of A%/I allows to use the structure
theory of nuclear Fréchet spaces to investigate whether an ideal I is
complemented in 4%. It turns out that in all our examples no proper
infinite-codimensional ideal I is complemented. This is essentially due to the
fact that each continuous linear map from A$/I into A% is already
compact. Moreover, it explains the corresponding observation of Taylor [15]
and gives results which cover a significantly larger class of examples.

By means of the Fourier-Borel transform, the information on the
structure of A%/l implies that in certain weighted (DFN)-spaces of entire
functions all translation invariant subspaces have a Schauder basis. As a
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particular example we mention the following: For s > 1 denote by
Ef:={fcA(C) there exists ke N with s:glf(z)l exp(—kjz[) < ool.

Then every proper closed infinite-dimensional translation invariant subspace
W of E° is isomorphic to the strong dual of a nuclear power series space of
finite type and is not complemented in E*. This result should be compared

with the results of Meise [7], Sect. 5, on the translation invariant subspaces .

of 43, where P = (k™! {z|").y, s> 1. For applications of the results of the
present article and for related work we refer to [8]-[12].

The article is divided into four sections. In the first one we introduce the
weighted algebras 43 and the sequence spaces which we need and give some
examples. In section two, the representation theorem for AYI is proved. The
question of the complementation of the closed ideals in A% is treated in
section three, and the results on the translation invariant subspaces are
presented in section four.

Acknowledgements. The first-named author gratefully acknowledges
research support from the Dr. Reinhard and Emmi Heynen-Stiftung. The
research of the second-named author was supported in part by the National
Science Foundation of the United States.

1. Weighted algebras, sequence spaces and examples. In this section we
introduce the weighted algebras A% of entire functions on C which will be
treated in the sequel. Moreover, we give sequence space representations of
these algebras.

L1. DeFINmioN. A function p: C — [0, oof is called a weight function if
it has the following properties:

(1) p is continuous and subharmonic.
() log(1+21%) = o(p(2)).
(3) There exists C > 1 such that for all we C
sup p(z)<C
lz—-w| <1

A weight function will be called radial if p(z) = p(z]) for all zeC. p will be
called an inductive weight function if it satisfies (1), (3) and if log(1+2)»
=0(p(2)).

1.2. DerFiNmmion. A sequence P = (Pken Of weight functions is called a
Weight system if it has the following properties:

(1) For every ke N there exists M > 0 with Pr+1 S e+ M.

(2) For every ke N there exist me N and L >0 with

2pm(D < p(@+L for all zeC.
A weight system P = (p,), v is called radial if Px 1s radial for all keN.

inf p(2)+C.

lz—w|<1
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For an open set © in C let A(Q) denote the algebra of all holomorphic
functions on Q. If P is a given weight system then we define the subalgebra
AS of A(C) in the following way:

1.3. DeFiniTioN. (a) For a weight function p we put

HE = (€ AO] fll.:= suplf (A" < co)

H:= {feAO)] Ifllp2:=([(f (@) e "?)?dm(2)'* < w0},
c

where m denotes the Lebesgue measure on C = R%.
(b) For a weight system P we define

o.__ N o M a g
Ap:= N HpR =projHp
keN “k

and endow this vector space with its natural projective limit topology. If P
= (k™! Phen then we write A7 instead of AS.

By standard arguments one proves:

14. ProrosITION. For every weight system P:

(a) AS is a locally convex algebra with unit under pointwise multiplication.

(b) AS is a nuclear Fréchet space.

) AS = pr(:j H} = pﬁ)j Ap.

1.5. ExampLes. (1) Let ¢: [0, co[ — [0, o[ be continuous, convex and
increasing with lim ¢(f) = oc and assume that. there exists D > 1 with

(20 < Dq)(r)+L‘; ?:r all te[0, oc[. Then it follows easily from Hormander

[2], Th. 1.6.7, that @op is a weight function for every weight function p.

(2) Let ¢: [0, cof — [0, oo[ be continuous with lim ¢(t) = co0. Assume

1~ .

that t+—>¢(¢) is convex and increasing and that there _exists D_>1 v.vnh
@(2t) < De(t)+D for all te[0, oo[. Then p: z+s¢(|z{") is a radial weight
function for each r > 0.

Most of the following examples can be obtained from (1) or (2):

B) p() =z, r>0

@ p@) =(log(1+|z3)f, s> 1.

(5) p(z) = |Rez["+{Imz|5, r,s>1.

(6) p(2) = lel"+[mzf', r>0, s> 1. ‘

1.6. DeFINITION. (a) Let A = (a;, )02 be a matrix of nonnegative
numbers a;,. A is called a Kothe ‘matrix if

(1) ajx <ajys; for all j, keN.
(2 a;; >0 for all jeN.
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(b) Let 4 be a K&the matrix and let E = (Ej, I lI);en be a sequence of
Banach spaces. For 1 < p < o0 we define

AP(A, E):= ,‘erEjl n,“,,(x)::(;i1 (Xl 4077 < o for all keN)

JeN Jj=

and for p= o0 we put

A%(A, By:= [xe[] B/ m (%) :=supllxfl;a,, <o for all keN).
jeN JjeN

These spaces of vector-valued sequences are Fréchet spaces under their
natural locally convex topology, induced by the norms (e, pkan. If E;
=(C, |*]) for all jeN, then we write AP(A) instead of A7(A, E). Instead of
41(A4) we sometimes write A(A).

17. ExampLE. Let a be an increasing unbounded sequence of positive
real numbers (called an exponent sequence) and put

1
a;, = exp(ka;) and bj,k:=exp(~zaj), JikeN.

Then the corresponding space 1!(A4) (resp. A!(B)) is denoted by A («) (resp.
Ay (@) and is called a power series space " of infinite (resp. of finite) type.
Classical examples of power series spaces are the following: The space
C®(S"} of all C*functions on the unit circle S! is isomorphic to
An((10g(j+1))sen). The space A(C) is isomorphic to A ((j)jen). The space
A(D), D the open unit disk, is isomorphic to A1 (Djen)-

Later in the applications we shall need sequence space representations of
A$. For radial weight functions such representations can be obtained by
estimating the Taylor coefficients of the functions in A$%. Sufficiently precise

estimates can be obtained by means of the Young conjugate of a convex
function.

18. DerFINITION. Let ¢: [0, o[ — R be an increasing convex function.
Then its Young conjugate ¢*: [0, o[+ Ry {0} is defined by
@*(y):=sup {xy—o(x)| x> 0).
19. Remark. The following facts are easy to check:
(a) ¢* is convex.
(b) If lim [ (t)/t] = oo, then @* is strictly increasing on [a, oc[, where o
[ iad" ]
= (de/dr)(0).
(9 If lim [o(1)/f] = oo, then (*)* = o.
1t~
The next result follows easily from Cauchy’s inequality (sce‘e.g. Taylor

[14]).
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1.10. ProrosiTioN. Let g: [0, oo — R be an increasing function and put
@: x+>q(e”). Assume that q is constant on [0, 1], that ¢ is convex and that
lim [@(x)/x] = c0. Then we have the Jollowing assertions for every entire
X =00

Junction f: zr——»i a;z%:
j=o
(a) If s.ug[f(z)l exp(—q(z))) = 4, then lajl < A exp(—o@*(j)) for all je N,.

() If supla exp(¢*(J) = 4, then sup|f (2)l exp(~-q(2/z)) < 24.
JeNg ze

Remark. It is easy to check that for a radial weight function p, the
function ¢: x+>p(e" is an increasing convex function on [0, co[. We shall
use this in the sequel. Moreover, we shall also use that we may assume
wlo.g. that p is constant on [0, 1]. Hence the following corollaries are
immediate consequences of Proposition 1.10. ;

L11. CoroLLAry. Let P = (p).n be a radial weight system such that for
each ke N there exist me N and D > 0 with p,,(22) < p, (2)+D for all zeC.
Then A% is isomorphic to A(A) for A = (aj)jengken With a;, 1= exp(pf ()
where @,: X+ p, (€.

1.12. CoroLLARrY. Let p be a radial weight function with p(22) = O(p(2)).
Then A3 is isomorphic to A1 (A) with a;x = exp(k~! @* k), where ¢ is defined
by ¢: x+>p(e).

L13. ExampLE. (1) For a >0 let ¢: [0, o[ — R be given by @(x) = e~
Then it is casy to check that ¢*: y+(y/a)(log(y/a)—1). Hence it follows
from Corollary 1.12 that for p: zi-[z[", r > 0, we have A2~ A!(4) with

1kj kj j i J
au=exp (12 (10g - 1)) =oxp L1og -+ logk )

This shows that Ap =~ 21 (A) =~ A, ((J)jen)-

(2 For a>1 put p:=afx—1) and ¢: [0, co[ — R, @(x) 1= (1) x=.
Then it is easy to check that @*(y)=(1/8)y*. Hence it follows from
Corollary 1.12 that for p(z) = (log(1+zI%) we have A% ~ A'(4) with

11 1
=exp|-=> k"’)-—:cx (——k”“"’).
oy P(kﬂ(l) p 3 J
This shows that AD ~ A, ((*)en)-

1.14. ExampLe. (1) Let g: [0, o[ — [0, co[ be continuous with ¢(2r)
=0(q(t)) and lim [q(#)/q(t)] =0 for each 0 <r < 1. Assume furthermore
t—a

that y: x++q(e”) is increasing and convex. Let (r):oy be a strictly decreasing
sequence in J0, o[ and put P:=(r; 1 q(jz{")}ey- Then P is a weight system
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and we have .
4 ((II’*U))JENo) if kh'm e >0,

A% ~ ) _kow
r {Aw ((lll* (.’))jsNo) if k]lm ry = 0.

To see this put p,: z 1y q(2|™) for ke N. Then p, is a weight function
by 1.5(2). Since  lim [py. (2)/pe(2)] =0 by hypothesis, it follows that P is a

|z} =0

weight system. For ¢,: x —p,(¢”) we have

1
@¥ () = sup (xy — @y (x)) = —sup(r, xy— (r, x)) = -I-Vf*(y)-
x20 Ty x20 T

kxz

Hence it follows from Corollary 1.11 that A% ~ i'(4) with

\ 1 , ,
a; = exp(o¥ (j)) = exp (;;!//* (J)), jeNy, keN.

Obviously, this proves our vclaim.

(2) Let P:=(|2/™)..y, Where (rken 1 a strictly decreasing sequence in
10, o[, Then A% ~ A, ((j);en) if klim 1o >0 and AS =~ A, ((j)jen) if lim r, = 0.

. . . o k-‘

This is an obvious consequence of (1) and the fact that for Vi xXe® o\;c have
y*: yy(logy—1).

(3) Let (ruen be a strictly decreasing sequence in ]I, o[ and put
P:=(ry *[log(1+]z/]*)en- Then P is a weight system for which we have
A$ ~ A1 (4) with .

=1 -1
aj) = exp (——j" k )
T

This follows from Corollary 1.11 and the remark on the Young conjugate in
1.13(2). Note that for r, = 14 1/k we have

k+1

(4) Let (rijev be a strictly decreasing sequence in J0, cof. For se0, oof
put

a, _—.exp(——L "‘“).

P:= (121" exp([log log (1] + &)])sen-

Thfm it follows from a remark in Meise [7], Example 2.13(5), that there is a
weight system P with 4} = 4§ and that A% ~ A'(4) with

a; = exp(—sj[loglog (e+/)1").

As in Meise [7], Proposition 2.8, one proves by means of Proposition
14 the following: ‘
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L.15. ProrosITION. Let P =(pJiy be a radial weight system. Then
A% ~ 12(B) = A4(B),

where B = (b;,) with b, = [21 [r**'exp(—2p, (r))dr]"/?, je Ny, keN.
0

1.16. CoroLLARY. Let p be a radial weight function with the property
() There exist A= 1 and B> 0 such that for all zeC

>
p(22) < Ap(2)+B and 2p(z) < p(Az)+B,

Then Ag ~ Aw((j)js,v).
Proof. It is easy to check that because of (x) we have AY = A$, where
P = (pyen With p: z —p(z/k). Since

0

[r¥* Yexp (—2p(r/k))dr = k**2 [ ¥+ exp(—2p(s))ds
0 0

we conclude from Proposition 1.15 that by a diagonal transformation we
have A(j‘» = Aco((j)}sNo) = Am((j)jsN)'

Remark. It is easy to see that the analogues of 1.15 and 1.16 hold for
weight functions in several variables which are coordinatewise radial.

2. A% modulo localized ideals. In this section we derive a sequence space
representation for 4% modulo certain localized ideals. To do this we first
have to establish an appropriate semi-local to global interpolation theorem.

2.1. ProposiTioN. Eet P be a radial weight system and put

Lp:= {uc L, (C) [[lu@)lexp(—p(2)]?dm(z) < oo for all keN}.
Then, for every ve % there exists us 2, with 0u/0z = v, where the derivative
is taken in the sense of distributions. Moreover, if ve C*(C) then u is in C*(C).

Proof. For ke N we define

Zy:= {feL..(C) i [If (@) exp(—pi ()] dm(z) < 0},
Y%= {fe Lo (O) [[If (2) exp(—pi(2)—log (1 +]2%)]* dm(z) <
[
and ofjozeZ,},
X = {feY @6z =0} =H,fk,
where q,: z > p; (2)+log (1 +|z|%). From Hormander’s L? estimates for the 7-

operator, it then follows that the sequence
0— X, — X‘—E' Z,—0
is exact. See eg. Berenstein and Taylor [1], Th. 1 or Hoérmander [2],
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Chap. 4. Now observe that X;,; = X, L+, <Y, and Z,,, < Z, for all
ke N. Since the weights g, are radial it follows easily that the polynomials
are dense in X, (see Meise [7], 2.8, for the argument). This implies that the
hypotheses of the Mittag-Leffler Lemma of Komatsu [4], Lemma 1.3, are
satisfied. Hence the sequence

0 - proj X, — proj Y; A projZ,—0
“k +~k “k

is exact. From the definition of weight functions and weight systems it
follows easily that proj Y; = proj Z, = I%. This proves the first assertion. The
~k -k
second assertion follows from regularity for the c-operator (see H&rmander
[2]. 4.25). t :
22. ProrosiTION. Let P = (p)n be a radial weight system, let q be an
inductive weight function with )

lim M=0 Jor all ke N

I21 0 Pk (2)
and let F =(F,,..., Fy)e(A(CO)" satisfy
sup sup|F;(z) exp(—Dq(z)) < o0
1<j<N zeC
Jor some D> 0. For e >0 and C >0 put
N

8, (Fie, 0):= {zeC| () [F;@2)*)"* <eexp(—Cq(2)}.

j=1
If Zc A(S,(F;e, C)) satisfies for all ke N
sup {1(z)] exp(— pi (2))| zeS§,(F;&, C)} < oo,

then there exist AcA%, &, C, with 0<e <g C,>C and
a;e A(S,(F;ey, C)), 1 <j< N, such that for all ze8,(F; e, Cy)

N
Mz) =1+ Y o2) F,(2).
J=1

Proof. By Berenstein and Taylor [1], p. 120, there are e, Cy, 4,B>0
and yeC*®(C) with 0< x < 1, Supp(y) <= S;(Fie, C), xS, (F;¢, Cy) =1 and
S.u? (92/02) (2)| exp(—Bq (z)) < A. Then

. 0
vi= =F(LIFF) T =0h, 1<j<N,
=1 2
is in C*(C) N 5. Hence Proposition 2.1 can be used to complete the proof

similarly to the one of the semi-local interpolation theorem of Berenstein and
Taylor [1], p. 110.
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23. LEmMMA. Ler P be a radial weight system with the property that

2
sup sup P(22)

=C <
keN [zzR Pr(2)

Jor a suitable R > 0. Then for every f<c A% there exists a radial inductive
weight function q with the following properties: '
(1) q(22) = 0(q(2)).
(2) sup|fiz)lexp(—Aq(z)) < oo for some A > 0.
zeC
. 4(@)
3) im —==0 for all keN.
( Iz o0 Pic (2) %
Proof. First we remark that the hypothesis on P implies the existence
of a >0 with limsup[p, (x)/x*] < co for all ke N. Now let fe A} be given.
X oo

Without loss of generality we may assume |f(0) >e and f not constant.
Then we define g,: [0, oco[ = R by

9.() = log (max|f (2))
Notice that zr»gq,(|z]) is subharmonic and continuous and that
lim [gq, (x)/p, (x)] = O for all keN. Next choose b = max(a+2, log4C/log 2)
;n:io define

o

a:():= [g: )1+~ dr.
1

Then we have

o o

222 = [, @M1+ dt =4 [q, () (1+¢/2)"dt
1 2

<2 [ (10 d = 27 g, (),
1

since 1+i/2>%(1+t) for all te[1, oof.

0

Moreover, we have, with L:= {(141)~"dt, for all re[0, oo
1

U

Lg (0 < i[ql(tr)(l-f't)""d! =4q5()

and hence g, < (1/L)q,. Notice that z+g,(jz|]) is continuous. Hence it is
subharmonic as a supremum of subharmonic functions. To see that
lim [g; (x)/p (x)] = O for all ke N, let ke N and ¢ > O be given. Choose me N

with 2™ > R such that g, (r) <&27°"! p,(r) when r > 2™. Then we have for
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all r > 2™
am o an

G = [ e+ d+ Y | g A+ 4
1

n=m+1 an—1
2"

i € . ~
<Im+ Y 25T { @1+ dr
n=m-1 2n—1

o e e _
SIe+ Y, serCa)2-emesy

n=m+ 4

€ Zj2CY &
Simtgn0) ¥ (5 ) <lm+gn.

Hence there exists r, such that g,(r) <ep,(r) for all r >r,, which proves
lim [q, (x)/px(x)] = 0. ‘

X0

Concluding, we define ¢: z g, (|z])+log(1+|z]*). Then the preceding
arguments show that g is a radial inductive weight function which has
properties (1)3).

24. DerinrTioN. Let P be a weight system.

(a) For an arbitrary-ideal I in the algebra A$ we define

Te:= {fe A} [f1,€l, for every acC),

where [f], denotes the germ of f at a and I, denotes the ideal generated by
{[/1Jl fel} in the ring 0, of all germs of holomorphic functions at the point
a. I, is called the local ideal generated by I or just the localization of I. I is
called localized if I =1,,.

(b) For F = (F,,..., Fy)e(43)" we denote by I(F) the ideal in 4% which
is algebraically generated by the functions F,,..., Fy. The localization of
I(F) is denoted by I, (F).

2.5. ProposITION. Let P be a radial weight system satisfying p,(2z)

= 0(p(2)) for all keN. Then for every closed ideal I in AS there exist
Fy, FyeAY with I = I,,,(F,, F,).

Proof. It is easy to check that 4% equals a space of type E(K) in the
notation of Taylor [14], § 2, where K satisfies conditions K1 to K4. Hence
every closed ideal in A4} is localized by Taylor [14], Th. 7.2. Knowing this,
the “jiggling of zeros” argument, indicated in Berenstein and Taylor [1],
p- 120, together with Lemma 2.3 shows that [ = Lig(Fy, F)) for every closed
ideal I in A$.

Next we want to determine the locally convex structure of
AYLoe(Fy, ..., Fy). Let P be a radial weight system and let ¢ be an inductive
weight function with Il|im [9(z)/pc(2)] =0 for all ke N. Furthermore let F
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=(Fy,..., Fy)e(A(C))" be given with
sup sup|F;(z) exp(—Bg(2)) < oo
C .

1<jSN ze
for some B >0 and assume that
V(F):={zeC] Fy(z)=0for 1 <j< N]
is an infinite set. Moreover, assume that F is slowly decreasing in the
following sense:

(1)  There exist ¢ > 0 and C > 0 such that for each ke N there exist me N
and D, = 0 such that each component S of the set

N
S,(F;e, O):= {zeC| (T |F;)%)"* <& exp(—Cq(2))]
J=1

with SN V(F) # @ is bounded and such that
‘ suppy(2) < infp(2)+ Dy
ze§ zeS
Since V(F) is infinite, it follows from- (1) that there are infinitely many
components § of S,(F; ¢, C) with S V(F) # (). We choose an enumeration

(S;);en Of these components and we choose z;eS; for each je N. Then we
define the matrix 4 = (a;4);ev bY

2 Ajj = €Xp ( Pk (Zj))~

Obviously (1) implies that for every ke N there exist me N and D, = 0 such
that for all je N

G suppu(@ < pz)+De  and  pu(z) < inf py (2) + D
:ES] 2e8j
Next put I :=1I,.(F) and V := V(F) and define for je N
)] Ej = T] /L.

aeSjr\V

Then E; is a finite-dimensional complex vector space. Let H™(S)) denote the
Banach space of all bounded holomorphic functions on §;. Then it is easy to
check that the map

) o H*(S) = Ep 0)(f) = (L Jat+ Ladaesov
is linear and surjective. Hence we get a norm on E, by letting
(6) Hy: Ej— Ry el :=inf{llgll,,m(sj,l geH™(S)), 0;(9) = o}

Now let E denote the sequence (E, || ||}ev of finite-dimensional normed
spaces defined by (4) and (6). We want to show that for every f € 43 we have
(0 (N1S)); v 2™ (A, E).
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To see this, let f =A% be given. Then (3) implies that for each ke N there
exists me N such that for all je N we have by (3)

lies (/18 )ll; < 1118l ens, < Ilfllpm.wexp(sgp P (2))
. 28

< Mppoo exp(Dy+ p(2)) = 171 s 0 €XP (D) (s 0) ™ 2.
This estimate shows that the linear map
)] 01 A3 —A%(4, E), o(f):=(g;(fIS))jen is continuous.

To show that ¢ is surjective, let u = (u;); .y €1°(4, E) be given. Then we
have :

® supliglyaye =:llll <o for all keN.

Now remark that, by 1.2(2), for every ke N there exist ne N and L > 0 with

Z—i = exp(=pi(z)+Pu(2)) < Lexp(—4 py (2).
Jan

Since lim |zj] = oo and since p, satisfies 1.1(2) we have
j=m

(9  For every keN there exists ne N with limﬂ"i =0,
J=reo Gjn

Hence (8) implies
lim J|)lja;, =0 * for all keN.
Find -}
Now choose a strictly increasing sequence (jikev in N with
Nesslly < (a1
and choose A€ H*(S)) with 0;(4) = y; for all jeN and

”lj”lfm(s.’) s 2(aj,k)~l
Next define 1: S, (F; 2, C)~ C by

I(z = {g;(z)

T}}en x €A4(S,(F; &, C)), and from (3) we deduce that for each keN there *
exist meN and D, > 0 such that for all J2Jjn and all zeS; we have

K@) =14 @) < 2(@m ™" = 2exp(pn(z))
< 26™ exp(pi(2)).

This implies that 1 s.atisﬁes the hypotheses of Proposition 2.2. Consequently
there exists Ae A% with ¢(4) = (2;(A))en = 1. This shows that @ is surjective.

for all j>j,
for ji <j <juss-

if ze§;,
if zeS,(F;e, O\ §,.
JeN
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By this and (7), ¢ is open by the open mapping theorem. Since kerg
= I,,.(F), we have proved

(10) A 1oo(F) = i™(4, E).
Now remark that A} is nuclear by 14. Hence AYI,..(F) and

consequently i*(A4, E) is nuclear. From (9) we derive that A%(A, E)
= A%(A, E), where

A%(4, E):= {xeA®(4, E)| lim [Ix]l;a6 = O for all keN}.
J=aw
Hence it follows from Meise [7], Remark a) after 1.3, that we have:

(11)  For every ke N there exists /e N with Y (dimE,-)Z’J < 00,
j=1 sl

This implies that A°(A, E) = A'(4, E). Moreover, it follows from Meise [7],
14, that we have

(12) Ap/Loo(F) = (A, E) = 2' (4, E) ~ A} (B),
where B is obtained from A by repeating the jth row of 4 (dim E)-times.
All together we have proved:
2.6. ProPOSITION. Let P be a radial weight system and let q be an
inductive weight function with

lim .?_@_:0 Jor all keN.

I3 o Px (2)
Furthermore let F =(Fy,..., Fy)e(A(C))" be given with
sup sup|F;(z)lexp(—Byg(z)) < o

1<j<N zeC
Jor some B >0 and V(F) infinite.
If F is slowly decreasing in the sense of (1) above, then A%/, (F) is
isomorphic to the nuclear Fréchet space i'(B) where

b =exp(—p (W), J, keN,

where (w)),en is an appropriate sequence in C with lim [w)| = co.
Jmeo

27. THeoREM. Let P = (p).~ be a radial weight system satisfying

: pi(22)
(1) There exists R >0 with sup sup ——- < o0.
_ keN lz|>R Pk (@

Then for every proper closed infinite-codimensional ideal I in A% the quotient
AYI is isomorphic to the nuclear Fréchet space A'(B) with by,
=exp(—p(w)), j,keN, where (w),v is an appropriate sequence with

lim |w)| = co.
o
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Proof. Let I be an arbitrary proper closed ideal in A% which is. of
infinite codimension. By Proposition 2.5 we have I = I,,.(F,, F,), where we
may assume F,; # 0. By Lemma 2.3 there exists a radial inductive weight
function g with ¢(22) = 0(q(2)), 'llim [4(2)/pc(z)] = 0 for all ke N such that

Z| =+ o0

for an appropriate number B > 0 we have

max sup|F;(z)| exp(— Bq(2)) < 0.

j=1,2 zeC

An application of the minimum modulus theorem implies (see Levin [5], p.
20, and the proof of Kelleher and Taylor [3], Prop. 5.2) that there exist
>0, C>0, noeN and a sequence (r,),ov With e <r, <" for all n > n,
such that for F = (F,, F,)

S:(F56, 0 (U (zeC|  =n)) = 0.

nZng

This shows that, up to finitely many exceptions, for each component § of
S,(F; &, C) there exists ne N with

ScRyi={zeC] 1, <l <ry).

From (1) it follows that there exists D > 1 with

n(e?2)
sup su <
:.Jv) |z|£z pe(2)

Now let keN be given. By 1.2(2) there exist me N and D, > 0 with
Dp,(2) < pe(2)+Dy

Then for each component S of §,(F;e, C) with SR, for n>n, and
S c{zeC| |2 = R} we have

SUP P (2) < P (€"*?) < Dpo(e”) < pi(e"+Dy < infp,(z)+D,.
zeS zeS

for all zeC.

This implies that F = (F,, F,) is slowly decreasing in the sense of 2.6(1).
Since I has infinite codimension, the set ¥ (F) is infinite. Hence the result
follows from Proposition 2.6.

Remark. From the proof of Theorem 2.7 and Proposition 2.6 it follows
that the sequence (w;);y in the assertion of Theorem 2.7 can be chosen in the
following way:

Let ny and R, be as in the proof of Theorem 2.7 and put

M;={neN0] nzng—1 and V(F)r\R,,;!:Q)},

where R, ., :={ze(| || <Tn}- Denote by (n) the increasing

arrangement of M and denote by v, the number of the joint zeros of F; and
F, in R, (counted with multiplicities). Then we can take as sequence (w));cy
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the sequence which is obtained from the sequence (exp(n)).y by repeating
exp(n) v,-times.

28. CoroLLARY. Let p be a radial weight function with p(22) = 0(p(2)).
Then for -every proper closed infinite-codimensional ideal I in A3, AYT is
isomorphic to a nuclear power series space Ay (@) of finite type.

Proof. By definition we have AQ = A} for P:=(k™!p),y. From the
properties of p it follows easily that P satisfies condition (1) of Theorem 2.7.
Hence we have A%/I ~ A'(B), where

: 1
bjx =exp (—EP(WJ)) Jj.keN.

By the preceding remark we may assume that o:= (p(Wp)jen is increasing,
hence 1*(B) = A, ().

3. On the complementation of closed ideals in A%. Now we use the
information on the structure of A%/1,..(F) which we have obtained in the
previous section to decide whether I,,.(F) is complemented in AS. This is
done by means of certain linear topological invariants which have been
introduced and investigated by Vogt [16], [17], [19], Vogt and Wagner [21]
and Wagner [22]. We begin by recalling the definition of the invariants
which we shall use later on.

3.1. DeriNiion, Let E be a metrizable locally convex space and let
(Il llken be an (increasing) fundamental system of seminorms on E generating
the locally convex structure of E. For ke N define || I¥: E' = [0, o] by || yi|¥
=sup {|y(x)l| ||lxll, <1}. Then we say:

(@) E has property (DN) if there exists me N such that for every ke N
there exist neN and C > 0 with

I HE< CHl Ml e

(b) E has property (DN) if there exists me N such that for every ke N
there exist neN, ¢ >0 and C >0 with
Il < Clllsl fhe
(c) E has property (Q) if for every pe N there exists ge N such that for
every ke N there exist d >0 and C > 0 with
HIEe< ClollEl Iz
(d) E has property (Q) if there exists d > 0 such that for every pe N there
exists ge N such that for every ke N there exists C >0 with

FE< CI IR e
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() E has property () if for every pe N there exists ge N such that for
every ke N and every d > 0 there exists C > 0 with

=< CIl IR

3.2. Remark. (a) It is easy to check that properties (DN) and (DN) are
linear topological invariants which are inherited by topological linear
subspaces. By Vogt [16], 1.7, a nuclear metrizable locally convex space E has
(DN) iff E is isomorphic to a subspace of s. By Vogt [16], 2.4, a power series
space Ag(x) has (DN) iff R = o0, By Vogt [17], 3.3, a metrizable locally
convex space E is isomorphic to a subspace of a stable nuclear A, () iff E
has (DN) and is A, (x)-nuclear.

(b) It- is easy to check that properties (Q), (Q) and ($) are linear
topological invarjants which are inherited by quotient spaces. By Vogt and
Wagner [21], 1.8, a nuclear Fréchet space E has (Q) iff E is a quotient space
of 5. By Vogt [18], 2.8 and 7.3, a strongly nuclear Fréchet space E has () iff
E is a quotient of a nuclear power series space of finite type. By Vogt [19],
4,2, a Fréchet space E has (Q) iff every continuous linear map T E — A, (o) is
bounded for some (all) power series space A, () with sup(oc,,+ 1/ay) < 00. For

other characterizations of Fréchet spaces satisfying (£3) see Vogt [20], Th. 4. 2,

and Meise and Vogt [13], Th. 3.3.

(c) From Vogt [18], 1.6, it follows that a nuclear Fréchet space which
has properties (Q) and (DN) (resp. () and (DN)) is finite-dimensional.

3.3 Proposrrion. Let P = (pyen be a radial weight system which satisfies
condition 2.7(1). Then for every proper closed ideal I in A%:

(@) AY/I has property ().
(b) If for every neN there exists me N with
Pm(2)
m-——-=0
|zl ~o0 Pn (Z)

then AS/I has (§)).

Proof If I'is of finite codimension, then A%/I has (3) and hence ($).
Hence we may assume that I is of infinite codimension. Then Theorem 2.7
implies that A3/l ~ 1'(B) with

by = exP("'Pk(Wj))a J>keN,

where (w));ev is a sequence in C with hm lel

To prove (a) let ne N be given. By 12(2) there exist meN and L >0
with

20m(2) < pu(@)+L  for all zeC.
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Hence we have for each ke N and all je N

=PeW)~pa(w) < —2p, (W) +L

and hence
bjib; . < €-b},.

By Wagner [22], 1.10, this implies that 1!(B) has ().
To prove (b) let neN be given and choose m according to the
hypothesis. Then for every d >0 there exists L >0 with

d
Pmlz) < dp,,(z)+L for all zeC.

Hence we have for each ke N and each je N

—Pk(Wj)_dPn(Wj) < —(l+d)Pm(Wj)+L(1 +4d)

and consequently
b, < ChLie.

By standard arguments this implies that 2!(B) has ().

34. THEOREM. Let P = (pioy be a radial weight system which satisfies
condition 2.7(1). Then no proper closed infinite-codimensional ideal I in AS is
complemented if one of the following conditions holds:

(a) A% has property (DN).

(b) A% has (DN) and for every neN there exists meN with

lim 2% @ =0.
el Pal2)

Proof. Let (a) be satisfied and assume that a proper closed ideal I is
complemented in A%. Then A%/I has () by Proposition 3.3(a) and has (DN),
since A}/I is isomorphic to a topological linear subspace of A% and since
(DN) is inherited by topological linear subspaces. Hence A%/I is finite~
dimensional by 3.2(c).

If (b) is satisfied and if the proper closed ideal I is complemented in A%
then (b) and Proposition 3.3(b) 1mp1y by the same arguments as above that

AY/I has (€ and (DN). Hence A%/I is finite-dimensional by 3.2(c).

3.5. CoroLLary. Let p be a radial weight function with p(2z) = O(p(2)). If
AY has (DN) then no proper closed infinite-codimensional ideal I in AS is
complemented.

3.6. Remark. By Corollary 1.12, A% is isomorphic to a K&the sequence
space 1'(A). Hence it can be characterized by Vogt [16], 2.3, when A2 has
property (DN). This characterization in terms of the conjugate function ¢* of
@: x —p(e) is given in [11], where also examples of algebras A failing (DN)
are given.

2 - Studin Mathematica 85.3
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Here we restrict our attention to the discussion of the following
examples.

3.7. ExampLEs. Let p be any of the following weight functions. Then no
proper closed infinite-codimensional ideal I in AY is complemented by
Corollary 3.5.

(1) p(2) =|21% a>0. AS has.(DN) by 1.13(1) or 1.16.

(2 p(@) = (log(1+1zI?)), « > 1. A% has (DN) by 1.13(2).

(3) Let (M))jen, be a sequence of positive numbers with M, = | which
has the following properties:

M1) M}<M;_ M, for all jeN.
(M2)  There exist 4, H > 1 with M, < AH" min M;M,_, for all neN.
0j<n

€ There exists ke N with lim inf(M /MY > 1,
J~ro0

Then it has been remarked in Meise [7], 2.6(2), that the function

sup log (|z1'/M))

for 0
Pum: 2H¢JE~O 270
M 0

for z=0

is a weight function which satisfies condition 1.16(x). Hence A9, has (DN) by
Corollary 1.16. "
3.8. ExampLEs. Let P be any of the following weight systems. Then no

proper closed infinite-codimensional ideal I in A% is complemented by
Proposition 3.4.

(1) P = (' (e as in Example 1.14(1). A4S has (DN) by 1.14(1).
(2) P =(|z["),.n, where ("duen 1s a strictly decreasing sequence in 0, ool.
A3 has (DN) by 1.14(2).

. (3} P=(r; ! [log(1+|2/3)T*)n. By the sequence space representation
given in Example 1.14(3) it is easy to check that 4 has property (DN). It
has even. the stronger property (DN), introduced in Vogt [19], p. 190.

Remark. Let P (resp. P) be as in Example 1.14(4). Then it is easy to
check that A% has property ({3). As a consequence of 3.2(c), 4% does not have
property (DN). Hence Theorem 3.4 cannot be used to decide whether closed

idefals in A% are cqmple?nented. However, we can use other properties of the
Fréchet spaces which are involved to decide this question.

39. LEMMA. Let P = (Pilen be a radial weight system satisfying condition
2.7(}). For keNl put @y x—p(e*) and define the matrix B = (b)) by
by :=exp(~ @, (). If every continuous linear map from A(B) into A‘,’. is
compact, then no proper closed infinite-codimensional ideal in A%, is complemented.

Proof. Assume that 7 is a proper closed infinite-codimensional ideal in

A} which is complemented. Then the quotient map o: A% — A/ has a
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continuous linear right inverse R: AY/I — A$, which is an injective
topological homomorphism and hence noncompact. By Theorem 2.7 we have
AY/I ~ 21 (C), where C = (c;,) with ¢;, = exp(—py(w;) for an appropriate
sequence (w));y in C. By the remark after Theorem 2.7, there exists a
subsequence (m),y of N such that for D =(d;,) defined by d,
= exp(—pi(exp(my))), A!(D) is isomorphic to a complemented subspace of
AY(C), and of A*(B). Let n denote a continuous linear projection of A*(B)
onto A'(D). Then (RjA!(D))or is a continuous linear map from i!(B) into
A'(A4) which is not compact. Hence the assumption that I is complemented
leads to a contradiction to the hypothesis, ’

3.10. ProposiTiON. Letr P = (p)yv be a radial weight system satisfying
condition 2.7(1). For ke N put ¢, x+>p.(e"). If the following holds:

(¥} For every (K(N))vewve NN there exists ke N such that for each ne N
there exist MeN and C >0 such that for all v,jeN

PHO)+0 () < max (BR0)+oxm ()+C,

then no proper closed infinite-codimensional ideal in A% is complemented.

Proof. By Corollary 1.11 and 'Vogt [19], Satz 1.5, condition (%) is
equivalent to the assertion that every continuous linear map from A!(B) into
A$ is compact, where B is the matrix defined in 3.9. Hence the result follows
from Lemma 3.9.

Condition (*) looks rather complicated. However, it can be used to
decide whether the ideals in A%, P as in Example 1.14(4), are complemented.

3.11. Exampie. For r.> 0 define P:= {|z|" exp([max (0, log log |z)1™))en>
where (r)ov is a strictly decreasing sequence in JO, co[. Then no proper
closed infinite-codimensional ideal in 4% is complemented.

To show this we first remark that by Meise [7], Example 2.13(5), we
have A% = A% where P satisfies condition 2.7(1). Hence we can apply
Proposition 3.10. This is done essentially by the same arguments which have
been used in Meise [7], Example 4.16.

Let (K(N)yey be given. Without restriction we can  assume that
(K (N)yew is strictly increasing. Choose k = K (1)+1 and let ne N be given.
Then choose M > n+1 and £¢[0, oo such that ¢, —¢, and ¢,—¢, are
strictly increasing on [&, oo[, where ¢, x> p(e”). Next fix s > 54, where s,
is large enough and can be determined from the following considerations.
Define T(s) (resp. t(s)) as the solution of the following equation (T) (resp.

(7):
(7) 0% ()= 01 (8) = Py () — i (1),
() 0¥ (8)— 05 () = @i () — Pxoan (1).
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Assume for a moment that we can show:
(1). There exists soe[0, co[ with T(s) < t(s) for all s3> s,.
Then we have for all s > s,
(T) ¥ ()= 0t (s) < Py (N~ @ (1)
(=) PO (8)— 03 (8) 2 () — pgeany (D
where &, is chosen appropriately. Hence

for all t = T(s),
for all te[&,, t(s)],

@3 (8)+ @i (1) < max (gcn) () + @ (9), Prown () + 0 (5)
for all s = 54 and all t > £,. This implies the existence of Jo and v, such that

P +e ()< for all j 2 j,, v v,.

max (‘Pﬁ(") + @k (j))
1SNEM

Then it is easy to check that there exists C > 0 such that 3.10(x) holds.
Hence no proper closed infinite-codimensional ideal in A% is complemented

by Proposition 3.10 if we can show that (1).holds. To do this it suffices to
show that for all large s we have

2 0 (T()) = @ron (T(3) < @ ()= @ (s).
To do this, we note that by Meise [7], Example 2.13(5), we have

s s .
o (s) =;logs—;(loglogs)’ for s large enough

and that

@ (1) = exp(rt+(logrt)")  for ¢ large enough.

To abbreviate we put f;: s+>r~!(loglogs)” and g;: t—(logrt)". From the
definition of T(s) we now get the identity

€ $(/1 (59)=£,(9) = exp (- T(5)) [exp (g1, (T(5)) - exp g T(5)].

Since lim T'(s) = oo and since k > K(1) we get

8=+

@ o (T(S)) — Ogm) (T(S)) < @ (T(S'))
= $(/1(9=/1(9) exp (4 (T(5))) [exp (gxs) (T () — exp (g (T(59))]
<1 (5)2 exp (gk ( T(S)) —~dk(1) (T(S)))-

From M > n+1 we get for s large enough

0] ()= 010) =5 () ~Fu ) > 5 /6.
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By lim T'(s) = o0 and k > K (1) we get for large s

(6) exp (3 gx) (T(5))) < exp (gk(l) (T)=g¢(T().
Now (4), (5) and (6) show that () is implied by the inequality
@ AL <texp(gx (T().

Jals)

To prove that (7) holds for large s, one has to estimate T(s) from below.
From the definition of T(s) we get

(8) rT(s) = logs+log(f; (s) ~f, ()~ log (exp (gxcs) (T(5)) ~ exp (gu (T(s))))-
This implies

9) rT(s) < log s+logf; (s) < 2logs  for large s

and hence by (9) and lim T(s) = oo

s —+on
2
(10) rT(s) 2 logs—gg, (T(s)) = log s~ g, (; log s)

for large s. Then we get

exp (b gk (T(5))) > 4 exp (4 [log (log s — [log (2 log s) D) x®)
= texp(3 [log(3log 5)1%V) > exp ((ry—r,)loglog log 5)
J1(9)
= for all s > s,.
ATEE TR

This shows that (7) holds for all s sufficiently large and hence completes the
proof.

4. Translation invariant subspaces for some weighted (DF)-spaces of entire
functions. It was Martineau [6] who extended the classical work on
convolution operators on Fréchet spaces of entire functions to convolution
operators on (DF)-spaces of entire functions. In this section we show that the
results of Sections 2 and 3 can be used to determine the locally convex
structure of the closed translation invariant subspaces of various (DF)-spaces
of entire functions, including those which were considered by Martineau [6].

We begin by introducing the (DF)-spaces which we will work -with.

4.1. Dermvimion. Let Q = (g be a sequence of radial weight functions
with the following properties: :
(1) For every ke N there exists K >0 with

4 (2) < o411 @)+ K for all zeC.
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(2) For every ke N there exist le N and L >0 with
2q,(2) € qi(z)+L for all zeC.
(3) For every ke N there exist me N and M > 0 with
4:(22) < gu(2)+M for all zeC.
{4) g,1[0, oo[ is convex and satisfies
lim M: co - for all keN.
x=w0 X
Then we define .
Ag(C):= {fe A(O)| there exists ke N with sup|f(z)|exp(—qx(2)) < oo}
zeC
and endow Aq(C) with its natural inductive limit topology. Because of (4) we

can define p,: z ([0, co[)*(Jz[). We assume that Py := (p)eey is a weight
system which satisfies condition (1) of Theorem 2.7.

The following proposition is contained in Taylor [14], Th. 5.2. For the
convenience of the reader we give the proof here too.

4.2. ProposiTioN. Let Q = (qken and Py = (D be as in 4.1. Then the
Fourier—Borel transform

F: Ag(Ch— A%y, F(T): LT, exp(al)),

is a linear topological isomorphism.
Pro of. From the conditions on @ and Proposition 1.10 it follows that f:

Z> Z a;27 is in Ay(C) iff there exist ke N and C > 0 with
j=0

m laj < Cexp(—(geoexp)* () " for all jeNo.

Since Ay (C) is a (DFN)-space (see Meise [7], 2.4), this implies that a linear
map T. Ay(C)— C is continuous iff

(2) For every keN there exists C, such that for all je N,
IT(2)| < Cyexp((gxoexp)* (j)).

By Taylor [14], Lemma 5.3, and Stirling’s formula this implies that for every
Te4p(CY and every keN there exists C; such that for all je N

?3) IT@/j") < Ciexp((geoexp)* (j)—jlogj+))

<C
< Cyexp(—(g¥ oexp)* ().
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By Proposition 1.10 this shows that
F(T): (=Y LT, @YY
=0

is in A‘}Q. Hence # maps A, (CY into A‘}Q and is continuous because of (3).
o

To show that # is surjective, let g: (> Y b;{/ be given. Then
i=0

~(0) = 3 (+D0+9b,0

is in A‘,’,Q. This implies by Proposition 1.10, Taylor [14], Lem;na 5.3, and
Stirling’s formula that for each ke N there exists C, > 0 such that for all jeN

O] JMby < Crexp(—(g¥ oexp)* (j)+jlogj—j)j~ ¥
< Cyexp ((geoexp)* ()~ 2.

y (1) this implies that T: f+— )" b; f®(0) is in 4, (Cy, and satisfies #(T)
j=o

=g. Hence & is a linear bijection. Since (4) implies the contihuity of F71,
the proof is complete.

4.3. DeFINITION. A linear subspace W of A4, (C) is called translation
invariant if for every f e Wand every ae C the function z —f (z+a) belongs to
w.

4.4. ProrosiTioN. Let Q and Py be as in 4.1. Then a closed linear
subspace W of Ay (C) is translation invariant if and only if (W) is an ideal
in A,.Q

This can be proved in the same way as Meise [7], Proposition 5.5.

4.5. TueoreM. Let Q and Py be as in 4.1. Then every closed linear
translation invariant subspace W of Ay(C) has a Schauder basis.

Proof. By Proposition 4.2 and classical duality theory we have

W=W (A‘,’.Q/f(WJ'))(,.
If W is finite-dimensional or equal to Ay(C) then the result ‘holds trivially.
Hence we may assume that % (W*) is a proper infinite-codimensional ideal
in A% because of Proposition 4.4. Consequently, Theorem 2.7 implies that
W }“(B)b

4.6. CoroLLARY. Let q be a convex radial weight function which satisfies
condition 1.16(x) and lim [g(x)/x] = co. Assume that p: z+(q|[0, coD)*(|z])

x =0
satisfies condition 1.16(x) and put Q := (kp)n- Then every proper closed linear
infinite-dimensional translation invariant subspace W of Ay (C) is isomorphic to
the strong dual of a nuclear power series space of finite type, and no such
subspace is complemented in Ay (C).
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Proof. Since q satisfies condition (%) of 1.16, we have A, (C) = 445(C),
where § :=(q(k2)kn. Hence we have Pg = (p(z/k))ey- Since p satisfies con-
dition () of 1.16, we have A°,Q = A‘}a = AY. By the proof of Theorem 4.5
we have

W = (A% F (WYY,

Hence the result follows from Corollary 2.8 and Theorem 3.4 in connection
with Corollary 1.16.

4.7. ExampLEs. (1) For s> 1 put
E:= {fe A(C)} there exists ke N with sup|f(z)exp(—k|z]*) < o0l.
zeC

Then it follows easily from Corollary 4.6 that every proper closed infinite-
dimensional translation invariant linear subspace W of E¥ is isomorphic to a
power series space of finite type, and no such subspace is complemented.

(2) Let 0 = (schey be a strictly increasing sequence in 1, o[ and put

E (0):={f€A(C)| there exists ke N with sup|f(z)exp(~z|™) < o}.
zel

Then every proper closed infinite-dimensional translation invariant linear
subspace W of E{s) has a Schauder basis, and no such subspace is
complemented. Moreover, W has property (£3).

It is easy to check that E(6) = Ay, (C), where Q (o) = (sy ! 2]™),on- Since

Q(0) and P(0) = (i * |2/ Mey With 1, = s,/(s,— 1) satisfy the condition of 4.1,
Theorem 4.5 implies that W has a Schauder basis. By Proposition 3.3, W/
~ A‘}Qm/y" (W4 has (), while Example 3.8(1) shows that & (W+) and hence
W is’ not complemented. '
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