

Sequence space representations for (FN)-algebras of entire functions modulo closed ideals

by

REINHOLD MEISE (Düsseldorf) and B. ALAN TAYLOR (Ann Arbor, Mich.)

Abstract. Let A_p^0 denote the weighted (FN)-algebra of entire functions on C defined by an appropriate weight system P. We prove that for every infinite-codimensional proper closed ideal I in A_p^0 the quotient A_p^0/I is isomorphic to a Köthe sequence space. In the interesting special case that P is generated by a single weight function, A_p^0/I is even isomorphic to a power series space of finite type. From the sequence space representation we deduce that in all relevant examples I is not complemented in A_p^0 . Furthermore, it follows that all proper closed infinite-dimensional translation invariant subspaces of certain weighted (DFN)-spaces of entire functions have a Schauder basis but are not complemented.

Let $P = (p_k)_{k \in \mathbb{N}}$ be a decreasing sequence of radial subharmonic functions on C which satisfy some mild technical conditions. Denote by A_p^0 the vector space of all entire functions on C satisfying $\sup_{z \in C} |f(z)| \exp(-p_k(z)) < \infty$ for all $k \in \mathbb{N}$. Under its natural locally convex topology A_p^0 becomes a nuclear

Fréchet algebra. Algebras of this type have been studied since a long time.

They arise in complex analysis and functional analysis.

In the present article we use results and methods of Berenstein and Taylor [1] and Meise [7] to prove that for every proper closed infinite-codimensional ideal I of A_P^0 the quotient space A_P^0/I is isomorphic to a nuclear Köthe sequence space. If the weight system P is of the special form $P = (k^{-1}p)_{k\in\mathbb{N}}$, then we derive that A_P^0/I is isomorphic to a nuclear power series space of finite type.

This sequence space representation of A_0^0/I allows to use the structure theory of nuclear Fréchet spaces to investigate whether an ideal I is complemented in A_0^0 . It turns out that in all our examples no proper infinite-codimensional ideal I is complemented. This is essentially due to the fact that each continuous linear map from A_0^0/I into A_0^0 is already compact. Moreover, it explains the corresponding observation of Taylor [15] and gives results which cover a significantly larger class of examples.

By means of the Fourier-Borel transform, the information on the structure of A_{P}^{0}/I implies that in certain weighted (DFN)-spaces of entire functions all translation invariant subspaces have a Schauder basis. As a

particular example we mention the following: For s > 1 denote by

$$E^{s} := \{ f \in A(C) | \text{ there exists } k \in N \text{ with } \sup_{z \in C} |f(z)| \exp(-k|z|^{s}) < \infty \}.$$

Then every proper closed infinite-dimensional translation invariant subspace W of E^s is isomorphic to the strong dual of a nuclear power series space of finite type and is not complemented in E^s . This result should be compared with the results of Meise [7], Sect. 5, on the translation invariant subspaces of A_p^0 , where $P = (k^{-1}|z|^s)_{k \in N}$, s > 1. For applications of the results of the present article and for related work we refer to [8]-[12].

The article is divided into four sections. In the first one we introduce the weighted algebras A_p^0 and the sequence spaces which we need and give some examples. In section two, the representation theorem for A_p^0/I is proved. The question of the complementation of the closed ideals in A_p^0 is treated in section three, and the results on the translation invariant subspaces are presented in section four.

Acknowledgements. The first-named author gratefully acknowledges research support from the Dr. Reinhard and Emmi Heynen-Stiftung. The research of the second-named author was supported in part by the National Science Foundation of the United States.

- 1. Weighted algebras, sequence spaces and examples. In this section we introduce the weighted algebras A_p^0 of entire functions on C which will be treated in the sequel. Moreover, we give sequence space representations of these algebras.
- 1.1. DEFINITION. A function $p: C \to [0, \infty[$ is called a weight function if it has the following properties:
 - (1) p is continuous and subharmonic.
 - (2) $\log(1+|z|^2) = o(p(z)).$
 - (3) There exists $C \ge 1$ such that for all $w \in C$

$$\sup_{|z-w|\leq 1} p(z) \leq C \inf_{|z-w|\leq 1} p(z) + C.$$

A weight function will be called radial if p(z) = p(|z|) for all $z \in C$. p will be called an inductive weight function if it satisfies (1), (3) and if $\log(1+|z|^2) = O(p(z))$.

- 1.2. DEFINITION. A sequence $P = (p_k)_{k \in \mathbb{N}}$ of weight functions is called a weight system if it has the following properties:
 - (1) For every $k \in N$ there exists $M \ge 0$ with $p_{k+1} \le p_k + M$.
 - (2) For every $k \in N$ there exist $m \in N$ and $L \ge 0$ with

$$2p_m(z) \le p_k(z) + L$$
 for all $z \in C$.

A weight system $P = (p_k)_{k \in \mathbb{N}}$ is called radial if p_k is radial for all $k \in \mathbb{N}$.

For an open set Ω in C let $A(\Omega)$ denote the algebra of all holomorphic functions on Ω . If P is a given weight system then we define the subalgebra A_P^0 of A(C) in the following way:

1.3. Definition. (a) For a weight function p we put

$$\begin{split} &H_p^{\infty} := \big\{ f \in A(C) | \ ||f||_{p,\infty} := \sup_{z \in C} |f(z)| \, e^{-p(z)} < \infty \big\} \\ &H_p^2 := \big\{ f \in A(C) | \ ||f||_{p,2} := \big(\iint_C (|f(z)| \, e^{-p(z)})^2 \, dm(z) \big)^{1/2} < \infty \big\}, \end{split}$$

where m denotes the Lebesgue measure on $C = \mathbb{R}^2$.

(b) For a weight system P we define

$$A_{\mathbf{P}}^{0} := \bigcap_{k \in \mathbf{N}} H_{p_{k}}^{\infty} = \operatorname{proj}_{\leftarrow k} H_{p_{k}}^{\infty}$$

and endow this vector space with its natural projective limit topology. If $P = (k^{-1} p)_{k \in \mathbb{N}}$ then we write A_p^0 instead of A_p^0 .

By standard arguments one proves:

- 1.4. Proposition. For every weight system P:
- (a) $A_{\mathbf{p}}^{0}$ is a locally convex algebra with unit under pointwise multiplication.
- (b) $A_{\mathbf{p}}^{0}$ is a nuclear Fréchet space.
- (c) $A_{p}^{0} = \operatorname{proj}_{r_{k}} H_{p_{k}}^{2} = \operatorname{proj}_{r_{k}} A_{p_{k}}^{0}$.
- 1.5. Examples. (1) Let $\varphi \colon [0, \infty[\to [0, \infty[$ be continuous, convex and increasing with $\lim_{t \to \infty} \varphi(t) = \infty$ and assume that there exists $D \ge 1$ with $\varphi(2t) \le D\varphi(t) + D$ for all $t \in [0, \infty[$. Then it follows easily from Hörmander
- $\varphi(2t) \leq D\varphi(t) + D$ for all $t \in [0, \infty[$. Then it follows easily from Hörmander [2], Th. 1.6.7, that $\varphi \circ p$ is a weight function for every weight function p.
- (2) Let $\varphi: [0, \infty[\to [0, \infty[$ be continuous with $\lim_{t \to \infty} \varphi(t) = \infty$. Assume that $t \mapsto \varphi(e^t)$ is convex and increasing and that there exists $D \ge 1$ with $\varphi(2t) \le D\varphi(t) + D$ for all $t \in [0, \infty[$. Then $p: z \mapsto \varphi(|z|^r)$ is a radial weight function for each r > 0.

Most of the following examples can be obtained from (1) or (2):

- (3) $p(z) = |z|^r$, r > 0.
- (4) $p(z) = (\log(1+|z|^2))^s$, s > 1.
- (5) $p(z) = |\text{Re } z|^r + |\text{Im } z|^s, \quad r, s \ge 1$
- (6) $p(z) = |z|^r + |\text{Im } z|^s$, r > 0, $s \ge 1$.
- 1.6. DEFINITION. (a) Let $A = (a_{j,k})_{(j,k) \in \mathbb{N}^2}$ be a matrix of nonnegative numbers $a_{i,k}$. A is called a Köthe matrix if
 - (1) $a_{j,k} \leqslant a_{j,k+1}$ for all $j, k \in \mathbb{N}$.
 - (2) $a_{j,1} > 0$ for all $j \in N$.

(b) Let A be a Köthe matrix and let $E=(E_j, ||\ ||_j)_{j\in N}$ be a sequence of Banach spaces. For $1 \le p < \infty$ we define

$$\lambda^{p}(A, E) := \{ x \in \prod_{j \in N} E_{j} | \pi_{k, p}(x) := (\sum_{j=1}^{\infty} (||x_{j}||_{j} a_{j, k})^{p})^{1/p} < \infty \quad \text{for all } k \in N \}$$

and for $p = \infty$ we put

$$\lambda^{\infty}(A, E) := \{x \in \prod_{j \in N} E_j | \pi_{k, \infty}(x) := \sup_{j \in N} ||x_j||_j a_{j,k} < \infty \quad \text{for all } k \in N\}.$$

These spaces of vector-valued sequences are Fréchet spaces under their natural locally convex topology, induced by the norms $(\pi_{k,p})_{k\in\mathbb{N}}$. If $E_j = (C, |\cdot|)$ for all $j\in\mathbb{N}$, then we write $\lambda^p(A)$ instead of $\lambda^p(A, E)$. Instead of $\lambda^1(A)$ we sometimes write $\lambda(A)$.

1.7. Example. Let α be an increasing unbounded sequence of positive real numbers (called an *exponent sequence*) and put

$$a_{j,k} := \exp(k\alpha_j)$$
 and $b_{j,k} := \exp\left(-\frac{1}{k}\alpha_j\right)$, $j, k \in \mathbb{N}$.

Then the corresponding space $\lambda^1(A)$ (resp. $\lambda^1(B)$) is denoted by $\Lambda_{\infty}(\alpha)$ (resp. $\Lambda_1(\alpha)$) and is called a power series space of infinite (resp. of finite) type. Classical examples of power series spaces are the following: The space $C^{\infty}(S^1)$ of all C^{∞} -functions on the unit circle S^1 is isomorphic to $\Lambda_{\infty}((\log(j+1))_{j\in N})$. The space A(C) is isomorphic to $\Lambda_{\infty}((j)_{j\in N})$. The space A(D), D the open unit disk, is isomorphic to $\Lambda_1((j)_{j\in N})$.

Later in the applications we shall need sequence space representations of A_p^0 . For radial weight functions such representations can be obtained by estimating the Taylor coefficients of the functions in A_p^0 . Sufficiently precise estimates can be obtained by means of the Young conjugate of a convex function.

1.8. DEFINITION. Let $\varphi: [0, \infty[\to \mathbf{R} \text{ be an increasing convex function.}]$ Then its Young conjugate $\varphi^*: [0, \infty[\to \mathbf{R} \cup \{\infty\} \text{ is defined by}]$

$$\varphi^*(y) := \sup \{xy - \varphi(x) | x \ge 0\}.$$

- 1.9. Remark. The following facts are easy to check:
- (a) φ^* is convex.
- (b) If $\lim_{t\to\infty} [\varphi(t)/t] = \infty$, then φ^* is strictly increasing on $[\alpha, \infty[$, where $\alpha = (d\varphi/dt)(0)$.
 - (c) If $\lim_{t\to\infty} [\varphi(t)/t] = \infty$, then $(\varphi^*)^* \doteq \varphi$

The next result follows easily from Cauchy's inequality (see e.g. Taylor [14]).

1.10. Proposition. Let $q: [0, \infty[\to R]$ be an increasing function and put $\varphi: x \mapsto q(e^x)$. Assume that q is constant on [0, 1], that φ is convex and that $\lim_{x \to \infty} [\varphi(x)/x] = \infty$. Then we have the following assertions for every entire

function $f: z \mapsto \sum_{j=0}^{\infty} a_j z^j$:

- (a) If $\sup |f(z)| \exp(-q(|z|)) = A$, then $|a_j| \le A \exp(-\varphi^*(j))$ for all $j \in N_0$.
- (b) If $\sup_{j\in\mathbb{N}_0}|a_j|\exp\left(\varphi^*(j)\right)=A$, then $\sup_{z\in\mathcal{C}}|f(z)|\exp\left(-q(2|z|)\right)\leqslant 2A$.

Remark. It is easy to check that for a radial weight function p, the function $\varphi: x \mapsto p(e^x)$ is an increasing convex function on $[0, \infty[$. We shall use this in the sequel. Moreover, we shall also use that we may assume w.l.o.g. that p is constant on [0, 1]. Hence the following corollaries are immediate consequences of Proposition 1.10.

- 1.11. COROLLARY. Let $P = (p_k)_{k \in \mathbb{N}}$ be a radial weight system such that for each $k \in \mathbb{N}$ there exist $m \in \mathbb{N}$ and $D \ge 0$ with $p_m(2z) \le p_k(z) + D$ for all $z \in \mathbb{C}$. Then A_p^0 is isomorphic to $\lambda^1(A)$ for $A = (a_{j,k})_{j \in \mathbb{N}_0, k \in \mathbb{N}}$ with $a_{j,k} := \exp(\varphi_k^*(j))$, where $\varphi_k : x \mapsto p_k(e^x)$.
- 1.12. COROLLARY. Let p be a radial weight function with p(2z) = O(p(z)). Then A_p^0 is isomorphic to $\lambda^1(A)$ with $a_{j,k} = \exp(k^{-1}\varphi^*(kj))$, where φ is defined by $\varphi: x \mapsto p(e^x)$.
- 1.13. Example. (1) For a>0 let $\varphi\colon [0,\infty[\to R]$ be given by $\varphi(x)=e^{ax}$. Then it is easy to check that $\varphi^*\colon y\mapsto (y/a)(\log(y/a)-1)$. Hence it follows from Corollary 1.12 that for $p\colon z\mapsto |z|^r, r>0$, we have $A_p^0\simeq \lambda^1(A)$ with

$$a_{j,k} = \exp\left(\frac{1}{k}\frac{kj}{r}\left(\log\frac{kj}{r} - 1\right)\right) = \exp\left(\frac{j}{r}\log\frac{j}{er} + \frac{j}{r}\log k\right).$$

This shows that $A_p^0 \simeq \lambda^1(A) \simeq \Lambda_\infty((j)_{i \in \mathbb{N}})$.

(2) For $\alpha > 1$ put $\beta := \alpha/(\alpha - 1)$ and $\varphi : [0, \infty[\to \mathbb{R}, \varphi(x) := (1/\alpha)x^{\alpha}]$. Then it is easy to check that $\varphi^*(y) = (1/\beta)y^{\beta}$. Hence it follows from Corollary 1.12 that for $p(z) = (\log(1+|z|^2))^{\alpha}$ we have $A_p^0 \simeq \lambda^1(A)$ with

$$a_{j,k} = \exp\left(\frac{1}{k}\frac{1}{\beta}(kj)^{\beta}\right) = \exp\left(\frac{1}{\beta}k^{\beta-1}j^{\beta}\right).$$

This shows that $A_p^0 \simeq \Lambda_\infty((j^\beta)_{j\in\mathbb{N}})$.

1.14. Example. (1) Let $q: [0, \infty[\to [0, \infty[\to continuous with <math>q(2t)] = O(q(t))$ and $\lim_{t \to \infty} [q(t^r)/q(t)] = 0$ for each 0 < r < 1. Assume furthermore that $\psi: x \mapsto q(e^x)$ is increasing and convex. Let $(r_k)_{k \in \mathbb{N}}$ be a strictly decreasing sequence in $]0, \infty[$ and put $P:=(r_k^{-1}q(|z|^{r_k}))_{k \in \mathbb{N}}$. Then P is a weight system

and we have

$$A_{\mathbf{P}}^{0} \simeq \begin{cases} \Lambda_{1} \left(\left(\psi^{*}(j) \right)_{j \in N_{0}} \right) & \text{if } \lim_{k \to \infty} r_{k} > 0, \\ \Lambda_{\infty} \left(\left(\psi^{*}(j) \right)_{j \in N_{0}} \right) & \text{if } \lim_{k \to \infty} r_{k} = 0. \end{cases}$$

To see this put $p_k: z \mapsto r_k^{-1} q(|z|^{r_k})$ for $k \in \mathbb{N}$. Then p_k is a weight function by 1.5(2). Since $\lim_{\substack{|z| \to \infty \\ |z| \neq \infty}} [p_{k+1}(z)/p_k(z)] = 0$ by hypothesis, it follows that P is a weight system. For $\varphi_k: x \mapsto p_k(e^x)$ we have

$$\varphi_{k}^{*}(y) = \sup_{x \ge 0} (xy - \varphi_{k}(x)) = \frac{1}{r_{k}} \sup_{x \ge 0} (r_{k} xy - \psi(r_{k} x)) = \frac{1}{r_{k}} \psi^{*}(y).$$

Hence it follows from Corollary 1.11 that $A_{\mathbf{p}}^0 \simeq \lambda^1(A)$ with

$$a_{j,k} = \exp(\varphi_k^*(j)) = \exp\left(\frac{1}{r_k}\psi^*(j)\right), \quad j \in N_0, \ k \in N.$$

Obviously, this proves our claim.

(2) Let $P:=(|z|^{r_k})_{k\in\mathbb{N}}$, where $(r_k)_{k\in\mathbb{N}}$ is a strictly decreasing sequence in $]0, \infty[$. Then $A_P^0\simeq A_1((j)_{j\in\mathbb{N}})$ if $\lim_{k\to\infty} r_k>0$ and $A_P^0\simeq A_\infty((j)_{j\in\mathbb{N}})$ if $\lim_{k\to\infty} r_k=0$. This is an obvious consequence of (1) and the fact that for $\psi\colon x\mapsto e^x$ we have $\psi^*\colon y\mapsto y(\log y-1)$.

(3) Let $(r_k)_{k\in\mathbb{N}}$ be a strictly decreasing sequence in]1, ∞ [and put $P := (r_k^{-1} [\log(1+|z|^2)]^{r_k})_{k\in\mathbb{N}}$. Then P is a weight system for which we have $A_P^0 \simeq \lambda^1(A)$ with

$$a_{j,k} = \exp\left(\frac{r_k - 1}{r_k} j^{r_k/(r_k - 1)}\right).$$

This follows from Corollary 1.11 and the remark on the Young conjugate in 1.13(2). Note that for $r_k = 1 + 1/k$ we have

$$a_{j,k} = \exp\left(\frac{1}{k+1}j^{k+1}\right).$$

(4) Let $(r_k)_{k\in\mathbb{N}}$ be a strictly decreasing sequence in $]0, \infty[$. For $s\in]0, \infty[$ put

$$\tilde{P} := (|z|^{1/s} \exp([\log \log (|z|^{1/s} + e)]^{r_k}))_{k \in \mathbb{N}}$$

Then it follows from a remark in Meise [7], Example 2.13(5), that there is a weight system P with $A_P^0 = A_P^0$ and that $A_P^0 \simeq \lambda^1(A)$ with

$$a_{j,k} = \exp(-sj \left[\log\log(e+j)\right]^{r_k}).$$

As in Meise [7], Proposition 2.8, one proves by means of Proposition 1.4 the following:

1.15. Proposition. Let $P = (p_k)_{k \in \mathbb{N}}$ be a radial weight system. Then $A^0_{\bullet} \simeq \lambda^2(B) = \lambda^1(B)$

where
$$B = (b_{j,k})$$
 with $b_{j,k} = \left[2\pi \int_{0}^{\infty} r^{2j+1} \exp\left(-2p_{k}(r)\right) dr\right]^{1/2}, \ j \in \mathbb{N}_{0}, \ k \in \mathbb{N}.$

1.16. COROLLARY. Let p be a radial weight function with the property

(*) There exist $A \ge 1$ and $B \ge 0$ such that for all $z \in C$

$$p(2z) \leq Ap(z) + B$$
 and $2p(z) \leq p(Az) + B$.

Then $A_p^0 \simeq \Lambda_\infty((j)_{j \in \mathbb{N}}).$

Proof. It is easy to check that because of (*) we have $A_p^0 = A_p^0$, where $P = (p_k)_{k \in \mathbb{N}}$ with p_k : $z \mapsto p(z/k)$. Since

$$\int_{0}^{\infty} r^{2j+1} \exp(-2p(r/k)) dr = k^{2j+2} \int_{0}^{\infty} s^{2j+1} \exp(-2p(s)) ds$$

we conclude from Proposition 1.15 that by a diagonal transformation we have $A_P^0 \simeq \Lambda_\infty((j)_{j\in N_0}) \simeq \Lambda_\infty((j)_{j\in N})$.

Remark. It is easy to see that the analogues of 1.15 and 1.16 hold for weight functions in several variables which are coordinatewise radial.

2. A_p^0 modulo localized ideals. In this section we derive a sequence space representation for A_p^0 modulo certain localized ideals. To do this we first have to establish an appropriate semi-local to global interpolation theorem.

2.1. Proposition. Let P be a radial weight system and put

$$L_{\mathbf{P}}^2 := \{ u \in L_{loc}^2(C) | \{ [|u(z)| \exp(-p_k(z))]^2 \, dm(z) < \infty \text{ for all } k \in \mathbb{N} \}.$$

Then, for every $v \in \mathcal{L}_{\mathbf{P}}^2$ there exists $u \in \mathcal{L}_{\mathbf{P}}^2$ with $\partial u/\partial \overline{z} = v$, where the derivative is taken in the sense of distributions. Moreover, if $v \in C^{\infty}(C)$ then u is in $C^{\infty}(C)$.

Proof. For $k \in \mathbb{N}$ we define

$$Z_k := \big\{ f \in L^2_{\mathrm{loc}}(C) \big| \int_C [|f(z)| \exp(-p_k(z))]^2 \, dm(z) < \infty \big\},$$

$$Y_k := \big\{ f \in L^2_{\mathrm{loc}}(C) \big| \int\limits_{C} \big[|f(z)| \exp \big(-p_k(z) - \log (1+|z|^2) \big) \big]^2 \, dm(z) < \infty$$

and $\partial f/\partial \bar{z} \in Z_k$,

$$X_k := \{ f \in Y_k | \partial f / \partial \bar{z} = 0 \} = H_{q_k}^2,$$

where $q_k: z \mapsto p_k(z) + \log(1+|z|^2)$. From Hörmander's L^2 estimates for the \bar{c} -operator, it then follows that the sequence

$$0 \to X_k \to Y_k \stackrel{\overline{\partial}}{\to} Z_k \to 0$$

is exact. See e.g. Berenstein and Taylor [1], Th. 1 or Hörmander [2],

Chap. 4. Now observe that $X_{k+1} \subset X_k$, $Y_{k+1} \subset Y_k$ and $Z_{k+1} \subset Z_k$ for all $k \in \mathbb{N}$. Since the weights q_k are radial it follows easily that the polynomials are dense in X_k (see Meise [7], 2.8, for the argument). This implies that the hypotheses of the Mittag-Leffler Lemma of Komatsu [4], Lemma 1.3, are satisfied. Hence the sequence

$$0 \to \operatorname{proj}_{\leftarrow k} X_k \to \operatorname{proj}_{\leftarrow k} Y_k \stackrel{\bar{\partial}}{\to} \operatorname{proj}_{\leftarrow k} Z_k \to 0$$

is exact. From the definition of weight functions and weight systems it follows easily that proj $Y_k \subset \operatorname{proj} Z_k = L^2_{\mathbf{p}}$. This proves the first assertion. The second assertion follows from regularity for the $\hat{\ell}$ -operator (see Hörmander [2], 4.25).

2.2. Proposition. Let $P = (p_k)_{k \in \mathbb{N}}$ be a radial weight system, let q be an inductive weight function with

$$\lim_{|z| \to \infty} \frac{q(z)}{p_k(z)} = 0 \quad \text{for all } k \in \mathbb{N}$$

and let $F = (F_1, ..., F_N) \in (A(C))^N$ satisfy

$$\sup_{1 \le i \le N} \sup_{z \in C} |F_j(z)| \exp(-Dq(z)) < \infty$$

for some D > 0. For $\varepsilon > 0$ and C > 0 put

$$S_q(F; \varepsilon, C) := \{ z \in C | (\sum_{j=1}^N |F_j(z)|^2)^{1/2} < \varepsilon \exp(-Cq(z)) \}.$$

If $\tilde{\lambda} \in A(S_q(F; \varepsilon, C))$ satisfies for all $k \in N$

$$\sup ||\widetilde{\lambda}(z)| \exp(-p_k(z))| \ z \in S_a(F; \varepsilon, C)| < \infty,$$

then there exist $\lambda \in A_{\mathbf{P}}^0$, ε_1 , C_1 with $0 < \varepsilon_1 < \varepsilon$, $C_1 > C$ and $\alpha_j \in A(S_q(F; \varepsilon_1, C_1))$, $1 \le j \le N$, such that for all $z \in S_q(F; \varepsilon_1, C_1)$

$$\lambda(z) = \tilde{\lambda}(z) + \sum_{j=1}^{N} \alpha_{j}(z) F_{j}(z).$$

Proof. By Berenstein and Taylor [1], p. 120, there are ε_1 , C_1 , A, B > 0 and $\chi \in C^{\infty}(C)$ with $0 \le \chi \le 1$, $\operatorname{Supp}(\chi) \subset S_q(F; \varepsilon, C)$, $\chi |S_q(F; \varepsilon_1, C_1) \equiv 1$ and $\sup_{z \in C} |(\partial \chi / \partial \bar{z})(z)| \exp(-Bq(z)) \le A$. Then

$$v_j := -\bar{F}_j \left(\sum_{j=1}^N |F_j|^2 \right)^{-1} \frac{\partial}{\partial \bar{z}} (\chi \bar{\lambda}), \quad 1 \leq j \leq N,$$

is in $C^{\infty}(C) \cap L_{\mathbb{P}}^2$. Hence Proposition 2.1 can be used to complete the proof similarly to the one of the semi-local interpolation theorem of Berenstein and Taylor [1], p. 110.

2.3. LEMMA. Let P be a radial weight system with the property that

$$\sup_{k \in \mathbb{N}} \sup_{|z| \ge R} \frac{p_k(2z)}{p_k(z)} = C < \infty$$

for a suitable R > 0. Then for every $f \in A_p^0$ there exists a radial inductive weight function q with the following properties:

- (1) q(2z) = O(q(z)).
- (2) $\sup_{z \in C} |f(z)| \exp(-Aq(z)) < \infty$ for some A > 0.
- (3) $\lim_{|z| \to \infty} \frac{q(z)}{p_k(z)} = 0 \quad \text{for all } k \in \mathbb{N}.$

Proof. First we remark that the hypothesis on P implies the existence of a > 0 with $\limsup_{x \to \infty} [p_k(x)/x^a] < \infty$ for all $k \in \mathbb{N}$. Now let $f \in A^0_P$ be given. Without loss of generality we may assume |f(0)| > e and f not constant. Then we define $q_1 : [0, \infty[\to R]$ by

$$q_1(r) := \log \left(\max_{|z|=r} |f(z)| \right).$$

Notice that $z \mapsto q_1(|z|)$ is subharmonic and continuous and that $\lim_{x \to \infty} [q_1(x)/p_k(x)] = 0$ for all $k \in \mathbb{N}$. Next choose $b = \max(a+2, \log 4C/\log 2)$ and define

$$q_2(r) := \int_1^\infty q_1(tr)(1+t)^{-b} dt.$$

Then we have

$$q_2(2r) = \int_1^\infty q_1(2tr)(1+t)^{-b} dt = \frac{1}{2} \int_2^\infty q_1(tr)(1+t/2)^{-b} dt$$

$$\leq 2^{b-1} \int_1^\infty q_1(tr)(1+t)^{-b} dt = 2^{b-1} q_2(r),$$

since $1+t/2 \ge \frac{1}{2}(1+t)$ for all $t \in [1, \infty[$.

Moreover, we have, with $L := \int_{1}^{\infty} (1+t)^{-b} dt$, for all $r \in [0, \infty[$

$$Lq_1(r) \leq \int_{1}^{\infty} q_1(tr)(1+t)^{-b} dt = q_2(r)$$

and hence $q_1 \le (1/L) q_2$. Notice that $z \mapsto q_2(|z|)$ is continuous. Hence it is subharmonic as a supremum of subharmonic functions. To see that $\lim_{x \to \infty} [q_2(x)/p_k(x)] = 0$ for all $k \in \mathbb{N}$, let $k \in \mathbb{N}$ and $\varepsilon > 0$ be given. Choose $m \in \mathbb{N}$ with $2^m \ge R$ such that $q_1(r) \le \varepsilon 2^{-b-1} p_k(r)$ when $r \ge 2^m$. Then we have for

Sequence space representations

all $r \ge 2^m$

$$q_{2}(r) = \int_{1}^{2m} q_{1}(tr)(1+t)^{-b} dt + \sum_{n=m+1}^{\infty} \int_{2^{n-1}}^{2^{n}} q_{1}(tr)(1+t)^{-b} dt$$

$$\leq I(m) + \sum_{n=m+1}^{\infty} \frac{\varepsilon}{2^{b+1}} \int_{2^{n-1}}^{2^{n}} p_{k}(2^{n}r)(1+t)^{-b} dt$$

$$\leq I(m) + \sum_{n=m+1}^{\infty} \frac{\varepsilon}{2^{b+1}} C^{n} p_{k}(r) 2^{-(n-1)(b-1)}$$

$$\leq I(m) + \frac{\varepsilon}{4} p_{k}(r) \sum_{n=m+1}^{\infty} \left(\frac{2C}{2^{b}}\right)^{n} \leq I(m) + \frac{\varepsilon}{4} p_{k}(r).$$

Hence there exists r_{ε} such that $q_2(r) \leqslant \varepsilon p_k(r)$ for all $r \geqslant r_{\varepsilon}$, which proves $\lim_{x \to \infty} [q_2(x)/p_k(x)] = 0$.

Concluding, we define $q: z \mapsto q_2(|z|) + \log(1+|z|^2)$. Then the preceding arguments show that q is a radial inductive weight function which has properties (1)–(3).

- 2.4. Definition. Let P be a weight system.
- (a) For an arbitrary ideal I in the algebra $A_{\mathbf{p}}^{0}$ we define

$$I_{\text{loc}} := \{ f \in A^0_{\mathbb{P}} | [f]_a \in I_a \text{ for every } a \in C \},$$

where $[f]_a$ denotes the germ of f at a and I_a denotes the ideal generated by $\{[f]_a| f \in I\}$ in the ring \mathcal{O}_a of all germs of holomorphic functions at the point a. I_{loc} is called the local ideal generated by I or just the localization of I. I is called localized if $I = I_{loc}$.

- (b) For $F = (F_1, ..., F_N) \in (A_p^0)^N$ we denote by I(F) the ideal in A_p^0 which is algebraically generated by the functions $F_1, ..., F_N$. The localization of I(F) is denoted by $I_{100}(F)$.
- 2.5. Proposition. Let P be a radial weight system satisfying $p_k(2z) = O(p_k(z))$ for all $k \in \mathbb{N}$. Then for every closed ideal I in A_p^0 there exist $F_1, F_2 \in A_p^0$ with $I = I_{loc}(F_1, F_2)$.

Proof. It is easy to check that A_{\bullet}^0 equals a space of type E(K) in the notation of Taylor [14], § 2, where K satisfies conditions K1 to K4. Hence every closed ideal in A_{\bullet}^0 is localized by Taylor [14], Th. 7.2. Knowing this, the "jiggling of zeros" argument, indicated in Berenstein and Taylor [1], p. 120, together with Lemma 2.3 shows that $I = I_{loc}(F_1, F_2)$ for every closed ideal I in A_{\bullet}^0 .

Next we want to determine the locally convex structure of $A_{P}^{0}/I_{loc}(F_{1},...,F_{N})$. Let P be a radial weight system and let q be an inductive weight function with $\lim_{|z|\to \infty} [q(z)/p_{k}(z)] = 0$ for all $k \in N$. Furthermore let F

 $=(F_1,\ldots,F_N)\in (A(C))^N$ be given with

$$\sup_{1 \leq j \leq N} \sup_{z \in C} |F_j(z)| \exp(-Bq(z)) < \infty$$

for some B > 0 and assume that

$$V(F) := \{z \in C | F_i(z) = 0 \text{ for } 1 \le j \le N \}$$

is an infinite set. Moreover, assume that F is slowly decreasing in the following sense:

1) There exist $\varepsilon > 0$ and C > 0 such that for each $k \in N$ there exist $m \in N$ and $D_k \ge 0$ such that each component S of the set

$$S_q(F; \varepsilon, C) := \left\{ z \in C \middle| \left(\sum_{i=1}^N |F_j(z)|^2 \right)^{1/2} < \varepsilon \exp\left(-Cq\left(z \right) \right) \right\}$$

with $S \cap V(F) \neq \emptyset$ is bounded and such that

$$\sup_{z \in S} p_m(z) \leqslant \inf_{z \in S} p_k(z) + D_k.$$

Since V(F) is infinite, it follows from (1) that there are infinitely many components S of $S_q(F; \varepsilon, C)$ with $S \cap V(F) \neq \emptyset$. We choose an enumeration $(S_j)_{j \in N}$ of these components and we choose $z_j \in S_j$ for each $j \in N$. Then we define the matrix $A = (a_{i,k})_{i,k \in N}$ by

$$(2) a_{i,k} := \exp\left(-p_k(z_i)\right).$$

Obviously (1) implies that for every $k \in N$ there exist $m \in N$ and $D_k \geqslant 0$ such that for all $j \in N$

(3)
$$\sup_{z \in S_j} p_m(z) \leqslant p_k(z_j) + D_k \quad \text{and} \quad p_m(z_j) \leqslant \inf_{z \in S_j} p_k(z) + D_k.$$

Next put $I := I_{loc}(F)$ and V := V(F) and define for $j \in N$

$$(4) E_j := \prod_{a \in S_j \cap V} C_a/I_a.$$

Then E_j is a finite-dimensional complex vector space. Let $H^{\alpha_i}(S_j)$ denote the Banach space of all bounded holomorphic functions on S_j . Then it is easy to check that the map

(5)
$$\varrho_j \colon H^{\infty}(S_j) \to E_j, \quad \varrho_j(f) = ([f]_a + I_a)_{a \in S_j \cap V}$$

is linear and surjective. Hence we get a norm on E_1 by letting

(6)
$$|| ||_j : E_j \to R$$
, $||\varphi||_j := \inf \{ ||g||_{H^{\infty}(S_j)} | g \in H^{\infty}(S_j), \varrho_j(g) = \varphi \}.$

Now let E denote the sequence $(E_j, \| \|_j)_{j \in \mathbb{N}}$ of finite-dimensional normed spaces defined by (4) and (6). We want to show that for every $f \in A^0_{\mathbb{P}}$ we have $(\varrho_j(f|S_j))_{i,N} \in \lambda^{\infty}(A, E)$.

To see this, let $f \in A_p^0$ be given. Then (3) implies that for each $k \in N$ there exists $m \in N$ such that for all $j \in N$ we have by (3)

$$\begin{aligned} \|\varrho_{j}(f|S_{j})\|_{j} &\leq \|f|S_{j}\|_{H^{\infty}(S_{j})} \leq \|f\|_{p_{m},\infty} \exp\left(\sup_{z \in S_{j}} p_{m}(z)\right) \\ &\leq \|f\|_{p_{m},\infty} \exp\left(D_{k} + p_{k}(z_{j})\right) = \|f\|_{p_{m},\infty} \exp\left(D_{k}\right) \cdot (a_{j,k})^{-1}. \end{aligned}$$

This estimate shows that the linear map

(7)
$$\varrho: A_{\mathbf{P}}^0 \to \lambda^{\infty}(A, \mathbf{E}), \ \varrho(f) := (\varrho_f(f|S_f))_{f \in \mathbb{N}}$$
 is continuous.

To show that ϱ is surjective, let $\mu = (\mu_j)_{j \in \mathbb{N}} \in \lambda^{\infty}(A, E)$ be given. Then we have

(8)
$$\sup_{j \in \mathbb{N}} \|\mu_j\|_j a_{j,k} = : \|\|\mu\|_k < \infty \quad \text{for all } k \in \mathbb{N}.$$

Now remark that, by 1.2(2), for every $k \in N$ there exist $n \in N$ and L > 0 with

$$\frac{a_{j,k}}{a_{j,n}} = \exp\left(-p_k(z_j) + p_n(z_j)\right) \leqslant L\exp\left(-\frac{1}{2}p_k(z_j)\right).$$

Since $\lim_{j\to\infty} |z_j| = \infty$ and since p_k satisfies 1.1(2) we have

(9) For every $k \in N$ there exists $n \in N$ with $\lim_{j \to \infty} \frac{a_{j,k}}{a_{j,n}} = 0$.

Hence (8) implies

$$\lim_{j\to\infty} ||\mu_j||_j a_{j,k} = 0 \quad \text{for all } k \in \mathbb{N}.$$

Now choose a strictly increasing sequence $(j_k)_{k\in\mathbb{N}}$ in N with

$$\|\mu_j\|_j \leqslant (a_{j,k})^{-1}$$
 for all $j \geqslant j_k$

and choose $\lambda_j \in H^{\infty}(S_j)$ with $\varrho_j(\lambda_j) = \mu_j$ for all $j \in N$ and

$$\|\lambda_j\|_{H^{\infty}(S_j)} \le 2(a_{j,k})^{-1}$$
 for $j_k \le j < j_{k+1}$.

Next define $\tilde{\lambda}$: $S_a(F; \varepsilon, C) \rightarrow C$ by

$$\widetilde{\lambda}(z) := \begin{cases} \lambda_J(z) & \text{if } z \in S_J, \\ 0 & \text{if } z \in S_q(F; \varepsilon, C) \setminus \bigcup_{i \in N} S_J. \end{cases}$$

Then $\tilde{\lambda} \in A(S_q(F; \varepsilon, C))$, and from (3) we deduce that for each $k \in N$ there "exist $m \in N$ and $D_k > 0$ such that for all $j \ge j_m$ and all $z \in S_j$ we have

$$\begin{aligned} |\tilde{\lambda}(z)| &= |\lambda_j(z)| \leqslant 2(a_{j,m})^{-1} = 2\exp(p_m(z_j)) \\ &\leqslant 2e^{D_k}\exp(p_k(z)). \end{aligned}$$

This implies that $\tilde{\lambda}$ satisfies the hypotheses of Proposition 2.2. Consequently there exists $\lambda \in A_p^0$ with $\varrho(\lambda) = (\varrho_j(\lambda_j))_{j \in N} = \mu$. This shows that ϱ is surjective.

By this and (7), ϱ is open by the open mapping theorem. Since $\ker \varrho = I_{loc}(F)$, we have proved

(10)
$$A_{P}^{0}/I_{loc}(F) \simeq \lambda^{\infty}(A, E).$$

Now remark that A_P^0 is nuclear by 1.4. Hence $A_P^0/I_{loc}(F)$ and consequently $\lambda^\infty(A, E)$ is nuclear. From (9) we derive that $\lambda^\infty(A, E) = \lambda^0(A, E)$, where

$$\lambda^{0}(A, E) := \left\{ x \in \lambda^{\infty}(A, E) | \lim_{j \to \infty} ||x_{j}||_{j} a_{j,k} = 0 \text{ for all } k \in \mathbb{N} \right\}.$$

Hence it follows from Meise [7], Remark a) after 1.3, that we have:

(11) For every $k \in N$ there exists $l \in N$ with $\sum_{i=1}^{\infty} (\dim E_i) \frac{a_{i,k}}{a_{i,l}} < \infty$.

This implies that $\lambda^0(A, E) = \lambda^1(A, E)$. Moreover, it follows from Meise [7], 1.4, that we have

(12)
$$A_{\mathbb{P}}^{0}/I_{loc}(F) \simeq \lambda^{\infty}(A, E) = \lambda^{1}(A, E) \simeq \lambda^{1}(B).$$

where B is obtained from A by repeating the jth row of A $(\dim E_j)$ -times. All together we have proved:

2.6. Proposition. Let P be a radial weight system and let q be an inductive weight function with

$$\lim_{|z|\to\infty}\frac{q(z)}{p_k(z)}=0 \quad \text{for all } k\in\mathbb{N}.$$

Furthermore let $F = (F_1, ..., F_N) \in (A(C))^N$ be given with

$$\sup_{1 \le j \le N} \sup_{z \in C} |F_j(z)| \exp(-Bq(z)) < \infty$$

for some B > 0 and V(F) infinite.

If F is slowly decreasing in the sense of (1) above, then $A_p^0/I_{loc}(F)$ is isomorphic to the nuclear Fréchet space $\lambda^1(B)$ where

$$b_{j,k} = \exp(-p_k(w_j)), \quad j, k \in \mathbb{N},$$

where $(w_j)_{j\in\mathbb{N}}$ is an appropriate sequence in C with $\lim_{j\to\infty}|w_j|=\infty$.

2.7. Theorem. Let $P = (p_k)_{k \in \mathbb{N}}$ be a radial weight system satisfying

(1) There exists
$$R > 0$$
 with $\sup_{k \in \mathbb{N}} \sup_{|z| \ge R} \frac{p_k(2z)}{p_k(z)} < \infty$.

Then for every proper closed infinite-codimensional ideal I in A_p^0 the quotient A_p^0/I is isomorphic to the nuclear Fréchet space $\lambda^1(B)$ with $b_{j,k} = \exp(-p_k(w_j))$, $j, k \in \mathbb{N}$, where $(w_j)_{j \in \mathbb{N}}$ is an appropriate sequence with $\lim_{k \to \infty} |w_j| = \infty$.

Proof. Let I be an arbitrary proper closed ideal in A_p^0 which is of infinite codimension. By Proposition 2.5 we have $I=I_{loc}(F_1,F_2)$, where we may assume $F_1 \neq 0$. By Lemma 2.3 there exists a radial inductive weight function q with q(2z) = O(q(z)), $\lim_{|z| \to \infty} [q(z)/p_k(z)] = 0$ for all $k \in \mathbb{N}$ such that for an appropriate number B > 0 we have

$$\max_{j=1,2} \sup_{z \in C} |F_j(z)| \exp(-Bq(z)) < \infty.$$

An application of the minimum modulus theorem implies (see Levin [5], p. 20, and the proof of Kelleher and Taylor [3], Prop. 5.2) that there exist $\varepsilon > 0$, C > 0, $n_0 \in N$ and a sequence $(r_n)_{n \in N}$ with $e^n < r_n < e^{n+1}$ for all $n \ge n_0$ such that for $F = (F_1, F_2)$

$$S_q(F; \varepsilon, C) \cap \left(\bigcup_{n \geq n_0} \left\{ z \in C \middle| |z| = r_n \right\} \right) = \emptyset.$$

This shows that, up to finitely many exceptions, for each component S of $S_a(F; \varepsilon, C)$ there exists $n \in N$ with

$$S \subset R_n := \{ z \in C | r_n < |z| < r_{n+1} \}.$$

From (1) it follows that there exists $D \ge 1$ with

$$\sup_{k\in\mathbb{N}}\sup_{|z|\geqslant R}\frac{p_k(e^2z)}{p_k(z)}\leqslant D.$$

Now let $k \in N$ be given. By 1.2(2) there exist $m \in N$ and $D_k \ge 0$ with

$$Dp_m(z) \leq p_k(z) + D_k$$
 for all $z \in C$.

Then for each component S of $S_q(F; \varepsilon, C)$ with $S \subset R_n$ for $n \ge n_0$ and $S \subset \{z \in C \mid |z| \ge R\}$ we have

$$\sup_{z \in S} p_m(z) \leqslant p_m(e^{n+2}) \leqslant Dp_m(e^n) \leqslant p_k(e^n) + D_k \leqslant \inf_{z \in S} p_k(z) + D_k.$$

This implies that $F = (F_1, F_2)$ is slowly decreasing in the sense of 2.6(1). Since I has infinite codimension, the set V(F) is infinite. Hence the result follows from Proposition 2.6.

Remark. From the proof of Theorem 2.7 and Proposition 2.6 it follows that the sequence $(w_j)_{j\in N}$ in the assertion of Theorem 2.7 can be chosen in the following way:

Let n_0 and R_n be as in the proof of Theorem 2.7 and put

$$M:=\{n\in N_0|\ n\geqslant n_0-1\ \text{and}\ V(F)\cap R_n\neq\emptyset\},$$

where $R_{n_0-1} := \{z \in C | |z| < r_{n_0}\}$. Denote by $(n_t)_{t \in N}$ the increasing arrangement of M and denote by v_t the number of the joint zeros of F_1 and F_2 in R_{n_t} (counted with multiplicities). Then we can take as sequence $(w_t)_{t \in N}$

the sequence which is obtained from the sequence $(\exp(n_i))_{i\in\mathbb{N}}$ by repeating $\exp(n_i)$ v_i -times.

2.8. Corollary. Let p be a radial weight function with p(2z) = O(p(z)). Then for every proper closed infinite-codimensional ideal I in A_p^0 , A_p^0 /I is isomorphic to a nuclear power series space $\Lambda_1(\alpha)$ of finite type.

Proof. By definition we have $A_p^0 = A_p^0$ for $P := (k^{-1}p)_{k \in \mathbb{N}}$. From the properties of p it follows easily that P satisfies condition (1) of Theorem 2.7. Hence we have $A_p^0/I \simeq \lambda^1(B)$, where

$$b_{j,k} = \exp\left(-\frac{1}{k}p(w_j)\right), \quad j, k \in \mathbb{N}.$$

By the preceding remark we may assume that $\alpha := (p(w_j))_{j \in \mathbb{N}}$ is increasing, hence $\lambda^1(B) = \Lambda_1(\alpha)$.

- 3. On the complementation of closed ideals in A_{ν}^0 . Now we use the information on the structure of $A_{\nu}^0/I_{\rm loc}(F)$ which we have obtained in the previous section to decide whether $I_{\rm loc}(F)$ is complemented in A_{ν}^0 . This is done by means of certain linear topological invariants which have been introduced and investigated by Vogt [16], [17], [19], Vogt and Wagner [21] and Wagner [22]. We begin by recalling the definition of the invariants which we shall use later on.
- 3.1. DEFINITION. Let E be a metrizable locally convex space and let $(\| \|_k)_{k \in \mathbb{N}}$ be an (increasing) fundamental system of seminorms on E generating the locally convex structure of E. For $k \in \mathbb{N}$ define $\| \|_k^* \colon E' \to [0, \infty]$ by $\| y \|_k^* = \sup\{|y(x)| \| \|x\|_k \le 1\}$. Then we say:
- (a) E has property (DN) if there exists $m \in N$ such that for every $k \in N$ there exist $n \in N$ and C > 0 with

$$|| ||_k^2 \leq C || ||_m || ||_n$$

(b) E has property (DN) if there exists $m \in N$ such that for every $k \in N$ there exist $n \in N$, $\varepsilon > 0$ and C > 0 with

$$|| ||_k^{1+\varepsilon} \leqslant C || ||_m^{\varepsilon} || ||_n.$$

(c) E has property (Ω) if for every $p \in N$ there exists $q \in N$ such that for every $k \in N$ there exist d > 0 and C > 0 with

$$\| \|_{a}^{*1+d} \leq C \| \|_{b}^{*} \| \|_{n}^{*d}$$

(d) E has property $(\bar{\Omega})$ if there exists d>0 such that for every $p\in N$ there exists $q\in N$ such that for every $k\in N$ there exists C>0 with

$$\| \|_{a}^{*1+d} \leq C \| \|_{b}^{*} \| \|_{n}^{*d}$$

(e) E has property $(\overline{\Omega})$ if for every $p \in N$ there exists $q \in N$ such that for every $k \in N$ and every d > 0 there exists C > 0 with

$$\| \|_{a}^{*1+d} \leq C \| \|_{k}^{*} \| \|_{p}^{*d}$$

- 3.2. Remark. (a) It is easy to check that properties (DN) and (<u>DN</u>) are linear topological invariants which are inherited by topological linear subspaces. By Vogt [16], 1.7, a nuclear metrizable locally convex space E has (DN) iff E is isomorphic to a subspace of s. By Vogt [16], 2.4, a power series space $\Lambda_R(\alpha)$ has (DN) iff $R = +\infty$. By Vogt [17], 3.3, a metrizable locally convex space E is isomorphic to a subspace of a stable nuclear $\Lambda_1(\alpha)$ iff E has (<u>DN</u>) and is $\Lambda_1(\alpha)$ -nuclear.
- (b) It is easy to check that properties (Ω) , $(\bar{\Omega})$ and $(\bar{\Omega})$ are linear topological invariants which are inherited by quotient spaces. By Vogt and Wagner [21], 1.8, a nuclear Fréchet space E has (Ω) iff E is a quotient space of s. By Vogt [18], 2.8 and 7.3, a strongly nuclear Fréchet space E has $(\bar{\Omega})$ iff E is a quotient of a nuclear power series space of finite type. By Vogt [19], 4.2, a Fréchet space E has $(\bar{\Omega})$ iff every continuous linear map $T: E \to \Lambda_1(\alpha)$ is bounded for some (all) power series space $\Lambda_1(\alpha)$ with $\sup_{n \in \mathbb{N}} (\alpha_{n+1}/\alpha_n) < \infty$. For other characterizations of Fréchet spaces satisfying $(\bar{\Omega})$ see Vogt [20], Th. 4.2, and Meise and Vogt [13], Th. 3.3.
- (c) From Vogt [18], 1:6, it follows that a nuclear Fréchet space which has properties $(\bar{\Omega})$ and (DN) (resp. $(\bar{\Omega})$ and (DN)) is finite-dimensional.
- 3.3 Proposition. Let $P = (p_k)_{k \in \mathbb{N}}$ be a radial weight system which satisfies condition 2.7(1). Then for every proper closed ideal I in A_{+}^{0} :
 - (a) $A_{\mathbf{P}}^{0}/I$ has property $(\bar{\Omega})$.
 - (b) If for every $n \in N$ there exists $m \in N$ with

$$\lim_{|z| \to \infty} \frac{p_m(z)}{p_n(z)} = 0$$

then $A_{\mathbb{P}}^0/I$ has $(\bar{\Omega})$.

Proof. If I is of finite codimension, then A_{P}^{0}/I has $(\bar{\Omega})$ and hence $(\bar{\Omega})$. Hence we may assume that I is of infinite codimension. Then Theorem 2.7 implies that $A_{P}^{0}/I \simeq \lambda^{1}(B)$ with

$$b_{j,k} = \exp(-p_k(w_j)), \quad j, k \in N,$$

where $(w_j)_{j\in\mathbb{N}}$ is a sequence in C with $\lim |w_j| = \infty$.

To prove (a) let $n \in N$ be given. By 1.2(2) there exist $m \in N$ and $L \ge 0$ with

$$2p_m(z) \leq p_n(z) + L$$
 for all $z \in C$.

Hence we have for each $k \in \mathbb{N}$ and all $j \in \mathbb{N}$

$$-p_k(w_i) - p_n(w_i) \leqslant -2p_m(w_i) + L$$

and hence

$$b_{j,k}b_{j,n}\leqslant e^Lb_{j,m}^2$$

By Wagner [22], 1.10, this implies that $\lambda^1(B)$ has $(\bar{\Omega})$.

To prove (b) let $n \in \mathbb{N}$ be given and choose m according to the hypothesis. Then for every d > 0 there exists $L \ge 0$ with

$$p_m(z) \le \frac{d}{1+d} p_n(z) + L$$
 for all $z \in C$.

Hence we have for each $k \in \mathbb{N}$ and each $j \in \mathbb{N}$

$$-p_k(w_j) - dp_n(w_j) \le -(1+d)p_m(w_j) + L(1+d)$$

and consequently

$$b_{j,k}b_{j,n}^d \leqslant C b_{j,m}^{1+d}$$

By standard arguments this implies that $\lambda^1(B)$ has $(\bar{\Omega})$.

- 3.4. THEOREM. Let $P = (p_k)_{k \in \mathbb{N}}$ be a radial weight system which satisfies condition 2.7(1). Then no proper closed infinite-codimensional ideal I in A_P^0 is complemented if one of the following conditions holds:
 - (a) $A_{\mathbf{p}}^{0}$ has property (DN).
 - (b) $A_{\mathbf{P}}^{0}$ has (\underline{DN}) and for every $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ with

$$\lim_{|z|\to\infty}\frac{p_m(z)}{p_n(z)}=0.$$

Proof. Let (a) be satisfied and assume that a proper closed ideal I is complemented in A_p^0 . Then A_p^0/I has (Ω) by Proposition 3.3(a) and has (DN), since A_p^0/I is isomorphic to a topological linear subspace of A_p^0 and since (DN) is inherited by topological linear subspaces. Hence A_p^0/I is finite-dimensional by 3.2(c).

If (b) is satisfied and if the proper closed ideal I is complemented in A_p^0 , then (b) and Proposition 3.3(b) imply by the same arguments as above that A_p^0/I has (Ω) and (\underline{DN}) . Hence A_p^0/I is finite-dimensional by 3.2(c).

- 3.5. Corollary. Let p be a radial weight function with p(2z) = O(p(z)). If A_p^0 has (DN) then no proper closed infinite-codimensional ideal I in A_p^0 is complemented.
- 3.6. Remark. By Corollary 1.12, A_p^0 is isomorphic to a Köthe sequence space $\lambda^1(A)$. Hence it can be characterized by Vogt [16], 2.3, when A_p^0 has property (DN). This characterization in terms of the conjugate function φ^* of $\varphi: x \mapsto p(e^x)$ is given in [11], where also examples of algebras A_p^0 failing (DN) are given.

Here we restrict our attention to the discussion of the following examples.

- 3.7. Examples. Let p be any of the following weight functions. Then no proper closed infinite-codimensional ideal I in A_p^0 is complemented by Corollary 3.5.
 - (1) $p(z) = |z|^a$, a > 0. A_p^0 has (DN) by 1.13(1) or 1.16.
 - (2) $p(z) = (\log(1+|z|^2))^{\alpha}$, $\alpha > 1$. A_n^0 has (DN) by 1.13(2).
- (3) Let $(M_j)_{j\in N_0}$ be a sequence of positive numbers with $M_0=1$ which has the following properties:
- (M1) $M_j^2 \leq M_{j-1} M_{j+1}$ for all $j \in N$.
- (M2) There exist $A, H \ge 1$ with $M_n \le AH^n \min_{0 \le j \le n} M_j M_{n-j}$ for all $n \in \mathbb{N}$.
- (*) There exists $k \in N$ with $\liminf_{j \to \infty} (M_{jk}/M_j^k)^{1/j} > 1$.

Then it has been remarked in Meise [7], 2.6(2), that the function

$$p_{M}: z \mapsto \begin{cases} \sup_{j \in N_{0}} \log(|z|^{j}/M_{j}) & \text{for } z \neq 0, \\ 0 & \text{for } z = 0 \end{cases}$$

is a weight function which satisfies condition 1.16(*). Hence $A_{p_M}^0$ has (DN) by Corollary 1.16.

- 3.8. Examples. Let P be any of the following weight systems. Then no proper closed infinite-codimensional ideal I in A_P^0 is complemented by Proposition 3.4.
 - (1) $P = (r_k^{-1} q(|z|^{r_k}))_{k \in \mathbb{N}}$ as in Example 1.14(1). A_P^0 has (\underline{DN}) by 1.14(1).
- (2) $P = (|z|^{r_k})_{k \in \mathbb{N}}$, where $(r_k)_{k \in \mathbb{N}}$ is a strictly decreasing sequence in $]0, \infty[$. A_P^0 has (DN) by 1.14(2).
- (3) $P = (r_k^{-1} [\log(1+|z|^2)]^{r_k})_{k \in \mathbb{N}}$. By the sequence space representation given in Example 1.14(3) it is easy to check that A_p^0 has property (DN). It has even the stronger property (DN), introduced in Vogt [19], p. 190.

Remark. Let P (resp. \tilde{P}) be as in Example 1.14(4). Then it is easy to check that A_p^0 has property $(\tilde{\Omega})$. As a consequence of 3.2(c), A_p^0 does not have property (DN). Hence Theorem 3.4 cannot be used to decide whether closed ideals in A_p^0 are complemented. However, we can use other properties of the Fréchet spaces which are involved to decide this question.

3.9. Lemma. Let $P = (p_k)_{k \in \mathbb{N}}$ be a radial weight system satisfying condition 2.7(1). For $k \in \mathbb{N}$ put $\varphi_k \colon x \mapsto p_k(e^x)$ and define the matrix $B = (b_{j,k})$ by $b_{j,k} := \exp(-\varphi_k(j))$. If every continuous linear map from $\lambda^1(B)$ into A_j^0 is compact, then no proper closed infinite-codimensional ideal in A_j^0 is complemented.

Proof. Assume that I is a proper closed infinite-codimensional ideal in $A_{\mathbf{p}}^{0}$ which is complemented. Then the quotient map $\varrho \colon A_{\mathbf{p}}^{0} \to A_{\mathbf{p}}^{0}/I$ has a

continuous linear right inverse $R: A_p^0/I \to A_p^0$, which is an injective topological homomorphism and hence noncompact. By Theorem 2.7 we have $A_p^0/I \simeq \lambda^1(C)$, where $C = (c_{j,k})$ with $c_{j,k} = \exp(-p_k(w_j))$ for an appropriate sequence $(w_j)_{j\in N}$ in C. By the remark after Theorem 2.7, there exists a subsequence $(m_l)_{l\in N}$ of N such that for $D = (d_{j,k})$ defined by $d_{j,k} = \exp(-p_k(\exp(m_j)))$, $\lambda^1(D)$ is isomorphic to a complemented subspace of $\lambda^1(C)$, and of $\lambda^1(B)$. Let π denote a continuous linear projection of $\lambda^1(B)$ onto $\lambda^1(D)$. Then $(R|\lambda^1(D))$ o π is a continuous linear map from $\lambda^1(B)$ into $\lambda^1(A)$ which is not compact. Hence the assumption that I is complemented leads to a contradiction to the hypothesis.

- 3.10. Proposition. Let $P = (p_k)_{k \in \mathbb{N}}$ be a radial weight system satisfying condition 2.7(1). For $k \in \mathbb{N}$ put φ_k : $x \mapsto p_k(e^x)$. If the following holds:
- (*) For every $(K(N))_{N\in\mathbb{N}}\in\mathbb{N}^N$ there exists $k\in\mathbb{N}$ such that for each $n\in\mathbb{N}$ there exist $M\in\mathbb{N}$ and $C\geqslant 0$ such that for all $v,j\in\mathbb{N}$

$$\varphi_n^*(v) + \varphi_k(j) \leqslant \max_{1 \leqslant N \leqslant M} (\varphi_N^*(v) + \varphi_{K(N)}(j)) + C,$$

then no proper closed infinite-codimensional ideal in A^0_p is complemented.

Proof. By Corollary 1.11 and Vogt [19], Satz 1.5, condition (*) is equivalent to the assertion that every continuous linear map from $\lambda^1(B)$ into A_p^0 is compact, where B is the matrix defined in 3.9. Hence the result follows from Lemma 3.9.

Condition (*) looks rather complicated. However, it can be used to decide whether the ideals in A_0^0 , P as in Example 1.14(4), are complemented.

3.11. Example. For r > 0 define $P := (|z|^r \exp([\max(0, \log \log |z|^r)]^{r_k}))_{k \in \mathbb{N}}$, where $(r_k)_{k \in \mathbb{N}}$ is a strictly decreasing sequence in $]0, \infty[$. Then no proper closed infinite-codimensional ideal in A_P^0 is complemented.

To show this we first remark that by Meise [7], Example 2.13(5), we have $A_{\mathbf{p}}^{0} = A_{\mathbf{p}}^{0}$ where $\tilde{\mathbf{p}}$ satisfies condition 2.7(1). Hence we can apply Proposition 3.10. This is done essentially by the same arguments which have been used in Meise [7], Example 4.16.

Let $(K(N))_{N\in\mathbb{N}}$ be given. Without restriction we can assume that $(K(N))_{N\in\mathbb{N}}$ is strictly increasing. Choose k=K(1)+1 and let $n\in\mathbb{N}$ be given. Then choose M>n+1 and $\xi\in[0,\infty[$ such that $\varphi_M-\varphi_n$ and $\varphi_n-\varphi_1$ are strictly increasing on $[\xi,\infty[$, where $\varphi_k\colon x\mapsto p_k(e^x)$. Next fix $s\geqslant s_0$, where s_0 is large enough and can be determined from the following considerations. Define T(s) (resp. $\tau(s)$) as the solution of the following equation T(s) (resp. T(s)):

(T)
$$\varphi_n^*(s) - \varphi_1^*(s) = \varphi_{K(1)}(t) - \varphi_k(t),$$

$$\varphi_{M}^{*}(s) - \varphi_{n}^{*}(s) = \varphi_{k}(t) - \varphi_{K(M)}(t).$$

Assume for a moment that we can show:

(1) There exists $s_0 \in [0, \infty[$ with $T(s) \le \tau(s)$ for all $s \ge s_0$. Then we have for all $s \ge s_0$

$$(T') \qquad \varphi_n^*(s) - \varphi_1^*(s) \leqslant \varphi_{K(1)}(t) - \varphi_k(t) \quad \text{for all } t \geqslant T(s),$$

$$(\tau') \qquad \varphi_M^*(s) - \varphi_n^*(s) \geqslant \varphi_k(t) - \varphi_{K(M)}(t) \quad \text{for all } t \in [\zeta_0, \tau(s)],$$

where ξ_0 is chosen appropriately. Hence

$$\varphi_n^*(s) + \varphi_k(t) \leq \max(\varphi_{K(1)}(t) + \varphi_1^*(s), \varphi_{K(M)}(t) + \varphi_M^*(s))$$

for all $s \ge s_0$ and all $t \ge \xi_0$. This implies the existence of j_0 and v_0 such that

$$\varphi_n^*(\nu) + \varphi_k(j) \leqslant \max_{1 \leqslant N \leqslant M} \left(\varphi_N^*(\nu) + \varphi_{K(N)}(j) \right) \quad \text{for all } j \geqslant j_0, \ \nu \geqslant \nu_0.$$

Then it is easy to check that there exists C>0 such that 3.10(*) holds. Hence no proper closed infinite-codimensional ideal in A_P^0 is complemented by Proposition 3.10 if we can show that (1) holds. To do this it suffices to show that for all large s we have

(2)
$$\varphi_k(T(s)) - \varphi_{K(M)}(T(s)) \leqslant \varphi_M^*(s) - \varphi_n^*(s).$$

To do this, we note that by Meise [7], Example 2.13(5), we have

$$\varphi_i^*(s) = \frac{s}{r} \log s - \frac{s}{r} (\log \log s)^{r_i}$$
 for s large enough

and that

$$\varphi_l(t) = \exp(rt + (\log rt)^{r_l})$$
 for t large enough.

To abbreviate we put f_i : $s \mapsto r^{-1}(\log \log s)^{r_i}$ and g_i : $t \mapsto (\log rt)^{r_i}$. From the definition of T(s) we now get the identity

(3)
$$s(f_1(s)-f_n(s)) = \exp(rT(s))[\exp(g_{K(1)}(T(s))) - \exp(g_k(T(s)))]$$

Since $\lim_{s \to \infty} T(s) = \infty$ and since k > K(1) we get

(4)
$$\varphi_k(T(s)) - \varphi_{K(M)}(T(s)) \leq \varphi_k(T(s))$$

$$= s (f_1(s) - f_n(s)) \exp(g_k(T(s))) [\exp(g_{K(1)}(T(s))) - \exp(g_k(T(s)))]^{-1}$$

$$\leq s f_1(s) 2 \exp(g_k(T(s)) - g_{K(1)}(T(s))).$$

From M > n+1 we get for s large enough

(5)
$$\varphi_M^*(s) - \varphi_n^*(s) = s(f_n(s) - f_M(s)) \ge \frac{s}{2} f_n(s).$$

By $\lim_{s \to \infty} T(s) = \infty$ and k > K(1) we get for large s

(6)
$$\exp\left(\frac{1}{2}g_{K(1)}(T(s))\right) \leqslant \exp\left(g_{K(1)}(T(s)) - g_k(T(s))\right).$$

Now (4), (5) and (6) show that (2) is implied by the inequality

(7)
$$\frac{f_1(s)}{f_n(s)} \leqslant \frac{1}{4} \exp\left(\frac{1}{2}g_{K(1)}(T(s))\right).$$

To prove that (7) holds for large s, one has to estimate T(s) from below. From the definition of T(s) we get

(8)
$$rT(s) = \log s + \log (f_1(s) - f_n(s)) - \log (\exp(g_{K(1)}(T(s))) - \exp(g_k(T(s))))$$
. This implies

(9)
$$rT(s) \le \log s + \log f_1(s) \le 2\log s$$
 for large s

and hence by (9) and $\lim_{s \to \infty} T(s) = \infty$

(10)
$$rT(s) \ge \log s - g_{K(1)}(T(s)) \ge \log s - g_{K(1)}\left(\frac{2}{r}\log s\right)$$

for large s. Then we get

$$\begin{split} \frac{1}{4} \exp\left(\frac{1}{2} g_{K(1)}\left(T(s)\right)\right) &\geqslant \frac{1}{4} \exp\left(\frac{1}{2} \left[\log\left(\log s - \left[\log\left(2\log s\right)\right]^{r_{K(1)}}\right)\right]^{r_{K(1)}}\right) \\ &\geqslant \frac{1}{4} \exp\left(\frac{1}{2} \left[\log\left(\frac{1}{2}\log s\right)\right]^{r_{K(1)}}\right) \geqslant \exp\left((r_1 - r_n)\log\log\log s\right) \\ &= \frac{f_1(s)}{f_n(s)} \quad \text{for all } s \geqslant s_0. \end{split}$$

This shows that (7) holds for all s sufficiently large and hence completes the proof.

4. Translation invariant subspaces for some weighted (DF)-spaces of entire functions. It was Martineau [6] who extended the classical work on convolution operators on Fréchet spaces of entire functions to convolution operators on (DF)-spaces of entire functions. In this section we show that the results of Sections 2 and 3 can be used to determine the locally convex structure of the closed translation invariant subspaces of various (DF)-spaces of entire functions, including those which were considered by Martineau [6].

We begin by introducing the (DF)-spaces which we will work with.

- 4.1. DEFINITION. Let $Q=(q_k)_{k\in N}$ be a sequence of radial weight functions with the following properties:
 - (1) For every $k \in \mathbb{N}$ there exists $K \ge 0$ with

$$q_k(z) \leqslant q_{k+1}(z) + K$$
 for all $z \in \mathbb{C}$.

(2) For every $k \in N$ there exist $l \in N$ and $L \ge 0$ with

$$2q_k(z) \leq q_l(z) + L$$
 for all $z \in C$.

(3) For every $k \in N$ there exist $m \in N$ and $M \ge 0$ with

$$q_k(2z) \leq q_m(z) + M$$
 for all $z \in \mathbb{C}$.

(4) $q_k | [0, \infty[$ is convex and satisfies

$$\lim_{x \to \infty} \frac{q_k(x)}{x} = \infty \quad \text{for all } k \in \mathbb{N}.$$

Then we define

$$A_Q(C) := \{ f \in A(C) | \text{ there exists } k \in N \text{ with } \sup_{z \in C} |f(z)| \exp(-q_k(z)) < \infty \}$$

and endow $A_Q(C)$ with its natural inductive limit topology. Because of (4) we can define $p_k: z \mapsto (q_k|[0, \infty[)^*(|z|))$. We assume that $P_Q:=(p_k)_{k\in\mathbb{N}}$ is a weight system which satisfies condition (1) of Theorem 2.7.

The following proposition is contained in Taylor [14], Th. 5.2. For the convenience of the reader we give the proof here too.

4.2. Proposition. Let $Q=(q_k)_{k\in \mathbb{N}}$ and $P_Q=(p_k)_{k\in \mathbb{N}}$ be as in 4.1. Then the Fourier-Borel transform

$$\mathscr{F}: A_{\mathcal{Q}}(C)_b' \to A_{\mathcal{P}_{\mathcal{Q}}}^0, \quad \mathscr{F}(T): \zeta \mapsto \langle T_z, \exp(z\zeta) \rangle,$$

is a linear topological isomorphism.

Proof. From the conditions on Q and Proposition 1.10 it follows that $f: z \mapsto \sum_{j=0}^{\infty} a_j z^j$ is in $A_Q(C)$ iff there exist $k \in \mathbb{N}$ and C > 0 with

(1)
$$|a_i| \leq C \exp\left(-(q_k \circ \exp)^*(j)\right) \quad \text{for all } j \in N_0.$$

Since $A_Q(C)$ is a (DFN)-space (see Meise [7], 2.4), this implies that a linear map $T: A_Q(C) \to C$ is continuous iff

(2) For every $k \in N$ there exists C_k such that for all $j \in N_0$

$$|T(z^j)| \leq C_k \exp((q_k \circ \exp)^*(j)).$$

By Taylor [14], Lemma 5.3, and Stirling's formula this implies that for every $T \in A_Q(C)'$ and every $k \in N$ there exists C'_k such that for all $j \in N$

(3)
$$|T(z^{j}/j!)| \leq C'_{k} \exp\left((q_{k} \circ \exp)^{*}(j) - j \log j + j\right)$$
$$\leq C'_{k} \exp\left(-(q_{k}^{*} \circ \exp)^{*}(j)\right).$$

By Proposition 1.10 this shows that

$$\mathscr{F}(T): \zeta \mapsto \sum_{j=0}^{\infty} \langle T_z, (z\zeta)^j/j! \rangle$$

is in $A_{P_Q}^0$. Hence \mathscr{F} maps $A_Q(C)'$ into $A_{P_Q}^0$ and is continuous because of (3). To show that \mathscr{F} is surjective, let $g\colon \zeta\mapsto\sum_{j=0}^\infty b_j\zeta^j$ be given. Then

$$\tilde{g}: \zeta \mapsto (\zeta^2 g(\zeta))'' = \sum_{j=0}^{\infty} (j+1)(j+2)b_j\zeta^j$$

is in A_{PQ}^0 . This implies by Proposition 1.10, Taylor [14], Lemma 5.3, and Stirling's formula that for each $k \in N$ there exists $C_k > 0$ such that for all $j \in N$

(4)
$$j! |b_j| \leq C_k \exp(-(q_k^* \circ \exp)^*(j) + j \log j - j) j^{-3/2}$$

$$\leq C_k \exp((q_k \circ \exp)^*(j)) j^{-3/2}.$$

By (1) this implies that $T: f \mapsto \sum_{j=0}^{\infty} b_j f^{(j)}(0)$ is in $A_{\mathcal{Q}}(C)_b$ and satisfies $\mathscr{F}(T) = g$. Hence \mathscr{F} is a linear bijection. Since (4) implies the continuity of \mathscr{F}^{-1} , the proof is complete.

- 4.3. DEFINITION. A linear subspace W of $A_Q(C)$ is called *translation invariant* if for every $f \in W$ and every $a \in C$ the function $z \mapsto f(z+a)$ belongs to W.
- 4.4. PROPOSITION. Let Q and P_Q be as in 4.1. Then a closed linear subspace W of $A_Q(C)$ is translation invariant if and only if $\mathscr{F}(W^\perp)$ is an ideal in $A_{P_Q}^0$.

This can be proved in the same way as Meise [7], Proposition 5.5.

4.5. THEOREM. Let Q and P_Q be as in 4.1. Then every closed linear translation invariant subspace W of $A_Q(C)$ has a Schauder basis.

Proof. By Proposition 4.2 and classical duality theory we have

$$W = W^{\perp \perp} \simeq \left(A_{P_O}^0 / \mathcal{F}(W^{\perp}) \right)_0^{\bullet}.$$

If W is finite-dimensional or equal to $A_Q(C)$ then the result holds trivially. Hence we may assume that $\mathscr{F}(W^{\perp})$ is a proper infinite-codimensional ideal in $A_{\mathbb{F}_Q}^0$ because of Proposition 4.4. Consequently, Theorem 2.7 implies that $W \simeq \lambda(B)_b^{\prime}$.

4.6. COROLLARY. Let q be a convex radial weight function which satisfies condition 1.16(*) and $\lim_{x\to\infty} [q(x)/x] = \infty$. Assume that $p: z\mapsto (q|[0,\infty[)^*(|z|)$ satisfies condition 1.16(*) and put $Q:=(kp)_{k\in\mathbb{N}}$. Then every proper closed linear infinite-dimensional translation invariant subspace W of $A_Q(C)$ is isomorphic to the strong dual of a nuclear power series space of finite type, and no such subspace is complemented in $A_Q(C)$.

Proof. Since q satisfies condition (*) of 1.16, we have $A_Q(C) = A_{\bar{Q}}(C)$, where $\tilde{Q} := (q(kz))_{k \in N}$. Hence we have $P_{\bar{Q}} = (p(z/k))_{k \in N}$. Since p satisfies condition (*) of 1.16, we have $A_{P_Q}^0 = A_{P_Q}^0 = A_p^0$. By the proof of Theorem 4.5 we have

$$W \simeq (A_p^0/\mathscr{F}(W^\perp))_0^{\prime}$$

Hence the result follows from Corollary 2.8 and Theorem 3.4 in connection with Corollary 1.16.

4.7. Examples. (1) For s > 1 put

$$E^s := \{ f \in A(C) | \text{ there exists } k \in N \text{ with } \sup_{z \in C} |f(z)| \exp(-k|z|^s) < \infty \}.$$

Then it follows easily from Corollary 4.6 that every proper closed infinite-dimensional translation invariant linear subspace W of E^* is isomorphic to a power series space of finite type, and no such subspace is complemented.

(2) Let $\sigma = (s_k)_{k \in \mathbb{N}}$ be a strictly increasing sequence in]1, ∞ [and put

$$E\left(\sigma\right) := \left\{ f \in A\left(\mathcal{C}\right) | \text{ there exists } k \in \mathbb{N} \text{ with } \sup_{z \in \mathcal{C}} |f\left(z\right)| \exp\left(-|z|^{s_k}\right) < \infty \right\}.$$

Then every proper closed infinite-dimensional translation invariant linear subspace W of $E(\sigma)$ has a Schauder basis, and no such subspace is complemented. Moreover, W'_b has property $(\bar{\Omega})$.

It is easy to check that $E(\sigma)=A_{Q(\sigma)}(C)$, where $Q(\sigma)=(s_k^{-1}|z|^{s_k})_{k\in\mathbb{N}}$. Since $Q(\sigma)$ and $P(\sigma)=(r_k^{-1}|z|^{r_k})_{k\in\mathbb{N}}$ with $r_k=s_k/(s_k-1)$ satisfy the condition of 4.1, Theorem 4.5 implies that W has a Schauder basis. By Proposition 3.3, $W_b'=2s_{Q(\sigma)}/\mathscr{F}(W^\perp)$ has $(\bar{\Omega})$, while Example 3.8(1) shows that $\mathscr{F}(W^\perp)$ and hence W is not complemented.

References

- [1] C. A. Berenstein and B. A. Taylor, A new look at interpolation theory for entire functions of one variable. Adv. in Math. 33 (1979), 109-143.
- [2] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, 1967.
- [3] J. J. Kelleher and B. A. Taylor, Closed ideals in locally convex algebras of analytic functions, J. Reine Angew. Math. 255 (1972), 190-209.
- [4] H. Komatsu, Ultradistributions I, Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25-105.
- [5] B. J. Levin, Nullstellenverteilung ganzer Funktionen, Akademie-Verlag, Berlin, 1962.
- [6] A. Martineau, Equations différentielles d'ordre infini, Bull. Soc. Math. France 95 (1967), 109-154.
- [7] R. Meise, Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals, J. Reine Angew. Math. 363 (1985), 59-95.
- [8] -, Structure of closed linear translation invariant subspaces of A(C) and kernels of analytic convolution operators, in: Functional Analysis: Surveys and Recent Results III, K.-D. Bierstedt and B. Fuchssteiner (eds.), North-Holland Math. Stud. 90, 1984, 331-347.

- [9] R. Meise and K. Schwerdtfeger, On kernels of slowly decreasing convolution operators, Doga. Tr. J. Math. 10 (1986), 176-197.
- [10] R. Meise and B. A. Taylor, Splitting of closed ideals in (DFN)-algebras of entire functions and the property (DN), preprint, 1985.
- [11] -, -, Complementation of closed ideals in weighted (FN)-algebras, manuscript.
- [12] R. Meise and D. Vogt, Characterization of convolution operators on spaces of C[∞]-functions admitting a continuous linear right inverse, preprint, 1986.
- [13] -, -, Holomorphic functions of uniformly bounded type on nuclear Fréchet spaces, Studia Math. 83 (1986), 147-166.
- [14] B. A. Taylor, Some locally convex spaces of entire functions, in: Proc. Sympos. Pure Math. 11 (1968), 431-474.
- [15] -, Linear extension operators for entire functions, Michigan Math. J. 29 (1982), 185-197.
- [16] D. Vogt, Charakterisierungen der Unterräume von s. Math. Z. 155 (1977), 109-117.
- [17] -, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ. Studia Math. 71 (1982), 251-270.
- [18] -, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301.
- [19] -, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182-200.
- [20] -, On the functors Ext¹(E, F) for Fréchet spaces, this volume, 163-197.
- [21] D. Vogt und M. J. Wagner, Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240.
- [22] M. J. Wagner, Quotientenräume von stabilen Potenzreihenräumen endlichen Typs, Manuscripta Math. 31 (1980), 97-109.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT DÜSSELDORF Universitätsstr. 1. D-4000 Düsseldorf 1. Federal Republic of Germany

and

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN Ann Arbor, Michigan 48109, U.S.A.

Received July 18, 1985

(2071)