

Extension of characters in commutative Banach algebras

by

GUSTAVO CORACH and FERNANDO DANIEL SUÁREZ (Buenos Aires)

Abstract. We characterize those continuous homomorphisms $f\colon A\to B$ whose transpose maps are surjective. This provides a necessary and sufficient condition for all characters of a closed subalgebra A of a commutative Banach algebra B to have an extension to B.

Let $f: A \to B$ be a homomorphism of commutative complex unital Banach algebras. In this paper we study the image of the transpose of f, f^* , which assigns to every character h of B the character $h \circ f$ of A (by a character of a Banach algebra A we mean a nonzero multiplicative linear functional of A; we denote by M(A) the space of all characters of A with the weak* topology; see [1], [6], [7]). More precisely, we find necessary and sufficient conditions for $h \in M(A)$ to belong to $f^*(M(B))$. In particular, we show that f^* is surjective if and only if the spectral equality

(1)
$$\sigma_{A}(a) = \sigma_{B}(f(a))$$

holds for every $a \in A^n$. This fact seems to be relevant when A is a closed subalgebra of B, for it gives conditions for every character of A to have an extension to B. By applying the corona theorem of Carleson [2] we get a continuous surjection of the Čech compactification, $\beta \Delta$ of the open unit disk Δ onto the character space of H^{∞} , the algebra of all bounded holomorphic functions on Δ .

Let A be a complex unital algebra. For every $n \ge 1$, let $U_n(A) = \{a = (a_1, \ldots, a_n) \in A^n : \text{ there exists } b \in A^n \text{ such that } \sum b_i a_i = 1\}$. The elements of $U_n(A)$ are called (left) unimodular. They are characterized by the condition $0 = (0, \ldots, 0) \in C^n \setminus \sigma(a)$, where $\sigma(a)$ is the (left) joint spectrum of a:

$$\sigma_A(a) = \{ \lambda = (\lambda_1, \dots, \lambda_n) \in C^n : \sum_{i=1}^n A(a_i - \lambda_i)$$
 is a proper left ideal of $A \}.$

It is well known that $\sigma(a)$ is a, possibly empty, compact subset of \mathbb{C}^n [5] when A is a Banach algebra. Observe that every (not necessarily continuous) homomorphism $f \colon A \to B$ of Banach algebras induces a mapping from $U_n(A)$ into $U_n(B)$; we denote it again by f.

Proposition 1. Let $f: A \to B$ be a (not necessarily continuous) homomorphism of unital Banach algebras. Then the following conditions are equivalent:

- (i) $\sigma_A(a) = \sigma_B(f(a))$ for every $a \in A^n$;
- (ii) $0 \notin \sigma_R(f(a)) \Rightarrow 0 \notin \sigma_A(a)$ for every $a \in A^n$;
- (iii) $f^{-1}(U_n(B)) = U_n(A)$.

Proof. Observe, first, that the inclusions $U_n(A) \subset f^{-1}(U_n(B))$ and $\sigma_B(f(a)) \subset \sigma_A(a)$ hold in general.

- (i) ⇒ (ii). Obvious.
- (ii) \Rightarrow (iii). If $a \in A^n$ and $f(a) \in U_n(B)$, then $0 \notin \sigma_B(f(a))$ so, by hypothesis, $0 \notin \sigma_A(a)$, which means that $a \in U_n(A)$.
- (iii) \Rightarrow (i). If $\lambda \in C^n \setminus \sigma_B(f(a))$, then $f(a-\lambda) = f(a) \lambda \in U_n(B)$; by (iii), $a \lambda \in U_n(A)$ and then $\lambda \in C^n \setminus \sigma_A(a)$.

From now on, by a Banach algebra we mean a commutative complex Banach algebra with unit. If A is a Banach algebra then an element a of A^n is unimodular if and only if for every character $h \in M(A)$ there exists a coordinate a_i of a such that $h(a_i) \neq 0$. In other terms, define for an element

 $c \in A$, $Z_c = \{h \in M(A): h(c) = 0\}$; then $a \in U_n(A) \Leftrightarrow \bigcap_{i=1}^n Z_{a_i} = \emptyset$. In fact,

 $\bigcap_{i=1}^{n} Z_{a_i} = \emptyset$ means that the Gelfand transforms $\hat{a}_1, \ldots, \hat{a}_n$ have no common zero in M(A) and, then, $(\hat{a}_1, \ldots, \hat{a}_n) \in U_n(C(M(A)))$, where C(M(A)) is the algebra of all continuous complex maps on M(A). By Proposition 1, $a \in U_n(A)$ because $\sigma_A(a) = \sigma_{C(M(A))}(\hat{a})$. Observe that Z_c is the hull of the ideal generated by c [7, 11.3].

PROPOSITION 2. Let $f: A \to B$ be a continuous homomorphism of Banach algebras. For a character $h \in M(A)$ the following conditions are equivalent:

- (i) $h \in M(A) \setminus f^*(M(B))$;
- (ii) there exist $n \in \mathbb{N}$ and $a \in A^n$ such that $f(a) \in U_n(B)$ and $h \in \bigcap_{i=1}^n \mathbb{Z}_{a_i}$.

Proof. (i) \Rightarrow (ii). If $h \in M(A) \setminus f^*(M(B))$, for every $\psi \in M(B)$ there exists $a_{\psi} \in A$ such that $h(a_{\psi}) = 0$ and $\psi(f(a_{\psi})) \neq 0$. Then there is an open neighborhood U_{ψ} of ψ in M(B) such that $\varphi(f(a_{\psi})) \neq 0$ for every $\varphi \in U_{\psi}$. Now, the compact space M(B) is covered by its open subsets U_{ψ} ($\psi \in M(B)$) so there exist $a_1, \ldots, a_n \in A$ such that $M(B) = \bigcup_{i=1}^n U_{\psi_i}$, $h(a_1) = h(a_2) = \ldots = h(a_n) = 0$ and $\varphi(f(a_i)) \neq 0$ for every $\varphi \in U_{\psi_i}$. This shows that $f(a) = (f(a_1), \ldots, f(a_n)) \in U_n(B)$ and $h \in \bigcap_{i=1}^n Z_{a_i}$, as claimed.

(ii) \Rightarrow (i). If $h \in f^*(M(B))$ and $h(a_i) = 0$ for i = 1, 2, ..., n, then there exists $\psi \in M(B)$ such that $h = \psi \circ f$ and $\psi(f(a_i)) = 0$ for i = 1, ..., n; thus $f(a) \notin U_n(B)$, by the remarks preceding Proposition 2.

THEOREM 3. Under the same hypothesis, the following conditions are equivalent:

- (i) $f^*(M(B)) = M(A)$;
- (ii) $f^{-1}(U_n(B)) = U_n(A)$ for every $n \ge 1$;
- (iii) $\sigma_A(a) = \sigma_B(f(a))$ for every $n \ge 1$ and $a \in A^n$.

Proof. By Proposition 1 it suffices to prove that (i) \Leftrightarrow (ii). Suppose that (i) holds and take $a \in A^n$ such that $f(a) \in U_n(B)$; given $h \in M(A)$ we find $\psi \in M(B)$ such that $h = \psi \circ f$; then there is an $i \in \{1, 2, ..., n\}$ with $h(a_i) = \psi(f(a_i)) \neq 0$ and, h being arbitrary, we get $a \in U_n(A)$, as desired. Conversely, suppose that there exists $h \in M(A) \setminus f^*(M(B))$. Then we can find $a \in f^{-1}(U_n(B))$ such that $h \in \bigcap_{i=1}^n Z_{a_i}$; but this implies that $a \notin U_n(A)$, because

$$a \in U_n(A) \Leftrightarrow \bigcap_{i=1}^n Z_{a_i} = \emptyset.$$

COROLLARY 1. Let $f: A \to B$ be an injective continuous homomorphism of Banach algebras. Then $f^*(M(B)) = M(A)$ if and only if $f(U_n(A)) = U_n(B) \cap f(A^n)$, for every $n \ge 1$.

COROLLARY 2. If A is a closed subalgebra of a Banach algebra B, then every character of A extends to a character of B if and only if $U_n(A) = U_n(B) \cap A^n$ for every $n \ge 1$.

COROLLARY 3. Let H^{∞} be the algebra of all bounded holomorphic functions on the open unit disk Δ and let $\beta\Delta$ be the Čech compactification of Δ . Then the transpose of the inclusion of H^{∞} into the algebra $BC(\Delta)$ of all bounded continuous functions on Δ gives a surjective continuous map $\beta\Delta \to M(H^{\infty})$.

Proof. In fact, the deep result known as the corona theorem [2] states that if $f_1, \ldots, f_n \in H^{\infty}$ are such that $|f_1| + \ldots + |f_n| \ge r$ in Δ for some r > 0, then there exist $g_1, \ldots, g_n \in H^{\infty}$ such that $f_1 g_1 + \ldots + f_n g_n = 1$. With our notation, Carleson proved that for every $n \ge 1$, $U_n(BC(\Delta)) \cap (H^{\infty})^n \subset U_n(H^{\infty})$ (the other inclusion is trivial). Thus the statement follows by the equivalence of (i) and (ii) of Theorem 3.

Recall [7, 15.8] that the *cortex* of a Banach algebra A is the set cor(A) of all $h \in M(A)$ which admit an extension to characters on any superalgebra of A: $cor(A) = \bigcap_{B} i^*(M(B))$, where B runs through all (commutative) superalgebras of A.

COROLLARY 4. Let $h \in M(A)$. Then $h \in cor(A)$ if and only if for every superalgebra B of A and $a \in U_n(B) \cap A^n$ we have $h(a) \neq 0 \in C^n$.

Recall that for every Banach algebra A there exists a unique minimal closed subset of M(A), called the (Shilov) boundary of A and denoted by $\Gamma(A)$, such that for every $a \in A$

$$\sup_{h \in M(A)} |h(a)| = \sup_{h \in \Gamma(A)} |h(a)|$$

[7, 15.2]. One of the relevant properties of $\Gamma(A)$ is that each $h \in \Gamma(A)$ admits an extension to a character of any superalgebra B of A; in other terms, $\Gamma(A)$ is contained in the cortex of A. In particular, we have the following

COROLLARY 5. Let $h \in \Gamma(A)$ and let B be a superalgebra of A. Then for every $a \in A^n$ such that $a \in U_n(B)$ we have $h(a) \neq 0 \in C^n$.

Remarks. Condition (ii) of Theorem 3 is related to the notion of full subalgebra (in French "sous-algèbre pleine"): A subalgebra A of B is full if every element of A which is invertible in B must be invertible in A. Naimark [6] then says that $A \subset B$ is a Wiener pair. Bourbaki [1, Ch. I, § 3, Proposition 7] proves that if every character of a closed subalgebra A of B can be extended to a character of B then A must be full, but the converse does not hold in general [1, Ch. I, § 3, Ex. 14]. Precisely, the interest of our Corollary 3 is that it provides a suitable converse.

It should be noted that we have made no use of the topology of $U_n(A)$. However, the connectedness properties of $U_n(A)$ are strongly related to an algebraic invariant of A called the Bass stable rank (see [3] and [4] for a precise formulation of this remark).

References

- [1] N. Bourbaki, Théories spectrales, Hermann, Paris 1967.
- [2] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. 76 (1962), 547–559.
- [3] G. Corach and A. R. Larotonda, Stable range in Banach algebras, J. Pure Appl. Algebra 32 (1984), 289-300.
- [4] G. Corach and F. D. Suárez, Extension problems and stable rank in commutative Banach algebras, Topology Appl. 21 (1985), 1-8.
- [5] R. Harte, Spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A 72 (1970), 89-107.
- [6] M. A. Naimark, Normed Algebras, Noordhoff, Groningen 1972.
- [7] W. Zelazko, Banach Algebras, PWN and Elsevier, Warszawa 1973.

INSTITUTO ARGENTINO DE MATEMÁTICA Viamonte 1636, 1055 Buenos Aires, Argentina

(2109)