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ProsLeM 1. Let 4 be a complex noncommutative topological algebra.
Does it follow that A has generalized topological divisors of zero?

This problem can be answered in the negative in the case of a real
algebra. The counterexample is the Banach algebra Q. A positive answer to
the following problem would imply a positive solution of Problem 1.

ProBLEM 2. Suppose that 4 is a complex topological algebra with the
property that for arbitrary nets (x;), (v;), i€l, of elements of A the condition
limx; y; = 0 implies limy; x; = 0. Does it follow that 4 is a commutative

1 1 )

algebra?

The positive answer to Problem 2 would give a generalization of the
following result due to Le Page [2]: If A is a complex Banach algebra and
there is a positive constant k such that [|xy|| < k||yx|| for all x and y in 4
then the algebra 4 is commutative. Using a technique similar to that of [2]
one can obtain a positive solution to Problem 2 in the case when 4 is an m-
pseudoconvex algebra.

ProsLEM 3. Suppose that a topological algebra A has generalized
topological divisors of zero. Does there exist a commutative subalgebra of A
also possessing generalized topological divisors of zero?
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Near isometries of spaces of weak * continuous functions,
with an application to Bochner spaces

by

MICHAEL CAMBERN (Santa Barbara, Cal)

Abstract. For a Banach dual E and a compact Hausdorff space X we denote by
C(X, E,») the Banach space of continuous functions F from X to E when the latter space is
provided with its weak * topology, normed by ||F||, = sup||F (x)|. Here we show that if X and

Y are extremally disconnected compact Hausdorff spacgzxand E is a uniformly convex Banach
space with C(X, E,+) and C(Y, E,«) nearly isometric, then X and Y are homeomorphic. The
result has the following immediate consequence for Bochner spaces. If (@, Z;, ) are o-finite
measure spaces, i =1, 2, and E a uniformly smooth Banach space such that L'(u,, E) and
L!(p,, E) are nearly isometric or that L®(u,, E*) and L*(u,,E*) are nearly isometric, then
L'(u,, E) is isometric to L!(u,, E) and L*(u,, E*) is isometric to L= (u,, E*).

0. Introduction. Throughout this paper the letter E stands for a Banach
space, while X and Y denote compact Hausdorff spaces. U denotes the
closed unit ball in E and S the surface of U. Interaction between elements of
a Banach space and those of its dual will be denoted by -, -3. We will write
E, = E; to indicate that the Banach spaces E, and E, are isometric.

Given X, assume that E is a Banach dual. Then C(X, E,s) stands
for the Banach space of continuous functions F on X to E when the latter
space is provided with its weak* topology, normed by ||Fll,, = sup||F -

If (2, X, u) is a positive measure space and E is any Banach space then,
for 1<p< x, the Bochner spaces L*(Q, X, u, E) will be denoted by
L?(u, E) when there is no danger of confusing the underlying measure spaces
involved. For the definitions and properties of these spaces we refer to [10].

Following Banach [1, p. 242] we will call the Banach spaces E, and E,
nearly isometric if 1 = inf {IIT!IHT )1}, where T runs through all isomorph-
isms of E, onto E,. It is of course equivalent to suppose that 1 = inf {||T](},
where ||T~!| =1 and hence T is a norm-increasing isomorphism of E, onto
E,. For if T is any continuous isomorphism of one Banach space onto
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another, we obtain an isomorphism T having the desired properties by
defining T to be equal to [T~ T

In [6] the isometries of spaces C(X, En) were investigated for X
extremally disconnected and E uniformly convex. (Spaces C(X, Eg») with X
extremally disconnected arise naturally as the biduals of spaces of norm-
continuous functions [7], and, more generally, as the duals of spaces of
vector measures and of Bochner L! spaces [8].) It was shown in [6] that if X
and Y are two such compact spaces with C(X, E.+) and C(Y, E,) isometric,
then X and Y are homeomorphic. In Section 1 of this article we show that a
modification of the arguments of [6] allows us to replace “isometric” by
“pearly isometric”. Specifically, we prove the following:

TreoreM 1. Let X and Y be extremally disconnected compact Hausdorff
spaces and E a uniformly convex Banach space. If C(X, E,+) and C(Y, E ) are
nearly isometric then X and Y are homeomorphic.

In Section 2 we show that our Theorem 1 has an immediate conse-
quence for Bochner spaces. We prove

TueoreM 2. Ler (€;,%:, w) be o-finite measure spaces for i =1, 2, and E a
uniformly smooth Banach space. Assume that L*(u,, E) and L*(u,, E) are
nearly isometric, or that L® (u,, E*) and L™ (u,, E*) are nearly isometric. Then
L'(u,, E) = L*(uy, E) and L™ (uy, E*) = L™ (3, E¥).

This latter result was obtained in [5] by quite different arguments, far
more computational in nature, for the special case in which E = E* is
Hilbert space. The initial result of this sort established for E the space of
scalars is due to Y. Benyamini [3].

Much of what we do in Section 2 is dependent upon the notions of
category measure and hyperstonean space. If X is an extremally disconnected
compact Hausdorff space then we will call a nonnegative extended real-
valued Borel measure p on X a category measure if

(i) every nonempty clopen set has positive measure,

(ii) every nowhere dense Borel set has measure zero, and

(iil) every nonempty clopen set contains another nonempty clopen set
with finite measure.

An extremally disconnected space X that admits a category measure is
called hyperstonean. This is equivalent to the definition of hyperstonean space
obtained via the use of normal measures [2, p. 26]. (In [2], [5] and [8]
category measures are referred to as “perfect measures”.)

1. Near isometries of weak* continuous functions. Throughout this sec-
tion X and Y will denote extremally disconnected compact Hausdorlf spaces
and E a fixed uniformly convex Banach space. We assume that C(X, E,«)
and C(Y, E,» are nearly isometric. Recall that -E uniformly convex means
that 3(¢) > 0 when 0 <& < 2, where :
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6(e) = infv{l— li(es +€2)/2]): lley —eall > &}
21;225 :
Also recall that E uniformly convex implies that E is reflexive [9, p. 147],
and it thus makes sense to consider the weak* topology of E. Here, of
course, the weak and weak* topologies coincide, but we state our results for
the latter topology since it is precisely the topology on a dual space which

" arises within the various mathematical contexts considered in [7] and [8].

Also, certain facts about spaces of weak* continuous functions will be needed
in Section 2.

The proof of Theorem 1 will be established by means of a sequence of
lemmas. The proof of the first lemma is contained in Lemma 1 of [4].

Lemma 1. If > 0 and ey, e, E with |lejl| =y for j = 1, 2 then there are
scalars oy with | < 1, j =1, 2, such that
lloey €3 + s €3]] = 71(1 —5(n)~ L

From now until the end of this section # will denote a fixed positive
number less than one and such that #(1—5(1))"' > 1. T will then denote a
fixed isomorphism of C(X, E,) onto C(Y, E,») with ||T™Y =1 satisfying

@ I =TI <,

2 n(1=8@)*/ITI? > 1, and

@) 1=1/IT]| <8 ((1—n)2)

For any clopen subset C of X and any eeS we then define 2.(C) by

2 (C) =cl(lyeY: [[T(e- 1) Wl > n}).
Since, for Fe C(Y, E,+), |[F(-)l| is lower semicontinuous on Y it follows that
2.(C) is a clopen subset of Y.

Lemma 2. If e;, e;€S then for any clopen subset C of X we have 2., (C)
=Y—p.,(X-C).

Proof. We first show that 0., {C) and g,, (X —C) are disjoint. Suppose,

to the contrary, that 2., (C) N g,,(X—~C) # (. Then the fact that if two open
subsets of an extremally disconnected space have empty intersection so do
their closures would imply the existence of a yeY with | T(e, - Xl >n
and [|T(ey  xx-c) (V)| > 7. By Lemma 1 there exist scalars a; with |l < 1, j
=1, 2, such that

lloey Tey * %) (9) + 22 Tez xx~c) Wl > n(1—6(1)" %

But for all such scalars a; we have |jx, e; yc+a3e; xx-cllo <1, which
together with our assumption (2) giving [|T]| < [|T||* < n(1~8(1))"*, provides
a contradiction. Thus ¢,, (C) and e, (X —C) are indeed disjoint.

If g, (C)ug.,(X—C) is not all of Y then its complement, B, is a
nonempty clopen subset of ¥ and on B we have {lT(e! %)W < #n and
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IT(ez xx-c)W)l <n. Choose any eeS and note that (1-#n)e-y, is an
element of C(Y, E, with

IT(ey xNTH (L —m)e- xallo < 1
and [T (e2 xx-c)/ITNH(1—n) eyl < 1
so that, since ||T™Y| =1,
Nler xeITNETH (1 =me gyl < 1
and le;“xx-o/lI Tl T (1~n)e xp)]|w < 1.
But (|[T~!((1—n)e*xu)l[w = (1—#)/|IT]| so that there exists an xeX with
1T~ (1 =m) e xa) 0| > (1 =m/2]ITID-

Now x belongs to either C or X —~C, say xeC, so that the segment joining
e xe YT+ T ({(1=me-yp)(x) and e xe (XTI~ T (1~n)e- xg)(x)
has length greater than (1 —#)/||T}|. Consequently, one minus the norm of the
midpoint of this segment, a quantity which is 1—1/||7}], is greater than 5((t
—n)/IT}l). But since (1) implies that ||T]| <2 we have &((1—n)/||T]|) > 5
—n)/2) which contradicts (3) and completes the proof of the lemma.

LemMma 3. Let ecS, xeX, and let {C,;: iel,) be the family of clopen
neighborhoods of x. Then the family {g,(C,.): iel,} of clopen subsets of Y has
the finite intersection property.

Proof. Suppose, to the contrary, that there exist clopen neighborhoods
Cyip of x, k=1, ..., n, such that k["\l 0:(Cy;)) = @. In order to simplify the
notation, throughout the remainder of this proof we will denote C by C;,
1<k<n. Then

Xyi

Y=Y- N (C)= ) [Y-0.(Co]
k=1 k=1

and, by Lemma 2, this latter set is |J g,(X —C,).
k=1

n
Let C= N C; and consider g,(C). For some k, 1 <k < n, we must
=1

k=
have that ¢,(C) M g, (X —C,) is nonvoid. Again using the fact that if two open
subsets of an extremally disconnected space are disjoint then so are their
closures, we conclude that there is a yeY with IT(e x)(3)|| >n and
1T {e" xx-c )Wl > n. Thus by Lemma 1 there exist scalars a with oy < 1, 0
=1, 2, such that

lloy Te~ xe)+ o2 Tle xx-c Ml = Ity Tle- xe) )+, Tle xx-c) W
> n(1=5()".
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But since C and X — C; are disjoint, for all choices of such scalars x; we have
I e Jctuze yx—cllo < 1, which, together with the fact that 7 < || T2

<n(1=5(1))7*, again provides a contradiction and completes the proof of
the lemma.

Now let ¢, x, and [C,;: i el,} be as in the statement of Lemma 3. By
that lemma the set

Y;.& =N Qe (Cx,i)

iely
is a nonvoid subset of ¥, and we define the set Y, by
Y. = U Yx.e~
eeS

Lemma 4. If x,, x;e X, Xy # X, then Y)cl NnY,=0.

Proof. Suppose, to the contrary, that Y nY, #0;say ye Y, nY,.
Let C be a clopen neighborhood of x; which does not contain x,. Then by
the definition of Y., there is an e, €S such that Yo€Y ., and thus
Yo€g,, (C). Similarly, there is an e, e S such that Yo€Y,,,., and, as X—Cis a
clopen  neighborhood of x,, we have X2€0,,(X—C). Hence
Vo€, (C) Ng,, (X —C) which contradicts Lemma 2 and completes the proof
of this lemma.

We now define the subset ¥, of ¥ by
=y Y.

xeX

It then follows from Lemma 4 that we obtain a well-defined mapping h from
Y, onto X by setting, for yeY,,

hy)=x if

Next, consider the iIsomorphism R from C(Y, E,+) onto C (X, E,s) defi-
ned by R=||T|| T~ Then for any clopen subset B of ¥ and any eeS we
define the clopen subset 7,(B) of X by

(B) =cl({xeX: IR(e 1) ()| > n)).

Since ||R[| = || T||, conditions (1), (2) and (3) are satisfied with T replaced by
R. Also [[R™!]| = 1. It thus follows, by interchanging the roles of X and Y
and those of T and R, that if ye Y and {By;: jed,} is the family of clopen
neighborhoods of y, the set

Xy‘e= N Te(ByJ)
Jedy

ye Y.

is a nonvoid subset of X. We set
X, = U X,..

eeS
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Then, by what we have established, X, N X,, = @ if y, # y, so that if we
put
Xl = U va

we obtain a well-defined map k of X, onto Y by setting, for xeX,,
k(x)y=y if

Lemma 5. If xe X, and if C is any clopen neighborhood of x then for
every clopen neighborhood B of y there exists an egeS such that

(VeY: 1T 1) I >n/ITI} "B # 0.
Proof. Let x, B and C be as given above. Since xe X, there is an e S
with xe X, .. Thus

xet,(B) =cl({x'e X: [[R(e"xa) ¥l > n})

xeX,.

so there exists an x; e C with
IR (e x8) Ce)ll = |1 TN T (e x8) Gx1)]| > 715

ie. [T~ (e xw)(xll > n/lITIl. Let uw= T (e xp)(x;) and
Then

1T~ (e xg) +es xellew 2 1T (e 28) (%1) + €p " xc ()l > L+0/IITI,

let ep = uf|jull.

so that (as T is norm-increasing) ||e'x,,+T(e,,~xc)Hw'> 1+n/||T)|. Since '(1)
implies that ||T|| <1+#/||T||, there must exist a y,eB with
1T (s xc) o)l > nAIT

Lemma 6. If yeY, and h(y) = x then xeX; and k(x)=y.

Proof. Suppose that yeY;, h(y) = x, and that either x¢ X; or xveX1
but k(x) # y. Then in either case there would exist an x'e X;, x' # x, W:th y
=k(x). Now h(y) =x means ye Y, so yeY,, for some ecS. Hence if D is
any clopen neighborhood of x we have yeg, (D). Choose such a D which
does not contain x". Then as k(x') =y we have x'e X, and since C = X~D
is a clopen neighborhood of x' and B =g, (D) a clopen neighborhood of y,
by Lemma 5 there is an eyeS with

- YeY T x) W > n/IITI} ~B # O,

Choose a point y, in this latter intersection and pick ¢ &E* with |¢||
=1 such that {T(eyxc)(y1), > =T (es" xc)(¥1)ll. Then

W=Bn{yeY: Re{T(eg xc)(¥), o> >n/lIT}

s an open neighborhood of y, contained in g, (D)=cl({yeY:
1T (e xp) (¥l > n}, so that there is a point y,eW with || T (e xp}(y2)ll > 1
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Zn/lIT||l. Hence, by Lemma 1, there exist scalars Ay, %y With |2 < 1 for j
=1, 2 and

s Tle- xp)+22 Tlew gl = Il T(e 1) (ya)+22 Tlex xo) (ya)ll
=

n(1=8(W) /T,

a quantity which, by (2), is greater than IT||. But, as C= X—D, for all
choices of such scalars %; we have ||y ey, + %55 xell o < 1, and this contra-
diction completes the proof of the lemma.

The proof of Theorem 1 is then completed by the following:

Lemva 7. Y=Y, and his a homeomorphism of Y onto X.

Proof. The previous lemma shows that X = h(Yy) = X,. It also shows
that Y = k(X) =Y. (For h maps Y; onto X; hence given xe X, < X there
is a yeY; with h(y) = x. Then by the previous lemma k(x)=yeY;.) Thus h
maps Y onto X, h is injective since k is a function, and k = k-1,

We must show that h is continuous. Thus suppose A is a closed subset of
X.If y¢k(A) then y = k(x) for some x¢ A. Let C, be a clopen neighborhood
of x disjoint from 4 and let eeS. As we now know that Y=Y.,.=W,i
follows that yeg,(C,). And since 4 is contained in the clopen set X —C,, it
follows by the same reasoning that k(4) < 0.(X — C,) which, by Lemma 2, is
equal to Y—g,(C,). Hence the open set 2.(C,) does not meet k(A4). Conse-
quently, if we choose such a neighborhood C, for each x¢ A, we have k(A)
= Y- | @.(C,), a closed set. Thus h=k~! is continuous, and is hence a

X¢gA

homeomorphism of Y onto. X.

2. An application to Bochner spaces.

Proof of Theorem 2. Assume that (2, X, W) i=1,2, and E satisfy
the hypotheses of Theorem 2. Since E is uniformly smooth, E* is uniformly
convex [9, p. 147]. We may, without loss of generality, suppose that Q, is a
hyperstonean space, that Z; is the o-field of Borel subsets of Q;, and that g, is
a category measure for i =1, 2. (See, e.g., Section 2.A of [11].)

We first assume that L®(y,, E*) and L® (42, E*) are nearly isometric, It
is known that the dual of L!(y, E) is C(Q, E¥) for i =1, 2 [8, Theorem 1],
where the interaction between elements FeL! (4, E) and GeC(;, EX) is
given by

F, G = [<{F(w), G()) dy; (),

and also known that there exists an isometry of L®(u, E*) into C&;, E%)
[11, Proposition 2.4]. But since E* is reflexive it has the Radon-Nikodym
property [10, p. 218], so that (as our measure spaces are o-finite) L™ (y;, E*)
is also the dual of L' (i, E) [10, p. 98]. Thus the isometry of Proposition 2.4
of [11] is surjective. It follows that C(,, E*) and C(Q,, E*) are nearly

4 ~— Studia Mathematica t. 85 z. 2
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isometric. Hence, by Theorem 1, there exists a homeomorphism k of Q, onto
Q,. ) '

: Next, for Borel sets B < Q;, we define A(B) = 4 [k 1(B)). If then Ais a

Borel subset of Q, we have yu(4) = A(k(4)) = k(_lf“ dA so that the map

)

j=1

carries the dense subspace of simple functions in L'(2,, Zy, u, E) isometri-

cally onto the corresponding subspace of L'(2,, Z,, 4, E) and can thus be

extended to an isometry of L'(Q, %y, iy, E) onto :L‘ (25, 24, 4, E). Thep

multiplication by the scalar function d4/dy, carries this latter space isometri-

cally onto L*(2,, £, ptz, E). Hence L' (uy, E) & L' (i, E) and consequently
Lw(pli E*) =L* (1“29 E*) i \

If we assume that L'(u,, E) and L'(u,, E) are nearly isometric, then

their duals L®(u,, E¥) and L*®(y,, E*) are nearly isometric and the proof

follows as above.

n
€Xa; ™ Z €; Xk(Aj)
J=1
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On symmetric bases in nonseparable Banach spaces

by

LECH DREWNOWSKI (Poznan)

Abstract. It is shown that if E and F are nonseparable Banach spaces with symmetric
bases and each of these spaces is isomorphic to a subspace of the other space, then the bases are
equivalent (and hence the two spaces are.isomorphic). In particular, in a nonseparable Banach
space with a symmetric basis, any two such bases are equivalent.

The purpose of this paper is to prove the following

TueorEMm. Let E and F be nonseparable Banach spaces with symmetric
bases (u,),., and (v))je. respectively. If Ec F and F < E (isomorphic embed-
dings), then E and F are isomorphic: E = F. In fact, in this case the bases (u;)
and (v)) are equivalent, i.e., there exists an isomorphism T from E onto F such
that T({u;: iel}) = {v;: jeJL

(Thus, for some bijection t: I —J, Ty = v for all iel, and every such
bijection determines the corresponding isomorphism.)

CoroLLARY. If a nonseparable Banach space E has a symmetric basis, then
any two symmetric bases of E are equivalent.

These results show that there is a sharp distinction between the nonse-
parable and separable Banach spaces with symmetric bases. Nothing of the
above type is valid in the separable case (see [1] and [2]) if we insist on
having conclusions that the bases are equivalent. Whether or not the
theorem is true in this case if the assertion were merely E ~ F, seems to be
unknown.

We start with some explanations and a general construction.

A family (x,),c, of elements in a Banach space X is called a symmerric
basis of X ([4]) if

(a) it is an unconditional basis of X ([3]), i.e., for every xe X there is a

unique family of scalars (z,),.4 such that x = ¥ t,x, (unconditional conver-
acAd
gence or summability), and

(b) whenever a series ) r,x, converges (unconditionally), then so does
aeAd
the series Y. f,4X,; for every bijection ¢: 4 — A.
acd
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