

GB*-Algebras associated with inductive limits of Hilbert spaces

bv

S. J. L. van EIJNDHOVEN and P. KRUSZYŃSKI* (Eindhoven)

Abstract. For a given generating family \mathscr{R} of self-adjoint bounded operators in a Hilbert space \mathscr{H} an inductive limit $\mathscr{S}_{\mathscr{R}} \subset \mathscr{H}$ of Hilbert spaces is constructed. $\mathscr{S}_{\mathscr{R}}$ is the maximal common dense domain for the unbounded operator algebras \mathscr{R}^c and \mathscr{R}^{cc} . Both \mathscr{R}^c and \mathscr{R}^{cc} are GB*-algebras. \mathscr{R}^c can be regarded as a strong commutant of \mathscr{R} .

Conditions on \mathscr{R} are given such that the inductive limit topology for $\mathscr{S}_{\mathscr{R}}$ is generated by the seminorms $s \mapsto ||Ls||$, $L \in \mathscr{R}^{cc}$, $s \in \mathscr{S}_{\mathscr{R}}$. A rather general example is included which has been described at length in [EK] and [EGK].

Introduction. Let Φ denote a directed set of bounded nonnegative Borel functions on R, and let A denote a self-adjoint operator in a separable Hilbert space \mathscr{H} . With each $\varphi \in \Phi$ we associate the Hilbert space $\varphi(A) \mathscr{H}$ with inner product $(\cdot, \cdot)_{\varphi} = (\varphi(A)^{-1} \cdot, \varphi(A)^{-1} \cdot)$.

In [EK] we have studied the inductive limit of Hilbert spaces $\mathscr{S}_{\Phi(A)} = \bigcup_{\varphi \in \Phi} \varphi(A) \mathscr{H}$. We have given general conditions on Φ such that the inductive limit topology for $\mathscr{S}_{\Phi(A)}$ can be described by the seminorms $s \mapsto ||f(A)s||$, $s \in \mathscr{S}_{\Phi(A)}$, where $f \in \Phi^{+}$ denotes a family of Borel functions which is compatible with Φ in a well-defined way.

Further, we have discussed a representation $\mathcal{F}_{\Phi(A)}$ of the strong dual of $\mathscr{F}_{\Phi(A)}$. The topological properties of the spaces in the Gelfand triple $\mathscr{F}_{\Phi(A)} \subset \mathscr{H} \subset \mathscr{F}_{\Phi(A)}$ are completely determined by the set Φ and the operator A. We mention that $\mathscr{F}_{\Phi(A)}$ and $\mathscr{F}_{\Phi(A)}$ are both inductive and projective limits of Hilbert spaces if Φ satisfies the so-called symmetry condition. (Cf. [EK], § 1–2.)

In our paper [EGK] the above-mentioned concepts have been generalized. Thus we developed [EK] in two directions:

- Instead of one self-adjoint operator A we consider an n-tuple of strongly

^{*} On leave from the department of Mathematical Methods in Physics, University of Warsaw, Poland.

AMS Classifications: 46 F 05, 46 F 10, 47 D 40.

commuting self-adjoint operators, and consequently a directed set of Borel functions on R^n .

– No boundedness condition is imposed on the elements of Φ . So in general $\mathscr{S}_{\Phi(A)}$, \mathscr{H} and $\mathscr{F}_{\Phi(A)}$ do not establish a Gelfand triple.

We note that the symmetry condition implies that $\mathscr{G}_{\Phi(A)} = \mathscr{F}_{\Phi^{\ddagger}(A)}$ and that $\mathscr{F}_{\Phi(A)} = \mathscr{G}_{\Phi^{\ddagger}(A)}$.

The paper [EGK] contains a further elaboration and refinement of the topological topics of [EK]. The second part of [EK] has been devoted to some algebraic topics. The set of operators $\Phi^+(A) = \{f(A)| f \in \Phi^+\}$ admits a GB*-algebra structure. Moreover, under certain conditions on Φ , the algebra $\Phi^+(A)$ is identical with the so-called strong bicommutant of $\Phi(A)$ in $\mathcal{L}(\mathcal{L}_{\Phi(A)})$.

The present paper is almost entirely devoted to a further elaboration of these algebraic features. However, the last sections contain some topological considerations. The starting point is a directed family \mathcal{R} of commuting positive bounded operators on \mathcal{H} . On \mathcal{R} we impose very mild conditions. The family \mathcal{R} generates the space $\mathcal{L}_{\mathcal{R}} = \bigcup_{a \in \mathcal{R}} \mathcal{A}$. In $\mathcal{L}(\mathcal{L}_{\mathcal{R}})$ we consider the strong commutant \mathcal{R}^c and strong bicommutant \mathcal{R}^{cc} of \mathcal{R} . Both \mathcal{R}^c and \mathcal{R}^{cc} are GB*-algebras.

Our construction of the commutative GB*-algebra \mathcal{R}^{cc} of unbounded linear operators presents a very natural extension of the usual construction of the von Neumann algebra $\mathcal{W}^*(\mathcal{R})$ of bounded operators generated by \mathcal{R} . In this respect we refer to [Pij] and [Ep], where also constructions of unbounded operator commutants can be found.

This paper is organized as follows.

The preliminaries contain the basic theory on GB*-algebras as introduced by G. R. Allan [Al 1-2]. In Section 1 we introduce the concept of generating family of operators and in Section 2 the concept of \mathcal{A} -bounded operators. Section 3 is devoted to the construction of the \mathcal{A} -commutant \mathcal{A}^{cc} and the \mathcal{A} -bicommutant \mathcal{A}^{cc} . We prove that \mathcal{A}^{cc} and \mathcal{A}^{cc} are GB*-algebras. In Section 4 we study a functional calculus for the commutative GB*-algebras \mathcal{A}^{cc} . We prove a global extension of the Gelfand-Naimark theorem for \mathcal{A}^{cc} . Further we discuss relations between \mathcal{A}^{cc} and \mathcal{A}^{cc} . Section 5 contains some topological considerations with respect to the inductive limit $\mathcal{A}_{\mathcal{A}}$. At the end of this paper we summarize some results on the space $\mathcal{A}_{\mathcal{A}(\mathcal{A})}$.

0. Preliminaries. Here we give a short survey of Allan's theory on GB*-algebras [Al 1-2]. Let \mathscr{A} be a locally convex topological *-algebra over the field of complex numbers. This means that the separate multiplication $p\mapsto pq$ (q) fixed) and the involution $p\mapsto p^+$ are continuous operations in \mathscr{A} . An element $p\in \mathscr{A}$ is said to be bounded if there exists $\lambda\in C\setminus\{0\}$ such that the set $\{(\lambda p)^n|n\in N\}$ is bounded in \mathscr{A} . The set of bounded elements of \mathscr{A} is denoted by \mathscr{A}_0 .

Let **B** denote the family of all bounded, absolutely convex, closed subsets \mathcal{B} of \mathcal{A} with the properties

$$\mathscr{B}^2 \subset \mathscr{B}.$$

$$(0.2) \mathscr{B}^+ = \mathscr{B}.$$

- (0.3) Definition. A locally convex topological *-algebra $\mathscr A$ with identity 1 is called a GB^* -algebra if the following conditions are satisfied:
 - (i) A is sequentially complete.
- (ii) $\mathscr A$ is symmetric, i.e. for each $p \in \mathscr A$ the element $1+p^+p$ is invertible in $\mathscr A$ with bounded inverse.
- (iii) The family **B** defined by (0.1) and (0.2) has a maximal element \mathcal{B}_0 with respect to set inclusion.

Let . ✓ be a GB*-algebra. Then the *-algebra

$$\mathscr{A}(\mathscr{B}_0) = \{ \lambda b | b \in \mathscr{B}_0, \ \lambda \in \mathbb{C} \}$$

is a B*-algebra with respect to the Minkowski norm induced by \mathcal{B}_0 .

(0.4) Proposition ([A12], Proposition 2.9). (i) If $\mathscr{C} \subset \mathscr{A}$ is a closed *-subalgebra of \mathscr{A} with $1 \in \mathscr{C}$ then \mathscr{C} is also a GB*-algebra. The maximal element of the family

$$\mathbf{B}_1 = \{\mathscr{B} \subset \mathscr{C} | \mathscr{B} \text{ bounded, absolutely convex, closed, } \mathscr{B}^2 \subset \mathscr{B} \text{ and } \mathscr{B}^+ = \mathscr{B}\}$$

is the set $\mathcal{B}_1 = \mathcal{B}_0 \cap \mathcal{C}$.

(ii) If \mathcal{A} is commutative, then $\mathcal{A}_0 = \mathcal{A}(\mathcal{B}_0)$.

Let \mathscr{A} be a commutative GB*-algebra, and let Λ denote the spectrum of the commutative B*-algebra \mathscr{A}_0 . Then Λ is a compact topological space. The Gelfand transform on \mathscr{A}_0 is an isometric *-isomorphism from \mathscr{A}_0 -onto the B*-algebra of continuous complex-valued functions $\mathscr{C}(\Lambda)$ with the usual Banach norm. Allan has proved a "nonbounded" extension of the Gelfand-Naimark theorem.

- (0.5) Proposition ([Al2], Proposition 3.1). Let \mathscr{A} be a commutative GB*-algebra, and let Λ be the spectrum of \mathscr{A}_0 . Then corresponding to each $\chi \in \Lambda$ there is an extended complex-valued function $\chi^e \colon \mathscr{A} \to C^* (= C \cup \{\infty\})$ such that
 - (i) χ^e is an extension of χ .
 - (ii) For each $p \in \mathcal{A}$ and $\xi \in C$

$$\chi^{\mathbf{e}}(\xi p) = \xi \chi^{\mathbf{e}}(p)$$

with the convention $0 \cdot \infty = 0$.

(iii) For each $p_1, p_2 \in \mathcal{A}$

$$\chi^{e}(p_1) + \chi^{e}(p_2) = \chi^{e}(p_1 + p_2)$$

provided that $\chi^{e}(p_1)$ and $\chi^{e}(p_2)$ are not both ∞ .

(iv) For each $p_1, p_2 \in \mathcal{A}$

$$\chi^{\mathbf{e}}(p_1 p_2) = \chi^{\mathbf{e}}(p_1) \chi^{\mathbf{e}}(p_2)$$

provided that $(\chi^{e}(p_1), \chi^{e}(p_2)) \neq (\infty, 0)$ or $(0, \infty)$.

(v) For each $p \in \mathcal{A}$

$$\chi^{\mathbf{e}}(p^+) = \overline{\chi^{\mathbf{e}}(p)}$$

with the convention $\overline{\infty} = \infty$.

- (vi) The set $N_p = \{ \chi \in \Lambda | \chi^e(p) = \infty \}$ is a nowhere dense closed subset of A.
- (0.6) Definition. A collection \mathcal{F} of C^* -valued continuous functions on a topological space Γ is called a *-algebra of functions if each $f \in \mathcal{F}$ takes the value ∞ on at most a nowhere dense subset of Γ .

For any $f, g \in \mathcal{F}$ and $\alpha, \beta \in C$, the functions $\alpha f + \beta g$, $f \cdot g$ and $f^* = \overline{f}$ are pointwise well defined on the dense subset of Γ on which f and g are finite. We assume that each of the functions $\alpha f + \beta g$, $f \cdot g$ and f^* has a unique continuous extension to a C*-valued continuous function which also belongs to F.

- (0.7) Theorem ([A12], Theorem 3.9). Let \mathcal{A} be a commutative GB^* algebra, and let Λ be the spectrum of \mathcal{A}_0 . Define the mapping $\hat{ }$ on \mathcal{A} : $p \mapsto \hat{p}$, $p \in \mathcal{A}$, by $\hat{p}(\chi) = \chi^{e}(p)$, $\chi \in \Lambda$. Then $\hat{}$ is a *-isomorphism of \mathcal{A} onto a *subalgebra A of continuous C*-valued functions on A. The mapping extends the usual Gelfand transform of the commutative B*-algebra Ao, i.e. $\hat{\mathcal{A}}_0 = \mathscr{C}(\Lambda) \subset \hat{\mathcal{A}}.$
- 1. Generating families of self-adjoint operators. Let R denote a family of mutually commuting bounded positive operators on a separable Hilbert space \mathcal{H} . Then the commutative von Neumann algebra $\mathcal{W}^*(\mathcal{R})$ generated by \mathscr{R} and the identity on \mathscr{H} equals the usual bicommutant $\mathscr{R}' \subset \mathscr{L}(\mathscr{H})$. In the following sections we describe a way to extend $\mathscr{W}^*(\mathscr{R})$ to a GB*-algebra of unbounded strongly commuting linear operators. It is clear that there is no unique extension. However, our approach seems very natural. We use the family \mathcal{R} to construct an inductive limit of Hilbert spaces $\mathcal{S}_{\mathcal{R}} \subset \mathcal{H}$. First, we define the notion of generating family.
- (1.1) Definition. Let \mathcal{R} be a family of bounded self-adjoint operators on H. The family R is called a generating family if it fulfils the following conditions:

(i) $\forall_{a \in \mathbf{P}}$: $0 \le a \le 1$

(positivity and boundedness).

(ii) $\forall_{a,b\in\mathcal{A}}$: ab = ba

(commutativity),

(iii) $\forall_{a,b\in\mathcal{R}} \exists_{c\in\mathcal{R}}$: $(a \le c) \land (b \le c)$ (directedness),

(iv) $\forall_{a \in \mathcal{A}} \exists_{b \in \mathcal{A}}$: $a^{1/2} \leq b$

(sub-semigroup property). Remark. Because of Condition (1.1.ii), Condition (1.1.iv) is equivalent

$$\forall_{a \in A} \exists_{b \in A} : a \leq b^2$$

Let $a \in \mathcal{R}$. We denote its support by r(a) according to [Sa], Definition (1.10.3). Observe that $a \upharpoonright_{r(a)} \mathscr{F}$ is injective.

(1.2) Lemma. Let $a \in \mathcal{R}$. Then there exists $b \in \mathcal{R}$ such that $b^{-2} ar(b) \upharpoonright_{r(b)} \mathcal{R}$ is bounded.

Proof. Take b as indicated in (1.1.iv). Then

$$b^{-1}ab^{-1}r(b)\upharpoonright_{r(b)\mathscr{H}}\leqslant r(b)\upharpoonright_{r(b)\mathscr{H}}.$$

For each $a \in \mathcal{R}$ we put $a\mathcal{H} = \{ax | x \in \mathcal{H}\}$. If we define in $a\mathcal{H}$ the inner product

$$(ax, ay)_a = (r(a) x, r(a) y)$$

with (\cdot, \cdot) the inner product of \mathcal{H} , then $a\mathcal{H}$ becomes a Hilbert space. Observe that the canonical embedding $a\mathcal{H} \subseteq \mathcal{H}$ is continuous. Further, the linear mapping a: $r(a) \mathcal{H} \to a\mathcal{H}$ is a bijective isometry.

(1.3) Definition. By $\mathscr{S}_{\mathfrak{p}}$ we denote the inductive limit generated by the Hilbert spaces $a\mathcal{H}$, $a \in \mathcal{R}$, i.e.

$$\mathscr{S}_{\mathcal{R}} = \bigcup_{a \in \mathcal{R}} a \mathscr{H}$$

with the inductive limit topology.

Remark. $\mathcal{S}_{\mathcal{R}}$ is in general a nonstrict inductive limit.

(1.4) Lemma.
$$\mathscr{S}_{\mathscr{R}} = \bigcup_{b \in \mathscr{R}} b(\mathscr{S}_{\mathscr{R}}).$$

Proof. It is clear that $\bigcup b(\mathscr{S}_{\mathscr{B}}) \subset \mathscr{S}_{\mathscr{B}}$.

Let $s \in \mathcal{S}_{\mathcal{A}}$. Then s = ax for some $a \in \mathcal{R}$ and $x \in \mathcal{H}$. From Lemma (1.2) it follows that the operator $b^{-1}ab^{-1}r(b)$ is densely defined and bounded on $r(b) \mathcal{H}$. Hence $s = b\tilde{s}$ where $\tilde{s} = b\{b^{-1}ab^{-1}r(b)\}r(b)x \in \mathcal{S}_{\mathcal{B}}$.

In this section we do not discuss the topological structure of \mathcal{S}_{\bullet} . Only Section 5 contains some results of this type. We shall show that \mathscr{S}_{\bullet} is both an inductive limit and a projective limit of Hilbert spaces under certain conditions on R.

2. A-bounded operators. We introduce the notion of A-bounded operator. The generating family \mathcal{R} can be seen as a set of smoothing operators for the *R*-bounded operators. Here is the definition.

(2.1) Definition. Let L be a densely defined linear operator in $\mathscr H$ with $\mathscr D(L)\supset \mathscr S_{\mathscr A}$. Then L is called $\mathscr R$ -bounded if the operator La is bounded for each $a\in \mathscr R$.

The vector space of all \mathcal{R} -bounded operators is denoted by $\mathcal{RB}(\mathcal{H})$.

Remark. Each $L \in \mathcal{RB}(\mathcal{H})$ can be seen as a continuous linear operator from $\mathcal{S}_{\mathcal{R}}$ into \mathcal{H} . Also the converse is valid: each continuous linear mapping from $\mathcal{S}_{\mathcal{R}}$ into \mathcal{H} is \mathcal{R} -bounded. In the sequel $\mathcal{RB}(\mathcal{H})$ will be regarded as the set of all continuous linear mappings from $\mathcal{S}_{\mathcal{A}}$ into \mathcal{H} .

On the vector space $\mathcal{RB}(\mathcal{H})$ we define the seminorms p_a , $a \in \mathcal{R}$,

$$(2.2) p_a(L) = ||La||, L \in \mathcal{RB}(\mathcal{H}).$$

The family $\{p_a | a \in \mathcal{R}\}\$ is complete, i.e. L = 0 iff $p_a(L) = 0$ for all $a \in \mathcal{R}$.

(2.3) LEMMA. The vector space $\mathcal{AB}(\mathcal{H})$ endowed with the locally convex topology generated by the seminorms p_a , $a \in \mathcal{R}$, is sequentially complete.

Proof. Let $(L_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in $\mathscr{RB}(\mathscr{H})$. Let $a\in\mathscr{R}$. Then $(L_n a)_{n\in\mathbb{N}}$ is a Cauchy sequence in $\mathscr{L}(\mathscr{H})$. The completeness of $\mathscr{L}(\mathscr{H})$ yields $L_a\in\mathscr{L}(\mathscr{H})$ such that $||L_n a - L_a|| \to 0$ as $n \to \infty$. Now define the operator L on $\mathscr{L}_{\mathscr{R}}$ by

$$Ls = L_a x, \quad s = ax \in \mathcal{L}_{\pi}.$$

Then the definition of L does not depend on the choice of a and x, because for s = ax = by we have

$$L_a x = \lim_{n \to \infty} L_n ax = \lim_{n \to \infty} L_n by = L_b y.$$

Since $La = L_a$ for all $a \in \mathcal{R}$, it follows that $L \in \mathcal{RB}(\mathcal{H})$.

Next, we introduce the notion of A-commutant.

(2.4) Definition. Let $\mathscr{L}\subset \mathscr{RB}(\mathscr{H}).$ Then we define $\mathscr{L}^c\subset \mathscr{RB}(\mathscr{H})$ as follows:

$$\mathcal{L}^{c} = \{ L' \in \mathcal{RB}(\mathcal{H}) | \forall_{L \in \mathcal{L}} \forall_{a \in \mathcal{A}} : L' L \in \mathcal{RB}(\mathcal{H}),$$

$$LL' \in \mathcal{RB}(\mathcal{H})$$
 and $L'La = LL'a$.

The set \mathcal{L}^{c} is called the \mathcal{R} -commutant of \mathcal{L} .

In the remaining part of this paper we confine ourselves to \mathcal{R}^c and $\mathcal{R}^{cc} = (\mathcal{R}^c)^c$. They are called the \mathcal{R} -commutant and \mathcal{R} -bicommutant of \mathcal{R} . Clearly, \mathcal{R}^c and \mathcal{R}^{cc} are linear subspaces of $\mathcal{R}\mathcal{B}(\mathcal{H})$. In the next section we show that they admit the structure of a topological algebra.

3. The GB*-algebras \mathcal{R}^c and \mathcal{R}^{cc} . Let $L \in \mathcal{H}^c$, and let $s \in \mathcal{L}_{\mathcal{R}}$. By Lemma (1.4), $s = b\tilde{s}$ for some $b \in \mathcal{R}$ and $\tilde{s} \in \mathcal{L}_{\mathcal{R}}$. It follows that

$$Ls = Lb\tilde{s} = bL\tilde{s} \in \mathcal{S}_{a}$$

So L maps $\mathscr{S}_{\mathscr{R}}$ into $\mathscr{S}_{\mathscr{R}}$. Therefore, for each $L_1, L_2 \in \mathscr{R}^c$ the composed operator L_1, L_2 is well defined on $\mathscr{S}_{\mathscr{R}}$ and maps $\mathscr{S}_{\mathscr{R}}$ into $\mathscr{S}_{\mathscr{R}}$.

Remark. From Section 5 it follows that each $L \in \mathcal{R}^c$ gives rise to a continuous linear mapping from $\mathcal{L}_{\mathcal{R}}$ into $\mathcal{L}_{\mathcal{R}}$.

(3.1) Lemma. The vector spaces \mathcal{R}^c and \mathcal{R}^{cc} are subalgebras of $\mathcal{RB}(\mathcal{H})$ which consist of linear mappings from $\mathcal{L}_{\mathcal{R}}$ into $\mathcal{L}_{\mathcal{R}}$. Moreover, \mathcal{R}^{cc} is abelian and $\mathcal{R}^{cc} \subset \mathcal{R}^c$.

Proof. Let $L_1, L_2 \in \mathcal{R}^c$, and let $a \in \mathcal{R}$. Take $b \in \mathcal{R}$ with $a \leq b^2$. Then

$$L_1 L_2 a = (L_1 b)(L_2 b)(b^{-1} ab^{-1} r(b)).$$

It follows that $L_1 L_2$ is \mathcal{R} -bounded. Further, for all $a_1, a_2 \in \mathcal{R}$

$$L_1 L_2 a_1 a_2 = L_1 a_1 L_2 a_2 = a_1 L_1 L_2 a_2$$
.

Hence $L_1 L_2 \in \mathcal{R}^c$.

Since $\mathcal{R} \subset \mathcal{R}^c$ it follows that $\mathcal{R}^{cc} \subset \mathcal{R}^c$. \mathcal{R}^{cc} is abelian, because \mathcal{R} consists of mutually commuting operators.

We mention the following useful alternative description:

$$\begin{split} \mathscr{R}^{\mathsf{c}} &= \{L \in \mathscr{R}\mathscr{B}(\mathscr{H}) | \ \forall_{a \in \mathscr{R}} \ \forall_{s \in \mathscr{S}_{\mathscr{R}}} \colon Las = aLs\}; \\ \mathscr{R}^{\mathsf{cc}} &= \{L' \in \mathscr{R}\mathscr{B}(\mathscr{H}) | \ \forall_{Le \not = s^c} \ \forall_{s \in \mathscr{S}_{\mathscr{R}}} \colon L'Ls = LL's\}. \end{split}$$

We are going to introduce an involution in \mathcal{H}^c by taking the usual Hilbert space adjoint L^* of each $L \in \mathcal{H}^c$.

(3.2) LEMMA. Let $L \in \mathcal{R}^c$. Then $\mathcal{S}_{\mathcal{R}} \subset \mathcal{L}(L^*)$, and $L^* \in \mathcal{RB}(\mathcal{H})$.

Proof. Let $s \in \mathcal{S}_{\mathscr{R}}$. Then for all $a \in \mathcal{R}$ and $x \in \mathcal{H}$

$$(Ls, ax) = (Las, x) = (s, (La)*x)$$

where $(La)^* \in \mathcal{L}(\mathcal{H})$ because $La \in \mathcal{L}(\mathcal{H})$. Thus we get

$$L^*(ax) = (La)^* x, \quad x \in \mathcal{H}.$$

From this relation the assertions follow.

(3.3) Definition. Let $L \in \mathcal{R}^c$. Then we define L^+ by

$$L^+ := L^* \upharpoonright_{\mathscr{S}_{\alpha}}$$

- (3.4) Lemma. (i) Let $K, L \in \mathcal{R}^c$. Then $K^+, L^+ \in \mathcal{R}^c$ and $(KL)^+ = L^+ K^+, L^{++} = L$.
 - (ii) Let $L \in \mathcal{R}^{cc}$. Then $L^+ \in \mathcal{R}^{cc}$.

Proof. (i) Let $a \in \mathcal{R}$ and $s \in \mathcal{S}_a$. Then we have

$$L^+ as = L^* as = (La)^* s = aL^+ s.$$

It is clear that $(KL)^+ = L^+ K^+$, and that $L^{++} = L$.

(ii) Let $L_1 \in \mathcal{R}^c$, and $s \in \mathcal{S}_{\mathcal{R}}$. Since $\mathcal{R}^{cc} \subset \mathcal{R}^c$ and hence $L_1^+ \in \mathcal{R}^c$ we have

$$L_1 L^+ s = (LL_1^+)^+ s = (L_1^+ L)^+ s = L^+ L_1 s.$$

An element L of \mathcal{R}^c is hermitian if $L^+ = L$. We have the following nice characterization of the hermitian elements of \mathcal{R}^c .

(3.5) LEMMA. Let $L \in \mathcal{R}^c$. Then L is hermitian iff L is essentially self-adjoint as a linear operator in \mathcal{H} with $\mathcal{D}(L) = \mathcal{L}_{\mathbf{x}}$.

Proof. \Leftarrow If L is essentially self-adjoint, then L is symmetric on $\mathscr{S}_{\mathscr{A}}$. Hence $L=L^*\upharpoonright_{\mathscr{S}_n}=L^+$.

 \Rightarrow Assume $L = L^+$. Let $x \in \mathcal{D}(L^*)$ with $L^* x = \pm ix$. Let $a \in \mathcal{R}$. Then we have

$$(ax, Lax) = (L^* x, a^2 x) = \pm i ||ax||^2$$

It follows that ax = 0 for all $a \in \mathcal{R}$ and so x = 0.

On \mathcal{R}^c and \mathcal{R}^{cc} we impose the locally convex topology generated by the seminorms p_a , $a \in \mathcal{R}$, as introduced in (2.2).

- (3.6) LEMMA. (i) Multiplication is jointly continuous in R^c.
- (ii) The involution $L \mapsto L^+$ is continuous on \mathcal{R}° .

Proof. (i) Let $a\in \mathcal{R}$. Then there is $b\in \mathcal{R}$ such that $a\leqslant b^2$. So for all $L_1,\ L_2\in \mathcal{R}^c$ we have

$$p_a(L_1 L_2) = ||L_1 L_2 a|| \le ||L_1 L_2 b^2|| \le p_b(L_1) p_b(L_2).$$

- (ii) For each $a \in \mathcal{R}$ and $L \in \mathcal{R}^c$ we have $||(La)^*|| = ||La|| = ||L^+a||$.
- (3.7) Lemma. The algebra \mathcal{R}° is a closed subspace of $\mathcal{RB}(\mathcal{H})$, and the algebra $\mathcal{R}^{\circ\circ}$ is closed in \mathcal{R}° .

Proof. The linear mappings Δ_a : $\mathcal{RB}(\mathcal{H}) \to \mathcal{RB}(\mathcal{H})$, $a \in \mathcal{R}$, defined by $\Delta_a(L) = aL - La$, $L \in \mathcal{RB}(\mathcal{H})$, are continuous. Since $\mathcal{R}^c = \bigcap_{a \in \mathcal{R}} \operatorname{Ker}(\Delta_a)$, \mathcal{R}^c is closed in $\mathcal{RB}(\mathcal{H})$. Similarly,

$$\mathscr{R}^{\operatorname{cc}} = \bigcap_{L \in \mathscr{R}^{\operatorname{c}}} \operatorname{Ker}(D_L)$$

where $D_L: \mathcal{R}^c \to \mathcal{R}^c$ denotes the continuous mapping

$$D_L(K) = KL - LK, \quad K \in \mathcal{R}^c. \blacksquare$$

(3.8) COROLLARY. R^c and R^{cc} are sequentially complete.

Proof. Cf. Lemma (2.3) and Lemma (3.7).

Next, we consider the set \mathcal{R}_0^c of bounded elements of \mathcal{R}^c (cf. Preliminaries). Since \mathcal{R}^c is not commutative, \mathcal{R}_0^c is not even a linear subspace of \mathcal{R}^c . However, the bounded normal elements of \mathcal{R}^c admit a useful characterization.

(3.9) LEMMA. Let $L \in \mathcal{R}^c$ be normal, i.e. $L^+ L = LL^+$. Then L is a bounded element of \mathcal{R}^c iff L is bounded as an operator in \mathcal{H} .

Proof. \Leftarrow Suppose $L \in \mathcal{L}(\mathcal{H})$. Put $\lambda = ||L||^{-1}$. Then for each $a \in \mathcal{R}$ $\lambda^n ||L^n a|| \leq ||a||$

and hence $L \upharpoonright_{\mathscr{S}_{\alpha}} \in \mathscr{R}_0^c$.

 \Rightarrow We have $||Ls||^2 \le ||L^+ Ls||$ for all $s \in \mathscr{S}_{\mathscr{R}}$ with ||s|| = 1. Since L is normal, $L^+ L \in \mathscr{R}_0^e$. So we may assume that $L^+ = L$.

Let $x \in \mathcal{H}$ and let $a \in \mathcal{R}$, with ||ax|| = 1. Put s = ax. Then we compute as follows:

$$||Ls||^2 \le ||L^2 s|| \le \dots \le ||L^{2^n} s||^{2^{1-n}} \le ||(\lambda L)^{2^n} a||^{2^{1-n}} (1/\lambda)^2 ||x||^{2^{1-n}},$$

where we take $\lambda > 0$ such that for all $a \in \mathcal{R}$

$$\sup_{n\in\mathbb{N}}(||(\lambda L)^{2^n}a||)<\infty.$$

Thus we obtain $||Ls|| \le 1/\lambda$, for all $s \in \mathcal{S}_{\mathcal{R}}$ with ||s|| = 1.

Now we come to the main theorem of this section.

(3.10) THEOREM. Let \mathcal{R} be a generating family of bounded operators on \mathcal{H} . Then the \mathcal{R} -commutant \mathcal{R}^c and the \mathcal{R} -bicommutant \mathcal{R}^{cc} are GB^* -algebras.

Proof. We have already shown that \mathcal{R}^c is a sequentially complete locally convex topological *-algebra, and that \mathcal{R}^{cc} is a closed *-subalgebra of \mathcal{R}^c . So it remains to be proved that \mathcal{R}^c is symmetric and that the family **B** of bounded, absolutely convex, closed, idempotent and symmetric subsets of \mathcal{R}^c has a maximal element with respect to set inclusion.

Symmetry. Let $L \in \mathcal{R}^c$ and put $Q = I + L^+ L$. Since $L^+ L$ is hermitian, it is essentially self-adjoint as an operator in \mathcal{H} . So Q^{-1} is well defined and belongs to $L(\mathcal{H})$. By Lemma (3.9) we get $Q^{-1} \upharpoonright_{\mathcal{H}_{\mathcal{A}}} \in \mathcal{H}_0^c$.

Maximal element. The family B is defined by

$$\mathbf{B} = \{\mathscr{B} \subset \mathscr{R}^c | \mathscr{B} \text{ is bounded, absolutely convex and closed, } \mathscr{B}^2 \subset \mathscr{B}$$
 and $\mathscr{B}^+ = \mathscr{B}\}.$

Put $\mathscr{B}_0 = \{L \in \mathscr{R}^c | \forall_{a \in \mathscr{R}}: ||La|| \leq 1\}$. We shall prove that \mathscr{B}_0 is the maximal element of **B**.

It is clear that \mathcal{B}_0 is bounded, absolutely convex and closed. Further, let $L_1, L_2 \in \mathcal{B}_0$ and let $a \in \mathcal{R}$. Then for $b \in \mathcal{R}$ with $a \leq b^2$ we get

$$||L_1 L_2 a|| \leq ||L_1 b|| \, ||L_2 b|| \leq 1.$$

Hence $\mathscr{B}_0^2 \subset \mathscr{B}_0$. Moreover for all $L \in \mathscr{B}_0$ and $a \in \mathscr{R}$

$$||L^+ a|| = ||La|| \leqslant 1$$

and therefore $\mathcal{B}_0^+ = \mathcal{B}_0$.

Now suppose \mathcal{B}_0 were not maximal in **B**. It would mean that there

exists $\mathscr{B} \in \mathbf{B}$ and $L \in \mathscr{B} \setminus \mathscr{B}_0$, i.e. ||La|| > 1 for some $a \in \mathscr{R}$. Since also $L^+ L \in \mathscr{B}$ we get

$$||L^+ La|| \ge ||L^+ La^2|| = ||La||^2 > 1.$$

The sequence $((L^+ L)^{2^n})_{n \in \mathbb{N}}$ is not bounded because

$$p_a((L^+L)^{2^n}) = ||(L^+L)^{2^n}a|| \ge ||L^+La||^{2^n} \cap \infty$$

However, this sequence is contained in \mathcal{B} , which yields a contradiction. Hence \mathcal{B}_0 is maximal.

Any von Neumann algebra of bounded linear operators on a separable Hilbert space is a C^* -algebra which is monotonously sequentially closed (cf. [Pe], [Sa]). Here we get a similar result for the commutative GB*-algebra \mathcal{A}^{cc} .

- (3.11) PROPOSITION. (i) Let $(L_{\alpha})_{\alpha\in I}$ be an increasing net of positive operators in \mathcal{R}^{cc} with the property that the net $(L_{\alpha} a)_{\alpha\in I}$ is bounded in $\mathcal{L}(\mathcal{H})$ for each $a\in \mathcal{R}$. Then there exists $L\in \mathcal{R}^{cc}$ such that $(L_{\alpha} a)$ tends strongly to La in $\mathcal{L}(\mathcal{H})$ for each $a\in \mathcal{R}$.
- (ii) Let the family \mathcal{R} have the additional property that there exists a sequence $(a_n)_{n\in\mathbb{N}}$ in \mathcal{R} such that $\bigvee_{n\in\mathbb{N}} r(a_n) = 1$. Then for each $L\in\mathcal{R}^{cc}$, $L\geqslant 0$, there exists a sequence $(L_N)_{N\in\mathbb{N}}$ in \mathcal{R}_0^{cc} which is monotonously increasing, and for which the sequence $(L_N)_{N\in\mathbb{N}}$ tends strongly to La in $\mathcal{L}(\mathcal{H})$ for each $a\in\mathcal{R}$.

Proof. (i) Let $L_a \in \mathcal{L}(\mathcal{H})$ be the strong limit of the net $(L_\alpha a)_{\alpha \in I}$. Then $L_a \in \mathcal{R}_0^{cc}$. Define L on $\mathcal{L}_{\mathfrak{R}}$ by

$$Ls = L_b \tilde{s}$$

where $s, \tilde{s} \in \mathscr{S}_{\mathscr{R}}$ and $b \in \mathscr{R}$ with $s = b\tilde{s}$. In a standard way it can be shown that L is well defined, and satisfies

$$LL'a = L_a L' = L' L_a = L' La, \quad a \in \mathcal{R}, L' \in \mathcal{R}^c.$$

Hence $L \in \mathcal{R}^{cc}$

(ii) Let $L \in \mathcal{R}^{cc}$, and let $(a_n)_{n \in N}$ be a sequence in \mathcal{R} with $\bigvee_{n \in N} r(a_n) = 1$. Then we have

$$\forall_{N \in \mathbb{N}} \exists_{b_N \in \mathbb{R}} \forall_{n \leq N} : b_N \geqslant a_n \quad \text{and} \quad b_N \geqslant b_{N-1}.$$

Moreover, $r(b_N) \ge \bigvee_{n \le N} r(a_n)$ and

$$b_N^{2^{-m}} \to r(b_N)$$
 strongly as $m \to \infty$.

So the sequence $(b_N^{2^{-N}})_{N\in\mathbb{N}}$ tends strongly and monotonously to 1 as $N\to\infty$. Put $L_N=Lb_N^{2^{-N}},\ N\in\mathbb{N}$. Then $L_N\in\mathscr{R}_0^{\mathrm{cc}}$ and $L_N\geqslant 0,\ N\in\mathbb{N}$. Further,

$$L_N a = La b_N^{2^{-N}} \rightarrow La$$
 strongly as $N \rightarrow \infty$.

4. Functional calculus. Let us consider the bounded part of \mathcal{R}^{cc} . By Lemma (3.9), \mathcal{R}_0^{cc} consists of bounded operators. Moreover, it follows that \mathcal{R}_0^{cc} is an abelian C^* -algebra of operators in \mathcal{H} , where the norm is the usual operator norm in $\mathcal{L}(\mathcal{H})$. Let Λ be the spectrum of the C^* -algebra \mathcal{R}_0^{cc} . Then \mathcal{R}_0^{cc} is isometrically *-isomorphic to the C^* -algebra of continuous functions on Λ , i.e. $\mathcal{R}_0^{cc} \cong \mathcal{H}(\Lambda)$. Since $1 \in \mathcal{R}_0^{cc}$ the topological space Λ is compact.

Let the map $\mathcal{R}_0^{cc} \ni a \mapsto \hat{a} \in \mathcal{R}(A)$ be the Gelfand transform. As we mentioned before (Theorem (0.7)) Allan's theory of GB*-algebras introduces a generalized version of the Gelfand-Naimark theorem. Namely, the extended Gelfand mapping is a homeomorphism into a set of C^* -valued functions. Here we characterize a *-algebra of C^* -valued functions such that \mathcal{R}^{cc} is (globally) *-isomorphic to this function *-algebra.

(4.1) Theorem. The GB*-algebra \mathcal{R}^{cc} is *-isomorphic to the *-algebra of functions on the spectrum Λ of \mathcal{R}^{cc}_0 defined by

$$\mathcal{R}^{+}(\Lambda) := \big\{ f \in \mathcal{C}^{*}(\Lambda) | \ \forall_{a \in \mathcal{R}} : \sup_{\lambda \in \Lambda} |\hat{a}(\lambda) f(\lambda)| \to \infty \big\},\,$$

where $\mathscr{C}^*(\Lambda)$ is the *-algebra of continuous C^* -valued functions on Λ (cf. Definition (0.6)) and $a \mapsto \hat{a}$ is the Gelfand transform from \mathscr{R}_0^{c} onto $\mathscr{C}(\Lambda)$.

Proof. Let $L \in \mathscr{H}^{cc}$. Then for each $a \in \mathscr{H}$ the operator $L_a := La$ belongs to $\mathscr{H}_0^{cc} \subset \mathscr{L}(\mathscr{H})$. There exists a number $c_a \ge 0$ such that $L_a^* La = (L^* a) La = L^+ La^2 \le c_a^2 \cdot 1_{\mathscr{H}}$. So we have $||La|| = \sup_{\lambda \in A} |L_a(\lambda)| \le c_a$. Following the result of Allan (cf. Theorem (0.7)) we can represent any element L of the abelian

of Allan (cf. Theorem (0.7)) we can represent any element L of the abelian GB*-algebra \mathcal{M}^{cc} by a C^* -valued function \hat{L} on Λ . The mapping $L \mapsto \hat{L}$ is the extended Gelfand transform introduced by Theorem (0.7). It has the property that $(L \cdot a) \hat{\ } (\lambda) = \hat{L}(\lambda) \cdot \hat{a}(\lambda)$, $\lambda \in \Lambda$. Hence $\hat{L} \in \mathcal{R}^{+}(\Lambda)$.

Let $f \in \mathcal{R}^{\ddagger}(\Lambda)$. Then for all $a \in \mathcal{R}$, $f_a : \lambda \mapsto f(\lambda) \, \hat{a}(\lambda)$ belongs to $\mathscr{C}(\Lambda)$. For each $a \in \mathcal{R}$, let L_a denote the element of \mathcal{R}_0^{cc} corresponding to f_a . Then for all $a, b \in \mathcal{R}$, $L_{ab} = L_a b = b L_a$. We define L on $\mathcal{L}_{\mathcal{R}}$ by

$$Lw = L_a x$$

where $w = ax \in \mathcal{S}_*$. Then L is well defined because for w = ax = by we have

$$L_a x = b^{-1} L_b a a^{-1} b y = b^{-1} L_b y = L_b y$$

i.e. Lw = Lax = Lby.

Now let $L' \in \mathcal{H}^c$, $s \in \mathcal{S}_A$. By Lemma (1.4) we have $s = b^2 x$ for some $b \in \mathcal{H}$, $x \in \mathcal{H}$. Then LL's = LbL'bx. By the construction we have $L_b = Lb \in \mathcal{H}_0^{cc}$ and hence $LbL'bx = L'Lb^2 x = L'Ls$. Hence $L \in \mathcal{H}^{cc}$. To see that L is unique, use the bijectivity of the usual Gelfand transform on \mathcal{H}_0^{cc} .

(4.2) Remark. The C*-algebra \mathcal{R}_0^{cc} is the von Neumann algebra generated by the family \mathcal{R} and the identity, i.e. $\mathcal{R}_0^{cc} = \mathcal{R}''$.

Proof. Let $L \in \mathcal{R}^c$ and $L' \in \mathcal{R}'' \subset \mathcal{R}'$. Then for any $s \in \mathcal{S}_{\mathcal{R}}$ we have s

= ax and L'Ls = L'Lax = LaL'x = LL'ax = LL's since $La \in \mathcal{R}_0^{cc} \subset \mathcal{R}'$. Hence $L' \in \mathcal{R}^{cc} \cap \mathcal{L}(\mathcal{H})$ and by Lemma (3.9), $L' \in \mathcal{R}_0^{cc}$. So $\mathcal{R}'' \subset \mathcal{R}_0^{cc}$. On the other hand we have $\mathcal{R}_0^{cc} \subset \mathcal{L}(\mathcal{H})$, because all elements of \mathcal{R}^{cc} are normal. Since $\mathcal{R}' \subset \mathcal{R}^c$, we have for each $L \in \mathcal{R}_0^{cc}$, $L' \in \mathcal{R}'$, $s \in \mathcal{S}_{\mathcal{A}}$: LL's = L'Ls, and, by continuity, LL' = L'L on \mathcal{H} . Hence $\mathcal{R}_0^{cc} \subset \mathcal{R}''$.

5. Topological considerations for $\mathscr{S}_{\mathscr{R}}$. In this section we continue the topological investigations of the space $\mathscr{S}_{\mathscr{R}}$ as mentioned in Section 1.

At first we characterize the topology of a general inductive limit \mathcal{S}_I of a family of l.c. topological vector spaces $\{X_{\alpha}\}_{{\alpha} \in I}$, recalling the classical result.

(5.1) LEMMA. Let \mathscr{S}_I be an inductive limit of a family $\{X_\alpha\}_{\alpha\in I}$ of l.c. topological vector spaces. Let $\pi_\alpha\colon X_\alpha\to\mathscr{S}_I$ be the canonical embedding. Then a set $0\subset\mathscr{S}_I$ is open in \mathscr{S}_I if for each $\alpha\in I$ the set $\pi_\alpha^{-1}(0)$ is open in X_α .

Now we introduce a family of seminorms on $\mathscr{S}_{\mathscr{R}}$ that under additional assumptions imposed on \mathscr{R} gives rise to a topology equivalent to the inductive limit topology τ_{ind} in $\mathscr{S}_{\mathscr{R}}$. The family of seminorms is defined by

(5.2)
$$\mathscr{S}_{a} \ni s \mapsto ||Ls||, \text{ where } L \in \mathscr{R}^{cc}.$$

It is obvious that these seminorms are continuous with respect to the topology $\tau_{\rm ind}$ in $\mathscr{S}_{\mathscr{R}}$ in virtue of the general theory of inductive limit spaces. In particular it follows that the embedding $\mathscr{S}_{\mathscr{R}} \subset \mathscr{H}$ is continuous and hence that the space $\mathscr{S}_{\mathscr{R}}$ is Hausdorff.

Let us denote by τ_c the l.c. topology generated on $\mathscr{S}_{\mathscr{H}}$ by the seminorms (5.2). From the continuity of the seminorms (5.2) it follows that $\tau_{ind} > \tau_c$.

Let us consider the following condition that may be imposed on a generating family of operators \Re :

(5.3) Conditions. There exists in $\mathscr{W}^*(\mathscr{R})$ a sequence of mutually orthogonal projections $\{P_n\}_{n\in\mathbb{N}}$ such that $\sum_{n=1}^{\infty}P_n=1$, and

(I)
$$\forall_{n \in \mathbb{N}} \ \exists_{a \in \mathcal{R}} \ \exists_{C_1 > 0} \colon \ P_n r(a) \leqslant C_1 a.$$

(II)
$$\forall_{a \in \mathcal{R}} \exists_{b \in \mathcal{R}} \exists_{C_2 > 0} \forall_{n \in \mathbb{N}} : n^2 ||aP_n|| \leqslant C_2 \inf_{\|y\| = 1} ||bP_n y||.$$

We have the following result:

(5.4) THEOREM. Let \mathscr{R} be a generating family of operators in \mathscr{S} which has the properties (5.3). Then the inductive limit topology τ_{ind} on $\mathscr{S}_{\mathscr{R}}$ is equivalent to the l.c. topology τ_{c} (cf. (5.2)).

The proof of this theorem is based on the following crucial lemma:

(5.5) Lemma. Let O be a convex set in $\mathscr{S}_{\mathscr{R}}$ with the property that $O \cap \mathscr{A}\mathscr{H}$ contains an open neighbourhood of 0 in the Hilbert space $\mathscr{A}\mathscr{H}$ for each $a \in \mathscr{H}$. Suppose that the conditions (I), (II) of (5.3) are fulfilled. Then there exists $L \in \mathscr{R}^{cc}$ such that $V = \{s \in \mathscr{S}_{\mathscr{A}} | ||Ls|| < 1\} \subset O$.

Proof. For each $n \in \mathbb{N}$, put

$$r_n = \sup \{ \varrho \in \mathbf{R}^+ | P_n K(0, \varrho) \subset O \},$$

where $K(0, \varrho) = \{x \in \mathcal{H} | ||x|| \leq \varrho\}$. Because of Condition (I) and Lemma (5.1) the numbers r_n are well defined and nonzero. Let us define the following unbounded operator in \mathcal{H} :

$$L:=2\sum_{n=1}^{\infty}\frac{n^2}{r_n}P_n.$$

We prove that L is well defined on the dense set $\mathscr{L}_{\mathscr{R}}$ and that it is \mathscr{R} -bounded (cf. Definition (2.1)). So let us take $a \in \mathscr{R}$ and choose $b \in \mathscr{R}$ such that (5.3.II) holds. Notice that there exists $\varepsilon > 0$ such that $\{u \in b\mathscr{H} | ||u||_b < \varepsilon\} \subset O \cap b\mathscr{H}$. It is easy to see that for each $n \in N$

$$r_n \geqslant \varepsilon \inf_{\|y\|=1} \|b P_n y\|.$$

Then we have

$$La = 2 \sum_{n=1}^{\infty} \frac{n^2}{r_n} P_n a \leq 2 \frac{C_2}{\varepsilon} \sum_{n=1}^{\infty} \frac{1}{\|P_n a\|} P_n a$$
$$\leq 2 \frac{C_2}{\varepsilon} \sum_{n=1}^{\infty} P_n = 2 \frac{C_2}{\varepsilon} \cdot 1.$$

Hence $||La|| < \infty$ for each $a \in \mathcal{R}$ and L is densely defined since $\mathscr{S}_{\mathscr{R}} \subset \mathscr{D}(L)$. Since $P_n \in \mathscr{W}^*(\mathscr{R})$, $L \in \mathscr{R}^{cc}$ (cf. Proposition (3.11)). We will show that

$$V = \{ u \in \mathcal{S}_{\mathcal{R}} | \| \| Lu \| < 1 \} \subset O.$$

Let $u \in V$, with $u \in a\mathcal{H}$, $a \in \mathcal{R}$. Then $2n^2 P_n u \in O$ since $||2n^2 P_n u|| < r_n$. The following decomposition holds for each $N \in N$:

(*)
$$u = \sum_{n=1}^{N} \frac{1}{2n^2} 2n^2 P_n u + \left(\sum_{n=N+1}^{\infty} \frac{1}{2n^2}\right) u_N$$

where

$$u_N = \left(\sum_{n=N+1}^{\infty} \frac{1}{2n^2}\right)^{-1} \sum_{n=N+1}^{\infty} P_n u.$$

The first term in the above convex combination (*) belongs to O for every $N \in \mathbb{N}$.

In virtue of (5.3.II) there exists $b \in \mathcal{R}$ such that

$$\forall_{n \in \mathbb{N}} : n^2 ||P_n a|| \leq C_2 \inf_{\|y\| = 1} ||P_n by||.$$

Hence we have for u_N :

$$\begin{aligned} ||u_N||_b^2 &= \left(\sum_{n=N+1}^\infty \frac{1}{2n^2}\right)^{-2} \sum_{n=N+1}^\infty ||P_n u||_b^2 \\ &\leqslant 4N^4 C_2 \sum_{n=N+1}^\infty \frac{1}{n^4} ||P_n u||_a^2 \leqslant 4C_2 \sum_{n=N+1}^\infty ||P_n u||_a^2 \to 0 \end{aligned}$$

as $N \to \infty$.

Since $O \cap b\mathscr{H}$ contains an open neighbourhood of 0 in $b\mathscr{H}$ we have $u_N \in O \cap b\mathscr{H} \subset O$ for sufficiently large $N \in N$. Since O is convex we have $u \in O$, i.e. $V \subset O$.

Now we discuss a characterization of continuous linear maps in $\mathscr{S}_{\mathscr{R}}$ in algebraic terms (automatic continuity):

(5.6) PROPOSITION. Let $L: \mathcal{L}_{\mathcal{R}} \to \mathcal{L}_{\mathcal{R}}$ be a linear map which is \mathcal{R} -bounded. Assume that for each $b \in \mathcal{R}$ there exists $b' \in \mathcal{R}$ such that Lb = b'L. Then L is a continuous linear mapping from $\mathcal{L}_{\mathcal{R}}$ into $\mathcal{L}_{\mathcal{R}}$.

Proof. Obviously, it is sufficient to show that for any $a \in \mathcal{R}$ the map La: $\mathscr{H} \to \mathscr{L}_{\mathscr{R}}$ is continuous. Let $\{x_n\}_{n \in \mathbb{N}}$ be a null sequence in \mathscr{H} . Then $Lax_n = Lb^2 \, \bar{x}_n = b' \, Lb \, \bar{x}_n$, where b, $b' \in \mathscr{H}$, $a^{1/2} \le b$, $\bar{x}_n = b^{-2} \, ax_n$. By Lemma (1.2), $\bar{x}_n \to 0$ in \mathscr{H} as $n \to \infty$ so $Lax_n \to 0$ in $b' \, \mathscr{H}$, hence in $\mathscr{L}_{\mathscr{H}}$, as $n \to \infty$.

In analogy to our notation used in [EK] we define:

(5.7)
$$\mathscr{R}^{++} := \{ L \in \mathscr{W}^*(\mathscr{R}) | \forall_{L' \in \mathscr{R}^{cc}} : L' L \in \mathscr{W}^*(\mathscr{R}) \}.$$

Consider the following condition:

(III)
$$\forall_{R \in \mathscr{H}^{\ddagger}} \exists_{b \in \mathscr{H}} \exists_{c > 0} : R^* R \leqslant Cb^2.$$

If we impose Conditions (I), (II) and (III) on \mathcal{R} , then $\mathcal{L}_{\mathscr{R}}$ is a projective limit of Hilbert spaces. First, we prove the following result which states that bounded subsets of the (nonstrict) inductive limit $\mathcal{L}_{\mathscr{R}}$ admit the same characterization as if $\mathcal{L}_{\mathscr{R}}$ were a strict inductive limit of Hilbert spaces.

(5.8) LEMMA. Let \mathcal{R} be a generating family of operators fulfilling Conditions (5.3) (I), (II) and (III). Then a set $\mathcal{R} \subset \mathcal{S}_{\mathscr{R}}$ is bounded if and only if there exists $b \in \mathcal{R}$ such that \mathcal{B} is a bounded subset of the Hilbert space $b \mathcal{H}$.

Proof. Assume that $\mathscr{B} \subset \mathscr{S}_{\mathscr{B}}$ is bounded. In virtue of Theorem (5.4) for each $L \in \mathscr{R}^{cc}$ there exists a constant $K_L > 0$ such that $\sup ||Ls|| \leq K_L$.

Since $P_n \in \mathcal{R}^{cc}$ for each $n \in \mathbb{N}$ we have $q_n := \sup_{n \in \mathbb{N}} ||P_n s|| < \infty$. Put

$$R:=\sum_{n=1}^{\infty}nq_nP_n.$$

We will show that $R \in \mathcal{R}^{++}$ (cf. (5.7)). Let $L \in \mathcal{R}^{cc}$. Then we prove that

 $\tilde{L} := \sum_{n=1}^{\infty} n ||P_n L|| P_n$ belongs to \mathcal{R}^{cc} . It is enough to show that \tilde{L} is \mathcal{R} -bounded (cf. Proposition (3.11)). Let $a \in \mathcal{R}$. Then taking b as indicated in (5.3) we have

$$\begin{split} \|\widetilde{L}a\| &= \sup_{n \in \mathbb{N}} \|\widetilde{L}a \, P_n\| = \sup_{n \in \mathbb{N}} n \|P_n L\| \, \|P_n a\| \leqslant \sup_{n \in \mathbb{N}} \left(\|P_n L\| \inf_{\|y\| = 1} \|b P_n y\| \right) \\ &= \sup_{n \in \mathbb{N}, P_n r(b) \neq 0} \left(\sup_{\xi \in P_n \mathscr{H}, \|\xi\| = 1} \frac{\|P_n Lr(b) b\xi\|}{\|P_n r(b) b\xi\|} \inf_{\|y\| = 1} \|P_n r(b) by\| \right) \\ &\leqslant \sup_{n \in \mathbb{N}, P_n r(b) \neq 0} \left(\sup_{\|\xi\| = 1} \|P_n Lb\xi\| \right) \leqslant \|Lb\| < \infty \,. \end{split}$$

Now we have the estimation $||RL|| \le \sup_{n \in \mathbb{N}} \sup_{s \in \mathcal{B}} ||\tilde{L}P_n s|| < K_L$, hence $R \in \mathcal{R}^{++}$. By Condition (III) we can find $b \in \mathcal{R}$ such that $R^2 \le Cb^2$. Thus $\mathcal{B} \subset R\mathcal{H} \subset b\mathcal{H}$. It follows that for each $s \in \mathcal{B}$

$$||s||_b^2 \leqslant C ||R^{-1}r(b)s||^2 \leqslant C \sum_{n=1,q_1\neq 0}^{\infty} \frac{1}{n^2 q_n^2} ||P_n s||^2 \leqslant C \frac{\pi^2}{6}.$$

In this way we have proved that \mathcal{B} is a bounded subset of $b\mathcal{H}$.

Assume now that $\mathscr{B} \subset \mathscr{S}_{\mathscr{R}}$ is a bounded subset of $b\mathscr{H}$, for some $b \in \mathscr{R}$. Let $L \in \mathscr{R}^{cc}$. Then

$$\sup_{s \in \mathcal{B}} ||Ls|| \leqslant \sup_{s \in \mathcal{B}} ||Lb|| \, ||s||_b < \infty. \quad \blacksquare$$

Thus we arrive at the following result.

(5.10) THEOREM. (i) Let the family \mathcal{R} fulfil Conditions (5.3) (I), (II). Then the space $\mathcal{S}_{\mathcal{R}}$ is bornological and barrelled.

(ii) Let the family \mathcal{R} fulfil Conditions (5.3) (I), (II) and (III). Then $\mathcal{S}_{\mathcal{R}}$ is complete and can be represented by $\bigcap_{L \in \mathcal{R}^{\mathsf{cc}}} \mathcal{D}(L)$ as a projective limit of Hilbert spaces $\mathcal{D}(L)$, i.e. the maximal domain of the operator $L \in \mathcal{R}^{\mathsf{cc}}$ endowed with the graph norm topology.

Now we can formulate the statement complementary to Proposition (5.6).

(5.11) Proposition. Let \mathcal{R} fulfil Conditions (5.3) (I), (II) and (III). Then a linear map $L\colon \mathscr{S}_{\mathcal{R}} \to \mathscr{S}_{\mathcal{R}}$ is continuous if and only if L is \mathcal{R} -bounded and for each $b \in \mathcal{R}$ there exists $b' \in \mathcal{R}$ such that $b'^{-1}Lb$ is bounded.

We omit the proof which is a consequence of Lemma (5.8) and Theorem (5.10).

6. An example. In this section we consider the particular case that the family \mathcal{R} is a collection of functions of operators, i.e.

$$\mathscr{R} = \{ \varphi(A) | \varphi \in \Phi \}.$$

Here Φ denotes a family of Borel functions which will be defined below and $A = (A_1, \ldots, A_n)$ denotes a finite tuple of self-adjoint unbounded mutually strongly commuting operators in the Hilbert space \mathcal{H} .

The definition of the family Φ which is given in [EK] is somewhat more general than the one we give here.

Besides the family Φ we introduce the families of functions Φ^{+} and Φ^{++} :

(6.1) $\Phi^{\dagger} = \{f \mid f \text{ is a Borel function on } \mathbb{R}^n, \forall_{\varphi \in \Phi}:$

$$\sup_{\lambda \in \mathbb{R}^n} |f(\lambda) \varphi(\lambda)| < \infty\},$$

(6.2) $\Phi^{++} = \{\psi \mid \psi \text{ is a Borel function on } \mathbb{R}^n, \forall_{f \in \Phi}^+ :$

$$\sup_{\lambda \in \mathbf{R}^n} |f(\lambda)\psi(\lambda)| < \infty \}.$$

- (6.3) Remark. Observe that $(\Phi^{\dagger})^{\dagger} = \Phi^{\dagger \dagger}$ and $\Phi \subset \Phi^{\dagger \dagger}$.
- On Φ we impose the following conditions:
- (AI) Φ is directed by the usual order of real functions.
- (AII) $\forall_{\varphi \in \Phi}$: $0 \le \varphi \le 1$ and the function $\lambda \mapsto \varphi(\lambda)^{-1} \chi_{\varphi}(\lambda)$ is bounded on bounded Borel sets, where $\varphi = \{\lambda \in \mathbb{R}^n | \varphi(\lambda) \neq 0\}$.
- (AIII) $\forall_{\varphi_1 \in \Phi} \exists_{\varphi_2 \in \Phi} : \varphi_1^{1/2} \leqslant \varphi_2.$
- (AIV) $\forall_{\alpha_1 \in \Phi} \ \forall_{\delta \in \mathbb{R}^n} \ \exists_{\alpha_2 \in \Phi} \ \exists_{C > 0} : \ \varphi_1(\lambda + \delta) \leqslant C\varphi_2(\lambda) \ \forall_{\lambda \in \mathbb{R}^n}.$
- (AV) $\forall_{\varphi_1 \in \Phi} \exists_{\varphi_2 \in \Phi} \exists_{C > 0}$: $(1 + |\lambda|^2) \varphi_1(\lambda) < C\varphi_2(\mu)$ if $\lambda, \mu \in Q_m$ where for each $m \in \mathbb{Z}^n$

$$Q_m = \{(\xi_1, \ldots, \xi_n) \in \mathbb{R}^n | m_i - 1 \leq \xi_i < m_i, j = 1, \ldots, n\}.$$

- (AVI) $\forall_{\psi \in \Phi^{\dagger +}} \exists_{\varphi \in \Phi} \exists_{C > 0} \forall_{\lambda \in \mathbb{R}^n}$: $|\psi(\lambda)| < C\varphi(\lambda)$ (symmetry condition).
- (AVII) In Φ there exists a countable separating subset $\hat{\Phi}$ which has the property

$$\forall_{\varphi \in \Phi} \exists_{\hat{\varphi} \in \hat{\Phi}} \exists_{C > 0} : \varphi \leqslant C\hat{\varphi}.$$

The real algebra of real-valued bounded Borel functions $\mathscr{B}_r(R^n)$ is the smallest Banach algebra which contains the B*-algebra generated by the family Φ , and which is closed under the operation of taking limits of uniformly bounded monotone sequences of its elements. Then $\mathscr{B}(R^n) = \mathscr{B}_r(R^n) + i\mathscr{B}_r(R^n)$ is a Borel *-algebra of bounded complex-valued Borel functions on R^n (cf. [Pe], 4.5).

(6.4) Proposition. $\mathcal{B}(R^n)$ contains all complex-valued bounded Borel functions on R^n .

Now we consider algebras of operators associated with the family Φ . We start with

$$\mathcal{R} = \Phi(A) := \{ \varphi(A) | \varphi \in \Phi \}, \quad A = (A_1, \dots, A_n).$$

Then \mathcal{R} is a generating family of operators in the sense of Definition (1.1). Moreover, \mathcal{R} satisfies Conditions (5.3) (I), (II) and (III). The family of projections $\{P_n\}_{n\in\mathbb{N}}$ (cf. (5.3)) can be constructed as follows. Let E denote the joint spectral measure for the commuting system of operators A_1, \ldots, A_n . Let Q_m denote the cube as in (AV). Then we put $P_n := E(Q_n)$.

(6.5) Theorem. The GB*-algebra \mathcal{R}^{cc} as defined in Section 3 is equal to the set of operators

$$\Phi^{\dagger}(A) := \{ f(A) | f \in \Phi^{\dagger} \}, \quad \text{where } A = (A_1, ..., A_n).$$

(6.6) Theorem. The inductive limit topology in the space $\mathscr{S}_{\Phi(A)}$ is generated by the family of seminorms

$$\mathscr{S}_{\Phi(A)} \ni s \mapsto ||f(A)s||_{\mathscr{H}}, \quad \text{where } f \in \Phi^{\dagger}.$$

A number of concrete examples of spaces of type $\mathscr{S}_{\sigma(A)}$ is included in our paper [EGK].

References

- [All] G. R. Allan, A spectral theory for locally convex algebras, Proc. London Math. Soc. (3) 15 (1965), 399-421.
- [Al2] -, On a class of locally convex algebras, ibid. 17 (1967), 91-114.
- [Ar] W. Arveson, An Invitation to C*-Algebras, Springer, New York-Heidelberg-Berlin 1976.
- [EGK] S. J. L. van Eijndhoven, J. de Graaf and P. Kruszyński, Dual systems of inductive-projective limits of Hilbert spaces originating from self-adjoint operators, Nederl. Akad. Wetensch. Proc. (1985), to appear.
- [EK] S. J. L. van Eijndhoven and P. Kruszyński, On Gelfand triples originating from algebras of unbounded operators, EUT Report 84-WSK-02, Eindhoven University of Technology, 1984.
- [Ep] G. Epifanio and C. Trapani, V*-algebras: A particular class of unbounded operator algebras, J. Math. Phys. 25 (9) (1984), 2633-2637.
- [Pe] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, Academic Press, London-New York-San Francisco 1979.
- [Pij] H. G. J. Pijls, Locally convex algebras in spectral theory and eigenfunction expansions, Thesis, Mathematical Centre, Amsterdam 1975.
- [Sa] Sh. Sakai, C*-Algebras and W*-Algebras, Springer, Berlin-Heidelberg-New York 1971.

DEPARTMENT OF MATHEMATICS AND COMPUTING SCIENCE EINDHOVEN UNIVERSITY OF TECHNOLOGY PO Box 513, 5600 MB Eindhoven, The Netherlands

Received April 29, 1985

(2052)