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GB*-Algebras associated with
inductive limits of Hilbert spaces

by

S.J. L. van EYUNDHOVEN and P. KRUSZYNSKI* (Eindhoven)

Abstract. For a given generating family % of self-adjoint bounded operators in a Hilbert
space # an inductive limit %4 < # of Hilbert spaces is comstructed. ¥4 is the maximal
common dense domain for the unbounded operator algebras #° and %°°. Both #° and #°° are
GB*-algebras. #° can be regarded as a strong commutant of .

Conditions on # are given such that the inductive limit topology for %y is generated by
the seminorms s+»||Lsl|, Le #°, s& ¥4. A rather general example is included which has been
described at length in [EK] and [EGK].

Introduction. Let & denote a directed set of bounded nonnegative Borel
functions on R, and let 4 denote a self-adjoint operator in a separable
Hilbert space J#. With each ¢e® we associate the Hilbert space ¢(4)#
with inner product (-,*), ={@(4)~!", p(A)™").

In [EK] we have studied the inductive limit of Hilbert spaces ¥,
U ¢@(4) #. We have given general conditions on ¢ such that the induc-

tlve hmlt topology for a4 can be described by the seminorms s+ {|f(4) ||,
s€ Poqay, Where fe &*. Here &% denotes a family of Borel functions which is
compatible with @ in a well-defined way.

Further, we have discussed a representation 7 4, of the strong dual of
FPau- The topological properties of the spaces in the Gelfand triple
Pty © # = T g4 are completely determined by the set @ and the operator
A. We mention that Pg ) and T 44, are both inductive and projective limits
of Hilbert spaces if @ satisfies the so-called symmetry condition. (Cf. [EK],
§1-2)

In our paper [EGK] the above-mentioned concepts have been general-
ized. Thus we developed [EK] in two directions:

— Instead of one self-adjoint operator 4 we consider an n-tuple of strongly
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commuting self-adjoint operators, and consequently a directed set of
Borel functions on R".

— No boundedness condition is imposed on the elements of @. So in general
FLaay, H and T 4,4 do not establish a Gelfand triple.

We note that the symmetry condition implies that Loty = T o*4) and
that .7‘@(44) = y¢$(_4).

The paper [EGK] contains a further elaboration and refinement of the
topological topics of [EK]. The second part of [EK] has been devoted to
some algebraic topics. The set of operators & (4) = {f (4)| fe &) admits a
GB*-algebra structure. Moreover, under certain conditions on &, the algebra
@*(A) is identical with the so-called strong bicommutant of ®(4) in
ZL(Foa)-

The present paper is almost entirely devoted to a further elaboration of
these algebraic features. However, the last sections contain some topological
considerations. The starting point is a directed family # of commuting
positive bounded operators on #. On & we impose very mild conditions.
The family # generates the space ¥y = | a#. In £(%,) we consider the

aeR
strong commutant #° and strong bicommutant #°¢ of #. Both #° and #°

are GB*-algebras.

Our construction of the commutative GB*-algebra #°° of unbounded
linear. operators presents a very natural extension of the usual construction
of the von Neumann algebra #* () of bounded operators generated by A.
In this respect we refer to [Pij] and [Epl, where also constructions of
unbounded operator commutants can be found.

This paper is organized as follows.

The preliminaries contain the basic theory on GB*-algebras as introdu-
ced by G.R. Allan [Al 1-2]. In Section 1 we introduce the concept of
generating family of operators and in Section 2 the concept of #-bounded
operators. Section 3 is devoted to the construction of the #-commutant #°
and the Z2-bicommutant #°. We prove that #° and #° are GB*-algebras.
In Section 4 we study a functional calculus for the commutative GB*-algebra
R*. We prove a global extension of the Gelfand~Naimark theorem for #°°.
Further we discuss relations between #™*(#) and #°°. Section 5 contains
some topological considerations with respect to the inductive limit Sy At
the end of this paper we summarize some results on the space .Y g4

0. Preliminaries. Here we give a short survey of Allan’s theory on GB*-
algebras [Al 1-2]. Let .« be a locally convex topological x-algebra over the
field of complex numbers. This means that the separate multiplication p—» pgq
(g fixed) and the involution psp* are continuous operations in /. An
element pe o is said to be bounded if there exists AeC\{0} such that the set
{(4p)"| ne N} is bounded in /. The set of bounded elements of o is denoted
by . )
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Let B denote the family of all bounded, absolutely convex, closed
subsets # of .o/ with the properties

0.1) #? c B,
0.2) BT =B

{0.3) DeFmNTION. A locally convex topological *-algebra «f with identity
1 is called a GB*-algebra if the following conditions are satisfied:

(i) o is sequentially complete.

(ii) o is symmetric, i.. for each pe ./ the element 1+ p* p is invertible
in &/ with bounded inverse.

(iii) The family B defined by (0.1) and (0.2) has a maximal element By
with respect to set inclusion.

Let .o be a GB*-algebra. Then the x-algebra

A (Bo) = 1Ab| be By, Ae C}

is a B*-algebra with respect. to the Minkowski norm induced by %,.

(0.4) Prorosition ([Al2], Proposition 2.9). (i) If 4 = is a closed
x-subalgebra of of with 1e% then % is also a GB*-algebra. The maximal
element of the family

B, = {# = %| B bounded, absolutely convex, closed, #* < # and
Bt = B)
is the set B, = BoN%.

(ii) If of is commutative, then of 4 = o (B).

Let o/ be a commutative GB*-algebra, and let A denote the spectrum of
the commutative B*-algebra /,. Then A is a compact topological space. -
The Gelfand transform on s, is an isometric *-isomorphism from .7, onto
the B*-algebra of continuous complex-valued functions % (A) with the usual
Banach norm. Allan has proved a “nonbounded” extension of the Gelfand—
Naimark theorem. :

(0.5) ProrositioN ([Al2], Proposition 3.1). Let .o/ be a commutative GB*-
algebra, and let A be the spectrum of <. Then corresponding to each ye A
there is an extended complex-valued function y*: o — C*(= Cu{x)) such
that

(i) x° is an extension of y.

(ii) For each pe s and teC

x°(Ep) = Ex*(p)

with the convention 0-co = 0.
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(iii) For each py, p,esof
X (PO +1°(p2) = x°(p1+P2)

provided that x*(p,) and x°(p,) are not both co.
(iv) For each p;, pe st

1°(P1 P2} = X°(P1) x°(P2)

provided that (3*(py), x°(p2)) # (c0, 0) or (0, o).

(v) For each pe.of

21(0%) = x°(p)
with the convention oo = 0.

(vi) The set N, = {yeA| x*(p) = w0} is a nowhere dense closed subset of
o

(0.6) DeFINITION. A collection & of C*-valued continuous functions on a
topological space I is called a x-algebra of functions if each f € # takes the
value co on at most a nowhere dense subset of I

For any f,ge# and o, feC, the functions af+fg, f+g and f* = f are
pointwise well defined on the dense subset of I' on which f and g are finite.
We assume that each of the functions of+fg, f-g and f* has a unique
continuous extension to a C*-valued continuous function which also belongs
to #.

(0.7) Tueorem ([Al2], Theorem 3.9). Let o/ be a commutative GB*-
algebra, and let A be the spectrum of . Define the mapping " on oA prp,
pesd, by p(x) = x*(p), xeA. Then ~ is a x-isomorphism of o onto a *-
subalgebra o of continuous C*-valued functions on A. The mapping

extends the usual Gelfand transform of the commutative B*-algebra o, i.e.
Ay =%(A) = A

1. Generating families of self-adjoint operators. Let # denote a family of
mutually commuting bounded positive operators on a separable Hilbert
space . Then the commutative von Neumann algebra % * (%) generated by
# and the identity on # equals the usual bicommutant #" = & (). In the
following sections we describe a way to extend %*(#) to a GB*-algebra of
unbounded strongly commuting linear operators. It is clear that there is no
unique extension. However, our approach seems very natural. We use the
family 2 to construct an inductive limit of Hilbert spaces Sp < H#. First, we
define the notion of generating family.

(L.1) DeFiNrrioN. Let 2 be a family of bounded self-adjoint operators on
. The family 2 is called a generating family if it fulfils the following
conditions:

iom
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() Voer: 0<axl
(i) Vopea: ab =ba (commutativity),
(1)) Vopew Jeear (@ <) A(b<c) (directedness),
(iV) Vaesr Jpea: a¥2<b (sub-semigroup property).
Remark. Because of Condition (1.1.i), Condition (1.1.iv) is equivalent

(positivity and boundedness),

to

Vier Joen: a< b2

Let ae 2. We denote its support by r(a) according to [Sa], Definition
(1.10.3). Observe that a [, is injective.

(1.2) Lemma. Let ae R. Then there exists be # such that b~ ar (b) Teror
is bounded.

Proof. Take b as indicated in (1.1.iv), Then

b= ab™ #(b) l,uw < r(b) Trmor- ®

For each ae # we put a#’ = {ax| xe#). If we define in a# the inner
product

(ax, ay), = (r(a)x, r(a)y)

with (-, ) the inner product of .#, then a# becomes a Hilbert space.
Observe that- the canonical embedding a# <, J is continuous. F urther, the
linear mapping a: r(a) # — aX is a bijective isometry.
. (1.3) DerintioN. By &5 we denote the inductive limit generated by the
Hilbert spaces a#, ac#, ie.
L= at
agR

with the inductive limit topology.

Remark. %, is in general a nonstrict inductive limit.

(1.4) LEmMA. Py = bUab(y’_,?).

Proof. It is clear that |} b(%,) = ¥;.
he A

Let se . Then s = ax for some ge # and xe #. From Lemma (1.2) it
follows that the operator b~'ab~!r(b) is densely defined and bounded on
r(b) #. Hence s = b5 where §=b{b"tab~'r(b)lr(b)xc L4 n

In this section we do not discuss the topological structure of .#,. Only
Section 5 contains some results of this type. We shall show that %, is both
an inductive limit and a projective limit of Hilbert spaces under certain
conditions on 4.

2. #-bounded operators. We introduce the notion of #-bounded opera-
tor. The generating family £ can be seen as a set of smoothing operators for
the #-bounded operators. Here is the definition.
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(2.1) DerFiniTION. Let L be a densely defined linear operator in ' with
?(L) > %4. Then L is called #-bounded if the operator La is bounded for

each ae .
The vector space of all #-bounded operators is denoted by R% ().

Remark. Each Le #% () can be seen as a continuous linear operator
from &, into . Also the converse is valid: each continuous linear mapping
from & into # is #-bounded. In the sequel A4 () will be regarded as
the set of all continuous linear mappings from %, into #.

On the vector space #4%(#) we define the seminorms p,, ae %,
(2.2 Pa(L)=|Lall, LeAB(A).

The family {p,| ae#} is complete, ie. L=0 iff p.(L)=0 for all aeA.
(2.3) LeMMa. The vector space A#(H') endowed with the locally convex
topology generated by the seminorms p,, ae #, is sequentially complete.
Proof. Let (L,),.n be a Cauchy sequence in #%(H#). Let ae #. Then
(L, @)nen is @ Cauchy sequence in & (#'). The completeness of % (#) yields
L,e £(#) such that ||L,a—L,[|— 0 as n— x. Now define the operator L
on %, by

Ls=L,x, s=uaxe.¥,.

Then the definition of L does not depend on the choice of a and x, because
for s =ax = by we have

L,x = lim L,ax = lim L,by = L, y.

Since La = L, for all ac 4, it follows that Le R%B(H#). u

Next, we introduce the notion of A-commutant.

(24) DeriNtTiON. Let ¥ « #%(#). Then we define %° RHB(H) as
follows:

L= {LeRB(H)| Vicy Vaeq: L' Le RA(K),

LL'e #4(#) and L'La = LL a}.

The set %° is called the #-commutant of Z.

In the remaining part of this paper we confine ourselves to #° and #*
= (#°°. They are called the #-commutant and #-bicommutant of A. Clearly,
#° and 2" are linear subspaces of #(.%). In the next section we show that
they admit the structure of a topological algebra.

3. The GB*-algebras %° and #°°. Let Le #° and let se S 4. By Lemma

(L4), s = b3 for some be # and 5e Fa. It follows that
Ls = Lb§ = bLsc &,.

icm
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So L maps %, into 4. Therefore, for each Ly, L,e%° the composed
operator L, L, is well defined on %, and maps %, into Ly

Remark. From Section 5 it follows that each Le#° gives rise to a
continuous linear mapping from %, into &,.

(3.1) Lemma. The vector spaces R° and R are subalgebras of RB(H)
which consist of linear mappings from ¥y into &,. Moreover, & is abelian
and R < R°.

Proof. Let L, L,e %", and let ac #. Take be # with a < b2 Then

LiLya=(L b)(Lyb)(b~ ab~1r(h)).
It follows that L, L, is #-bounded. Further, for all ay, a, e R

LiL,aja,=Lya;Lya;, =a,L,L,a,.

Hence L, L,e %"
Since # < #° it follows that #° < #°. A is abelian, because &
consists of mutually commuting operators. m

We mention the following useful alternative description:
R = {Le RB(H)| Vieq View, Las =aLs};
Fe= {L'EQZ(W'” VLe o ng,’/,”: L'Ls = LL's} .
We are going to introduce an involution in #° by taking the usual Hilbert
space adjoint L* of each Le#°.
(3.2) LEMMA. Let Le #°. Then &5 < Z(L¥), and L*c RRB(X).
Proof. Let se #4. Then for all ac # and xe #
(Ls, ax) = (Las, x) = (s, (La)* x)
where (La)* e % () because Lae.Z(H#). Thus we get
L*(ax) = (Lay*x, xeJ#.
From this relation the assertions follow. =
(3.3) DerintTioN. Let Le #°. Then we define LY by
Lt :=L* Loy

(34) LemMa. K,Le®* Then K*,L*e®° and (KL)*
=L K* L** =L
(i) Let Le #*. Then L* e #°.

Proof. (i) Let ae# and se %4. Then we have
L*as = L*as = (La)*s = aL* s.

It is clear that (KL)" = LY K™*, and that L** = L.

(i) Let
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(i) Let L, e % and s . Since #°° = #° and hence L{ € #° we have
LiLts=(LL})'s=(LiD*s=L"L;s. n '

An element Lof #° is hermitian if L* = L. We have the following nice
characterization of the hermitian elements of #°

(3.5) LemMmA. Ler LeA°. Then L is hermitian iff L is essentially self-
adjoint as a linear operator in # with P (L) = L.

Proof. <= If Lis essentially self-adjoint, then L is symmetric on %,.
Hence L=L*},, =L"

= Assume L = L*. Let xe @(L¥) with L*x = +ix. Let ac %. Then we
have

(ax, Lax) = (L* x, a®x) = +i|lax||*

It follows that ax =0 for all ae# and so x=0. m

On #° and #° we impose the locally convex topology generated by the
seminorms p,, ae #, as introduced in (2.2).

(3.6) LEmma. (i) Multiplication is jointly continuous in &°.
(iiy The involution Li—L" is continuous on %°.
Proof. (i) Let ac#. Then there is be # such that a < b2 So for all
L, L,e #° we have
Pa(Ly L) =||Ly Ly af) S |[Ly Ly b2 < piu(Ly) o (Ly).

(ii) For each ae# and Le#° we have |(La)¥|| =||Lal| = ||L* al|. w

(3.7) Lemma. The algebra #° is a closed subspace of RB(H), and the
algebra R is closed in' %"

Proof. The linear mappings 4,: #B(#)— RB(H), ac &, defined by
4,(L) = al—La, Le B (#), are continuous. Since #° = () Ker(4,), #° is

acR
closed in 2% (). Similarly,
A= (\ Ker(Dy)

LeR®

where Dy: #°~ #° denotes the continuous mapping
Dy (K)=KL—-LK, Ke#%#° m

(3.8) CoroLLARY. #° and A are sequentially complete.

Proof. Cf. Lemma (2.3) and Lemma (3.7). w

Next, we consider the set 2§ of bounded elements of %° (cf. Prelimina-
ries). Since #2° is not commutative, £ is not even a linear subspace of #¢
However, the bounded normal elements of #° admit a useful characteriza-
tion.

(3.9) Lemma. Let Le #° be normal, i.e. L™ L= LL*. Then Lis a bounded
glement of R° iff Lis bounded as an operator in .
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Proof. < Suppose Le Z(#). Put A= |[L]|"%. Then for each ac &
AL al| < |||
and hence Lz, e 5.

= We have ||Ls||* <||L* Ls|| for all s &, with ||s|| = 1. Since L is
normal, L* Le 5. So we may assume that L* = L.

Let xe # and let ae #, with |jax|| = 1. Put s = ax. Then we compute as
follows:

ILsI? < L2 sl < ... <UL 7" < AL el ™" (/2 112 7",
where we take A > 0 such that for all ac#
sup(I(AL)*"al}) < co.
neN

Thus we obtain ||Ls|| < 1/4, for all se #4 with ||s]| =1. =
Now we come to the main theorem of this section.

(3.10) THEOREM. Let & be a generating family of bounded operators on #.
Then the R-commutant R° and the R-bicommutant R°° are GB*-algebras.

Proof. We have already shown that #° is a sequentially complete
locally convex topological *-algebra, and that £#°° is a closed *-subalgebra of
A°. So it remains to be proved that #° is symmetric and that the family B of
bounded, absolutely convex, closed, idempotent and symmetric subsets of #°
has a maximal element with respect to set inclusion.

Symmetry. Let Le #° and put Q = I+ L* L. Since L* L is hermitian, it is
essentially self-adjoint as an operator in J#. So Q7! is well defined and
belongs to L(#). By Lemma (3.9) we get Q™' [ 5, %5.

Maximal element. The family B is defined by

B = {# < #°| # is bounded, absolutely convex and closed, %% < #
and 2% = 3}.

Put By = {Le #°| V,eq: ||Ldl| < 1}. We shall prove that %, is the maximal
element of B.

It is clear that &, is bounded, absolutely convex and closed. Further, let
Ly, L,e#, and let acA. Then for be # with a < b* we get

1Ly Ly all < ||Ly B IIL; bIl < 1.
Hence %2 = #B,. Moreover for all Le %, and ae #

IL* af) = ||Lall < 1

and therefore By = %,.
Now suppose #, were not maximal in B. It would mean that there
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exists ZeB and Le B\AB,, ie. ||La]| > 1 for some ae A. Since also L* Le#
we get

IL* Lal > ||IL* La?| = |[La]* > 1.
The sequence ((L* L)*"),.y is not bounded because
Pa((L L") = I(L* L)*"al| > |IL* La|l*"Too0.

However, this sequence is contained in %, which yields a contradiction.
Hence %, is maximal. m

Any von Neumann algebra of bounded linear operators on a separable
Hilbert space is a C*-algebra which is monotonously sequentially closed (cf.
[Pe], [Sal). Here we get a similar result for the commutative GB*-algebra
P

(3.11) ProrosrTION. (i) Let (L,),s be an increasing net of positive operators
in. R°° with the property that the net (L, a),.; is bounded in % (#) for each
ae A. Then there exists Le #°° such that (L, a) tends strongly to La in & ()
for each acR. i

(i) Let the family # have the additional property that there exists a

sequence (a)ney in # such that \/ r(a,) =1. Then for each Le #°, L >0,
neN
there exists u sequence (Ly)y.y in 2§ which is monotonously increasing, and

Jor which the sequence (Ly a)ycy tends strongly to La in % (H#) for each ae R.
Proof. (i) Let L,e # (o) be the strong limit of the net (L, a),.;. Then
L,e 425" Define L on &4 by

Ls=1,%

where 5, §€ ¥4 and be # with s = b§. In a standard way it can be shown
that L is well defined, and satisfies

Lll'a=L,L'=L'L,=LLa, aec®, LeX"
Hence Le %%,

(ii) Let Le#*, and let (a,),.y be a sequence in % with V@) =1
neN

Then we have
Vven Joyen Vosn: by=a, and
Moreover, r(by) > y r(a,) and
N

ns

by = by-y.

By " —r(by) strongly as m— x.

So the sequer;c_eN(bﬁ‘ N)Ne,v tends strongly and monotonously to 1 as N — oc.
Put Ly=Lb? " NeN. Then Lye®§ and Ly> 0, NeN. Further,

Lya=Laby "= La strongly as N— . m

icm
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4. Functional calculus. Let us consider the bounded part of #°. By
Lemma (3.9), 5 consists of bounded operators. Moreover, it follows that
o is an abelian C*-algebra of operators in #, where the norm is the usual
operator norm in % (#°). Let A be the spectrum of the C*-algebra #5°. Then
76" is isometrically *-isomorphic to the C*-algebra of continuous functions
on A, ie. #° =% (A) Since 1e #5 the topological space A is compact.
~ Let the map #5°3a—de%(A) be the Gelfand transform. As we mentio-
ned before (Theorem (0.7)) Allan’s theory of GB*-algebras introduces a
generalized version of the Gelfand-Naimark theorem. Namely, the extended
Gelfand mapping is a homeomorphism into a set of C*-valued functions.
Here we characterize a x-algebra of C*-valued functions such that #°¢ is
(globally) *-isomorphic to this function *-algebra.

(4.1) TueoreM. The GB*-algebra R°° is x~isomorphic to the x-algebra of

functions on the spectrum A of R defined by

RE (A):= {f e 6*(A)] Voea: iuglﬁ(l)f(i)l—’oo},

where %*(A) is the x-algebra of continuous C*-valued functions on A (cf.
Definition (0.6)) and a—a is the Gelfand transform from R onto % (A).
Proof. Let Le #°. Then for each ae % the operator L,:= La belongs
to %" < L (). There exists a number ¢, > O such that L¥ La = (L*a) La
= L* La* < c?-1,. So we have ||La|| = sup|L,(4)| < ¢,. Following the result
Zed

of Allan (cf. Theorem (0.7)) we can represent any element L of the abelian
GB*-algebra #°° by a C*-valued function L on A. The mapping L L is the
extended Gelfand transform introduced by Theorem (0.7). It has the property
that (L-a)" (}) = L(4)-@(4), AeA. Hence Le#* (A).

Let fe &% (A). Then for all ae 4, f,: 2+ f(4)a@(4) belongs to % (4). For
each ae #, let L, denote the element of #§° corresponding to f,. Then for all
a, bedR, L,,=L,b=>bL, We define L. on &, by

Lw=1L,x .
where w = axe .¥',. Then Lis well defined because for w = ax = by we have
L,x=b""Lyaa 'by=b""! L.y=1Lyy

ie. Lw = Lax = Lby.

Now let L'e#°, se ¥,. By Lemma (1.4) we have s = b?x for some
be#, xeH#. Then LL's=LbL bx. By the construction we have L,
= Lhe A% and hence LbL'bx = L' Lb*x = L'Ls. Hence Le #°°. To see that
L is unique, use the bijectivity of the usual Gelfand transform on % =

(4.2) Remark. The C*-algebra R¥’ is the von Neumann algebra genera-
ted by the family R and the identity, ie. AE = R".

Proof. Let Le#° and L'e #' < &#. Then for any se ¥4 we have s
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=axand I' Ls = I Lax = LaL' x = LL' ax = LL s since Lae #§ < #'. Hence
Le®*°n £ (H#) and by Lemma (3.9), L'e #5°. So #' = #y°. On the other
hand we have & = ¥ (), because all elements of #°° are normal. Since
X < #°, we have for each LeZ&§ L' eR,5e Sy LL's =L'Ls, and, by
continuity, LL' = L'L on ##. Hence #5° < R". -

5. Topological considerations for %,. In this section we continue the
topological investigations of the space &, as mentioned in Section 1.

At first we characterize the topology of a general inductive limit %, of a
family of lec. topological vector spaces {X,},.;, recalling the classical result.

(5.1) LemMa. Let &, be an inductive limit of a family {X,}.e; of lc.
topological vector spaces. Let n,: X, — & be the canonical embedding. Then
a set 0 < &y is open in & if for each ael the set n;*(0) is open in X,.

Now we introduce a family of seminorms on &, that under additional
assumptions imposed on £ gives rise to a topology equivalent to the
inductive limit topology 7,4 in %,. The family of seminorms is defined by

(5.2 Fa2s5||Lsl, where Le Z°.

It is obvious that these seminorms are continuous with respect to the
topology 7,4 in #y in virtue of the general theory of inductive limit spaces.
In particular it follows that the embedding %, < # is continuous and hence
that the space % is Hausdorff.

Let us denote by 7 the lc. topology generated on %, by the seminorms
(5.2). From the continuity of the seminorms (5.2) it follows that Tind > Toe

Let us consider the following condition that may be imposed on a
generating family of operators #:

(5.3) Conpitions. There exists in %™ (#) a sequence of mutually ortho-
o

gonal projections {P,},.y such that ) P,=1, and

n=1
@ Voen aaeﬂ.3C1>0: P <Cia
(II) Vne.ﬂ ahezﬁ 3C2>0 VnsN: n ”aP ” C'2 1nf Ithy”'

We have the following result:

(5.4) TreOREM. Let % be a generating family of operators in # which has
the properties (5.3). Then the inductive limit topology t,,, on %, is equivalent
to the lc. topology v, (cf. (5.2)).

The proof of this theorem is based on the following crucial lemma:

(55) Lemma. Let O be a convex set in &, with the property that O ~a¥
contains an open neighbourhood of 0 in the Hilbert space ai¥ for each ae .
Suppose that the conditions (1), (II) of (5.3) are Sulfilled. Then there exists
Le % such that V= {se %yl ||Ls| <1) < O.
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Proof. For each neN, put
rn=sup{eeR*| P,K(0, ¢) = 0},

where K (0, g) = {xe #| ||x|| < ¢}. Because of Condition (I) and Lemma (5.1)
the numbers r, are well defined and nonzero. Let us define the following
unbounded operator in #:

—22——P

n=1"Tn
We prove that L is well defined on the dense set &, and that it is %#-
bounded (cf. Definition (2.1)), So let us take ae # and choose be £ such that
(5.311) holds. Notice that there exists ¢>0 such that {uebs#| [lull,
<e} = ONnbA#. It is easy to see that for each neN

r,ze inf ||bP,y|l.

pll=1
Then we have

C, & 1
" pa<222 P,
La= Z,ZH a<2 X i a e
Gy

ZP—2

Hence ||La|| < oo for each ae# and L is densely defined since ¥, <= Z(L).

Since P,e # *(AR), Le % (cf. Proposition (3.11)). We will show that

V= {ue Lq| Ll <1} < 0.

Let ueV, with uca#, ac®. Then 2n*> P,ueO since ||2n*P, u|| <r, The
following decomposition holds for each NeN: .

N @ 1
——2n P, u+< ———)u
(*) v= nZ 2n 2 n=§+12n2 N

where

( o 1 -1 i P

uy = — U

N n=§+ 1 2"2> n=N+1

The first term in the above convex combination (*) belongs to O for every

NeN.
In virtue of (5.3.II) there exists be # such that

Voen: 7*[[Pyal < C, ‘iﬁlf 1P, byl
ffyll=1
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Hence we have for uy:

© 1 -2
R L

N+1 =
o0 1 o0

SAN*C, Y —=lIP.ulZ <4C; Y |IPullZ—0
n=N+1 1 n=N+1

as N— oo,

Since O nbs# contains an open neighbourhood of 0 in bs#¥ we have
uye 0 nbA# < O for sufficiently large Ne V. Since O is convex we have ue0,
ie. V= O. u

Now we discuss a characterization of continuous linear maps in %, in
algebraic terms (automatic continuity):

(5.6) ProPosSITION. Let L: %y~ Sy be a linear map which is #-bounded.
Assume that for each be R there exists b'e & such that Lb = b'L. Then L is a
continuous linear mapping from %4 into .

Proof. Obviously, it is sufficient to show that for any ae 4 the map
La: A — P4 is continuous. Let {x,},.n be a null sequence in . Then Lax,
= Lb*%, = b’ LbX,, where b, b'e#, a'’>< b, %, =b"?ax,. By Lemma (1.2),

X,—0in # as n— = so Lax,— 0 in b' X, hence in Zg, as n— 0.

In analogy to our notation used in [EK] we define:

5.7 REt:={Le W*(R)| Yyege: L'LeW* (#)}.
Consider the following condition:
(1) Veext+ Joew Jeso: R*R' CH2

If we impose Conditions (I), (II) and (III) on %, then %, is a projective limit
of Hilbert spaces. First, we prove the following result which states that
bounded subsets of the (nonstrict) inductive limit %, admit the same
characterization as if ., were a strict inductive limit of Hilbert spaces.
(5.8) Lemma. Let R be a generating family of operators fulfilling Condi-
tions (5.3) (), (1) and (II1). Then a set B <= %, is bounded if and only if there
exists be R such that # is a bounded subset of the Hilbert space b.¥.
Proof. Assume that # < &, is bounded. In virtue of Theorem (5.4) for
each Le#® there exists a constant K, > 0 such that sup|Ls|| < K.

s
Since P,e #°* for each ne N we have g,:=sup|/P,s| < 0. Put
sed

L

(5.9) R:= Y nq,P,.

n=1

We will show that Re®**t (cf. (5.7). Let Le®*. Then we prove that
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a0

L:= Y n|lP,Lj| P, belongs to #°. It is enough to show that I is %#-bounded
n=1

(cf. Proposition (3.11)). Let ac ®. Then taking b as indicated in (5.3) we have
| Lalj —SupllLaP..H “Sup"llP LP,all < SUP(HP LII mf Ile vil)

- ( wp  IPLr®b

neN,Pyri) 0 \geP,a,lizli=1 [|Por (D) BE]| 1
< sup sup. 1P, LbE||) < ||Lb|) < o0

neN,Pr(b) #0 || &| =

HP r(b) by{l)

Now we have the estimation ||RL)| < sup sup(|LP,s|| < Ky, hence Re #t*.
neN se®

By Condition (III) we can find be#® such that R2< Ch®. Thus
# < RH# < b#. 1t follows that for each se @

® 1 7[2
sl < CIR™*r(p)siP<C ¥ ;{q—zIIP..SHz<C?.

n=1,q,#0

In this way we have proved that # is a bounded subset of bo#.
Assume now that # — , is a bounded subset of b#, for some be A.
Let Le #°. Then

~sup ||Ls|| < sup||Lbll[isll, < oc. =
sed se®

Thus we arrive at the following result.

(5.10) TueoreM. (i) Let the family R fulfil Conditions (5.3) (I), (II). Then
the space ¥ is bornological and barrelled.

(ii) Let the family # fulfil Conditions (5.3) (Y), (1) and (IIT). Then %, is
complete and can be represented by () 2(L) as.a projective limit of Hilbert
spaces &(L), i.e. the maximal domainLts)jf;he operator Le A°° endowed with the
graph norm topology.

Now we can formulate the statement complementary to Proposition
(5.6).

(5.11) ProrosiTiON. Let 2 fulfil Conditions (5.3) (1), (1) and (I11). Then a
linear map L: F3— g is continuous if and only if L is R-bounded and for
each be R there exists b'e R such that b'~'Lb is bounded.

We omit the proof which is a conchuence of Lemma (5.8) and Theorem
(5.10).

6. An example. In this section we consider the particular case that the
family # is a collection of functions of operators, i.e.

= {p(4)| ped}.
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Here @ denotes a family of Borel functions which will be defined below and
A=(Ay, ..., A,) denotes a finite tuple of self-adjoint unbounded mutually

strongly commuting operators in the Hilbert space H. .
The definition of the family ® which is given in [EK] is somewhat more

general than the one we give here. N .
Besides the family & we introduce the families of functions ¢t and
ot

(6.1) @+t = {f| fis a Borel function on R, Y,.o!

sup |f (A (A) < 0},
ieR®

(62) @®** ={y| ¢ is a Borel function on R', Vyeot:
sup |f ()Y (A)] < co}.

icR"
(63) Remark. Observe that (#1) = ¢** and & = o*¥.
On & we impose the following conditions:
(Al) & is directed by the usual order of real functions.
(Al  V,.o: 0< @< 1 and the function A @A)~  x,(4) is bounded on
bounded Borel sets, where ¢ = {AeR"| ¢(4) # 0}.
(AIll) VY, 0 Jpyco: AR .
?1(A+8) < Cp2{d) Viep.

(AIV) V|p150 Vsew E Jcso
(AV) Ve pge0 Jeso! (11401 () <Cy (W) if 4, pe @y where
for each meZ”
Om={C1s 0, ENeR| m—1<E <my, j=1,...,n}.
(AVD)  Vyt+ Jpco eso Vaew: WA <Co(d) (symmetry condition).
(AVII) In & there exists a countable separating subset & which has the

property
Vweo 3(555 3C>0: @ S C(ﬁ

The real algebra of real-valued bounded Borel functions %,(R") is the
smallest Banach algebra which contains the B*-algebra generated by the
family &, and which is closed under the operation of taking limits of
uniformly bounded monotone sequences of its elements. Then #(R")
= A&, (R")+i#.(R") is a Borel x-algebra of bounded complex-valued Borel
functions on R" (cf. [Pe], 4.5).

(64) ProvrostTioN. #(R") contains all complex-valued bounded Borel
functions on R".

Now we consider algebras of operators associated with the family . We
start with '

icm
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R=P(A):={p(4)| pc®}, A=(4;,...,4,).
Then # is a generating family of operators in the sense of Definition (1.1).
Moreover, # satisfies Conditions (5.3) (I), (1I) and (III). The family of
projections {P,},.n (cf. (5.3)) can be constructed as follows. Let E denote the

joint spectral measure for the commuting system of operators A4, ..., 4,. Let
Q,, denote the cube as in (AV). Then we put P,:=E(Q,).

(6.5) TreoremM. The GB*-algebra #°° as defined in Section 3 is equal to
the set of operators

D*(A):={f(A) fedt}, cos Ap)-

(6.6) TreoreM. The inductive limit topology in the space Py is
generated by the family of seminorms

Foay25||f(A)s|l 4, where fed*.

A number of concrete examples of spaces of type Fg,, is included in
our paper [EGK].

where A = (4, .
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