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The space Weak H!

by
ROBERT FEFFERMAN (Chicago, Ill) and FERNANDO SORIA (Madrid)

Abstract. This article discusses the properties of some of the basic operators of harmonic
analysis in relation to a space of functions whose nontangential maximal function belongs to the
space Weak L' A :

Introduction. If we consider weak type inequalities on L!(R" for some of
the most important operators of harmonic analysis, we are led to a question
of their sharpness as is illustrated as follows:

For feL'(R') and for H the Hilbert transform of £, it is an extremely
well known result that

m{xeR'| [Hf (x)| > a} sg JIfx)dx for all & >0.
Rl

However, this result is not completely optimal, in the sense that in order for
Hf (x) to belong to the class Weak L', it is not necessary for f'to belong to
I'. For instance, f could be a measure, dy, and then

m{xeR' |Hu(x) > o} S% §dinl.
Rl

In order to obtain the best result, we are led to the following definition:

Suppose @(x) is a function in C®(R") with [@#0 and for ¢ >0, ¢ (x)

= 17" (x/t). Define the maximal function f* (x) = sup | f* ¢, (x)]. Then we say
t>0

that f belongs to “Weak H'" provided the function f¥* belongs to weak
L'R", ie, m{xeR"| f*(x)> a} € Cfa for all & > 0. The smallest C which
makes the preceding estimate valid is called the “Weak H' norm” (though it
does not satisfy the triangle inequality), | Sfllwgt. Of course, since
S*(x) S CMf(x) for all x, where M is .the Hardy-Littlewood maximal
function, and since M is of weak type 1-1, we have 1wt < ClIfllg1, so
that L' (and the space of complex measures) is continuously embedded as a
subspace of Weak H'. However, the I* functions are only a part of our
space, and the basic example to think about when considering Weak H*' is
the distribution 1/x on R*. For f(x) = 1/x a trivial computation shows that

f*(1) <o whereupon, by dilation invarianw%f* (x) = f*(1)/|x|
\ et o
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which is in Weak L'. So indeed 1/xeWeak H'. To get a little more insight
into things, we should point out that if a distribution f is nonnegative (i..,
when 7(x) > 0 is a Schwartz function then (f,7n> > 0) and belongs to
Weak H', then.f must be a finite measure. Let us give a sketch of a proof of
this fact as follows: .

First, as we shall discuss in more detail later, it is of no importance
which approximate identity ¢, we use in order to define the space Weak H'.
The class is independent of the choice of @. If we choose a Gaussian, then if
f=0is in Weak H?,

(S @) * @g(x) = [ (@ % @) (x) < f*(x),

so that, as t > 0 varies, the C™ positive functions f * ¢, are in Weak H! with
uniformly bounded norms. Since for positive functions g(x), g* > cM(g), we
see that M (f *@,) is uniformly in Weak I*. As is well known (sce Stein [8]),
by the Calderén—-Zygmund decomposition,

1

fxo, < Ca

or [ f=*o < C';taking the limit as & — 0 we get ||f *¢,/], < C’ for all
M(fupy) >0
t >' ({fxl)we)ak* compactness argument now shows that fis 4 finite measure.
Just as in the case of H!(R") we can characterize Weak H! in a number
of different ways (see C. Fefferman~E. Stein [3]). Thus, if S, (f) denotes the
area integral (with respect to a suitably nontrivial ¥ € C* with [¥ = 0) then
one can show that f e Weak H' if and only if S, (f)e Weak L. In addition we
may take the definition in terms of nontangential or grand maximal
functions, and not just radial ones. For a suitably nice function f(x) we also
have the singular integral characterization

Wt ~ s+ 3 18,

where R; denotes the jth Riesz transform, and where a ~ b means afb and
bja are bounded above by some constant independent of f.

Our results, after those mentioned above, split into two types. First, as
suggested earlier, we wish to show that for many of the operators of classical
Fourier analysis, the role of L' can just as well be played by Weak H',
Consider, for example, the Fourier transform. Of course the Fourier
transform f(&) of an I! function f(x) on R" is a bounded function.
Unfortunately, even though (1/x)(¢) = sgn (&) is bounded, in general no such
claim is valid for arbitrary Weak H' functions. Nevertheless, if we are a bit
more subtle, we may find a correct estimate. Recall Paley’s inequality for
Fourier series in one dimension:

(X 1702 < Colifllg g for 1<p<2.

n#+0
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For p =1, we have the substitute weak type estimate from which the
case for p >1 may be derived by interpolation (see Zygmund [10):

” C
) pineZ] (7@ > 5} < 1Sl 0,

where p is the measure on Z which assigns mass 1/n? to the point n# 0. In
fact in () we may replace ||f||1 by ||f llwgt. This follows from the correct
estimate on the Fourier transform of a Weak H! function which we now
describe. (We switch now. to the setting of R") We have, for a function in
Weak H'(R", if B(0;r) denotes the ball of radius r > 0 centered at 0,

1 o
"T(W):T))miﬂ exp(e|f OV fllwu1)dé < C.

Thus, although f(¢) may fail to be bounded, its averages over all balls
centered at the origin are bounded, and the exponential estimate is sharp, as
will be seen below.

If we consider convolution operators Tf =f =K of Calder6n-Zygmund
type, and ask for weak type inequalities then we consider estimates of the
form

() m (xR ITY G > 2} < |l

where classically, of course, (C/x)|/f]|,: appears on the right-hand side.
In order to obtain such estimates for singular integrals we assume that

T is bounded on IZ(R", and in addition we require the following Dini

condition on K which is a bit more than the usual Hérmander condition.
Suppose, for 0 <& <1, we set
I'(8) =sup |

B0 25— 12)n

K (x+h)— K (x)| dx.

t 16
Then if |I' (5)L—5— < =, the weak type inequality (x) above is valid.
0

Both the results above follow from a decomposition theorem which is
like the atomic decomposition of H! (R". Here, however, the “atoms™ of
Weak H' are sums of functions supported on cubes and having mean value
zero on these cubes, while the cubes themselves have bounded overlap.

In a different direction, we characterize the dual of the closed subspace
of Weak H' given by the closure in the Weak H' norm of LY, the class of I}

— —wi!
functions with integral zero. We shall denote this subspace by L}, = L}

To motivate this, observe that since 1/xeWeak H' and since Weak H! is
translation invariant, if ¢(x) belongs to the dual of Weak H!, then

dx

f o)
1

R r—Xx
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is a bounded function of t. Although we do not characterize the dual of
Weak H', it is natural from the previous argument to think of our dual space
in connection with “real H®", i.e, those bounded functions whose Hilbert
transform is bounded as well. Trivially (already in the early literature), it is
those continuous functions satisfying a Dini condition whose Hilbert
transform exists at each point and is bounded. So it is not surprising that we
can characterize the functions in the dual of L} in terms of a Dini condition.
We begin by defining the proper notion of “oscillation of a function over an
open set Q < R™. Now if we set, for § > 0.

w(d) = sup (oscillation of ¢ over Q)
m) =4

then
@e(Lh)* if and only if A[w(é)t—?— < .
0

It should be noted, finally, that the space Weak H' has appeared before
in the literature. The most notable example is the work of C. Fefferman, N.
Riviére, and Y. Sagher [2], where this space arises through the real method
of interpolation as an intermediate space. The results there on interpolation
are at the same time a precursor of atomic decompositions, such as ours, and
at the same time can be used to obtain some of our results here by
interpolating between H” for p < 1, and I2. More recently, Aleksandrov has
also studied some analytic and functional properties of H” spaces of weak
type, including Weak H'. For his work, we refer the reader to [1].

Throughout this paper, the letters C, ¢, C', ¢/, ... will often denote a
constant independent of the main parameters involved and whose value may
change from one place to another.

Also, we shall repeatedly use the expression “bounded overlap” when
dealing with a collection of subsets (generally cubes) of R”. This will simply
mean that there exists a prefixed universal constant C =C,eN, which
depends only on the dimension, so that every point in R* belongs to no more
than C, elements of that collection. We will sometimes write “bounded C,-
overlap” to specify the role of C,. As the reader will immediately see, the
arguments involved are independent of the exact value of this constant.

1. Definitions, notation, and some preliminaries. Given a bump function
¢ with e C®(R"), and [ @ 0, we can define, for a distribution f, the

. . . R
following maximal operators:

[P =f (= ilglf* @ (2

fE ) = fk (%) = su'p If*e.(0), «>0;
x—y| <at
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N
S == sup (fre0) (~’-—)
rnerLt! [x—yl+t

where N> n and ¢,(x) = 7" o (x/t).
We also define the grand maximal function of f as

Gf (x) =sup sup |f*y,(x),

e |x—y| <t

where

d=WeA [A+xh¥( ¥ [ (x)/exP)dx < 1}.
I lat <N

For 0<p< and 1< q< o the Hardy space H(p, q) is defined as the
collection of all tempered distributions f such that f* belongs to the Lorentz
class L(p, g). Due to the fundamental work of C. Fefferman_E. M. Stein [3],
we know that H? = H(p, p) can be characterized in terms of the other three
maximal operators, f*, f**, and Gf, though we must increase the integer N
as p decreases to 0. It is also known that the definition of H” is independent
of our choice of ¢.

In this article we shall consider the special case H (1, o0) which we shall
call “Weak H'. The “norm” will be denoted I'llwgt- In fact the same
characterizations via maximal functions are valid for Weak H!: According to
the work of C. Fefferman-Rividre-Sagher [2], the spaces H(p, ) occur as
intermediate spaces in the real method of interpolation between the H”
spaces. Combining this fact with the equivalence of the different maximal
function definitions of the H” spaces we conclude immediately that

1 e ~ 1 leom ~ 1 **leipay ~ 16 g

for all p and ¢.

It is interesting to notice that H (p, q) also arises as the class of
“boundary values” of functions u(x, t), harmonic in the upper half-space
R, satisfying u™ e L(p, q) or ufe L(p, g) or u** e L(p, q) where u™, u¥ and
u** are the so-called radial, nontangential, and tangential maximal functions
associated to u, respectively. That is,

ut(x) = fgglu(x, 0l

ug (x) = sup fu(y, 1)

fx=y| <ar

¢ N
u**(x) = su u(y, t (H .
( (y,t)snl')jr*ll . ) [x—y|+1
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This comes immediately from the fact that if /e H(p, q) then it is possible to
define its Poisson transform
u(x, 1) = f = P,(x),
where
P() = cy(L+Ixf) "2,

Moreover, by [3], we have the pointwise estimate u™ (x) < CG(f)(x) (see [3;

Th. 11]).

Conversely, if u(x, t) is harmonic and u™ (x)e L(p, g) then limu(x, t) = f
¢~0

exists in the sense of distributions and
mix|] u¥(x) > s} < Cam {x] uf(x)>s}.
Summarizing,
1 e ~ “u+“L(p,q) ~ ||“T||L(p,q) ~ ||”**HL(p.q)~

As an application of all of this, let us mention a result of Steven Hudson
which appears in [4]. This result is related to the most obvious of all
Sobolev embedding theorems, namely: If f has one derivative in L!(R*), then
f€L™(R'). What happens when we replace L® by BMO? Hudson's theorem
answers this. His result says that if feC®(R') and if

F(x) = _I S@dt, then ||Fllgyo < Cllfllwat-

The generalization to R" can be stated as follows:

TreoreM (Hudson). Let Q(x) be a function on R" which is homogeneous of

degree 0 and C*® away from the origin. Let f eCE(R"). Then
”Q*f”BMO(R") < C|flhwar-

Sketch of the proof Take | f|lyyt=1. Then to show
IIf *Qllzmo < C it is enough to show that for a(x) an H' atom on a cube Q
we have

[f(f+Qad <C.
R
But this is equivalent to

[ r@xa|<cC.
N

Qxa

191

A trivial computation shows that (x) = (x) is (if @ has sufficiently
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The space Weak H! 7

vanishing moments) a bump function satisfying all the necessary estimates so
that

|[f FO¥@d| <Gf(x) for all xeQ.
P

Then we have

G >|é—ll‘£f(9*a)|

Since G(f)eWeak I! we have

on Q.

clal

< TF@val

so that indeed |[f(Q+a) < C.

Finally, various equivalent definitions can be given in terms of
Littlewood-Paley functions. For example, if feWeak H!, then, by
interpolation, and by the fact that if g(x)e H? then S(g)(x)eLf (here

$*(g)(x) = [[ IFul*(y, )y* ~"drdy
NMx)
where u is the Poisson integral of g) we see that S(f)e Weak L!. Conversely,
if S(f)eWeak L! then according to [3],

! [ S*(w)(x)dx

m {u*(x) > B} < Cm {S(u)(x) > B} +—
ﬁ S(u) <p

and so f € Weak H'. (Here u is the Poisson integral of f, so that S(u) means
the same as S(f).)

2. The atomic decomposition. In this section we shall decompose a
distribution f belonging to Weak H* as a sum of functions in L®n L}
={yeL*nL'| [g =0} each with support in an open set of finite measure
whose measure does not exceed the reciprocal of its L* norm. We shall see in
the sections which follow that this decomposition has several interesting
applications. We also present a converse statement which will be needed in
connection with the characterization of the dual of the Weak H' closure of
Ly,

Before starting to discuss the decomposition, let us make some
observations and set some notation. To begin with, fixO < p, < 1. Then we
set H®+12 = !f| f a distribution which can be written as f = g+h where
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geH and hel?). Set ||f]] ro. .2 o be inf (llgll_,,+IIAll 2). Unfortunately,
HPO+L [eg+h o H 4

as the reader will clearly observe, the smooth functions are not dense in

Weak H!. This is why we introduce the norm in H"+ I2,

ProrosiTioN. Given feWeak H!, there exists a sequence of bounded
Sunctions {fi )2 with the following properties:

(@) f— Y. fi— 0 in the sense of distributions (in fact even in the norm of

<N

H 4 I3,
oo
(b) Each f, may be further decomposed as f,, = Y. By in L', where the B,
=1

satisfy:
(i) B is supported in a cube Qy with {Qy}; having bounded overlap for
each k.
(i) [ Bu=0
- ki
(i) Bl 0 < C2* and Y m(Qu) < C 27"

Moreover, C, is (up to multiplication by an absolute constant) less than the
Weak H' norm of f.

Comversely, if f is a distribution satisfying (a) and (b) (i)(iii), then
feWeak H' and ||fllwgt < cC, (where c is some absolute constant).

Proof. The proof that if feWeak H* then f can be decomposed as
above is a small perturbation of the argument in Latter [6] for H? functions.
For k an integer we set Q, = {G(f) > 2}, and let {Q%} be a Whitney
decomposition of £,. Following [6], we let @} be a bump function supported
in the double of Q% obtained by translation and dilation of a standard bump
function @. We let

1
m=—(fo
! M‘jf !

and write f =Y f, where
k

fo= 210 =mhot= 3 (7= ot

+ 2 LY =) gt —(f =) 1]

j=1 i=1

1 k okt 1

where mf;" ! = Wj‘f(pi o
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(This is line for line taken from Latter [6], p. 96.) As in [6],
BI<C2L A< CHt and  [yi=0= (B

for all k,j. This proves the decomposition once we observe that 124
= 0k(2+"1"). For the converse, we fix « >0, and choose ko so that M <a
<277 Write

ko—1 + oo

f= Y fit 2 h=F(+F,.

k=—wm  k=kg
Thus, if ¢ is a positive smooth bump function supported in the unit ball of
R and with {@ =1, we have for the corresponding maximal operator N

+

mif*>2}<m{F}>al.

Set
Ako = U U204
k=kgiZ1
where  2Q,; denotes the double of Q. Observe that

m(Ay) < C, 21270 < Ci/a and therefore we need only estimate I
=m(x¢ Ay F7(x)>a}. Now, an easy computation, using the cancellation
of B, shows that if x¢2Q,; then

(n+1)/n
B (x) < C2¢ ‘IinlkaiIH r
where x;; is the center of Q.

To finish the proof, we shall use the following simple result in measure
theory which was independently founded by Stein-Taibleson~Weiss [9] and
by Kalton [5].

. LEmMa. Let g, be a sequence of measurable functions and let 0 < p < 1.
Assume that m{|g,] > A} < C/A” with C independent of k and 1. Then, for every

numerical sequence {c.} in " we have

2—p C
f /‘L] < . P,
m lxl |%ckgkl > A s i—p A,,%lckl

Using this lemma with g, = I/x—xg"*!, p=n/n+1), and ¢,
=2m(Q,)"+ V" we obtain

1

. k-

Is("an/(n-l—l) Z ZZ D Q)
kZkg 1

v
’ Cl

~koy1/(n+ 1) C,
\C..&',,m(z ) < ¢ —.

n
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Hence, feWeak H' and ||f[lwy < ¢Cy.

3. Inequalities for the Fourier transform. As an illustration of how one
can apply the atomic decomposition in the previous section, we can obtain
the following results on the size of the Fourier transform of Weak H'
functions:

ProposiTION 1. Let B(0; R) denote the ball centered at the origin of radius
R. Let feC&(R"). Then we have the following a priori estimate:

1 7 . .
Q] %WE)—)B(OI;R)EXP(Cif(ﬁ)l/llfllwm)dc <C,
for some constants ¢ and C depending only on the dimension n.
By similar considerations, we have also the following:
ProvosiTioN 2. Let feC®(T") where T" denotes the n-torus. Then

= X explelf i) < €
im| <N

where C and ¢ depend only on n, and where m=(my, my, ..., m,), meZ.

The reader may compare these results with Theorems 1.4 and 1.5 in [1,
Chapter 4].

Proof of Proposition 1. We may assume || f|lw,t = | without loss
of generality. Also, notice that if feWeak H' and & >0 then
57" f(x/5)e Weak H* and has the same norm as f, and if f;(x) = 87" f(x/3),
then f3(%) = f(5¢). Therefore :

! ; 1 \ .
m(B(0; R) dé = —o RE))d
m(B0: R) B(O{R) exp(clf (€)l)d¢ w(B0: 1) b(éﬁ;l)exp(cu( o)) dé

1 . )
- Em Bu)[t)exp(clj}((é)l)dq'

So with no loss of generality, we may assume R =1 in ().
+ @ + oo

From the atomic decomposition we write f= 2 fi= > 3 Bu
LA k= -0

where the f,, B (and Q) have the properties stated above. Write
fO=% i and fP=3 L
kSO k>0

[ exp[i(/ V) (&)1dE we estimate as follows:
18l <1

N3 .
(#%) | j"lexP [el(fOf@nde < € (Hcm (ARSI dé+kZ -‘E,-H(./‘“’)“ Hk)-
& N z2 M

| < | <1

To treat
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By the Hausdorfi-Young inequality (™l < [f™e for k >2, where
1/k+1/k' = 1. Then

W < 3 Mflhe < T 29T =0(k)  as k- .
i<o j<o
Substituting this in (+%) we get

[ explel(fVy(&lde<C ( i —Cik") <o, if ¢ is small enough.

[HESS k=0k!

To handle [ exp(c|f())d¢ we write

e

DTN < T Y ] 1Bulalled=—e* ™| dx
k20 1 Qy
where x,; is the center of Q,;, and where we have used the cancellation
property of 8. This, in turn, is dominated by

4] Z Zdiam(Qki) j Bl < Z 27Hmg|
kz0 . Oki kZ0
from which obviously

l§|f<1 exp [c|[(F (&) +(F )N dE < C'ML exp [c|(f (& < C".

< <1

This concludes the proof of Proposition 1. and the proof of Proposition 2 is
similar.

We should also remark that the above proof is intimately connected
with the method of interpolation. In fact, if one likes, a proof of the
proposition can be given directly by interpolating.

Finally, one cannot improve the integrability of f for feWeak H*
beyond the exponential class. In fact, for a large integer N

N
_ —k gi
flo= k§o2 elxx(zk,z,,<|xl<2k+1.2,,)(35)

belongs to Weak H' and has norm bounded independent of N, by the atomic
decomposition. On the other hand, a trivial computation shows that for
[1—& < 27N |f (&) > ¢N so that the exponential estimate (x) is, indeed, sharp.

Next, let us point out that (x) gives an extension of Paley’s inequality for
functions in Weak H*. For simplicity, consider the case n = 1.

ProrosiTiON 3. Let T be the sequence-valued operator defined hy Tf (m)
= f(m)'m, meZ. Then T is a bounded operator from Weak H'(T") into
Weak L' (du) where p is the measure on Z so that p{n) =1/n? n# 0, that is,

1 C
— < = fllwniry

5 for all o >0.
m#0| | fim)| |m] >t T &
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If we have the larger norm ||f||.t replacing [[f]lwyt then this is a
classical inequality (see Zygmund [10]).
Proof. By homogeneity, we may assume again that ||f]ly,1 = 1. Now,

1m*< ¥ ym*+ ¥ .1/m2s§+ Y S m)e.
0

17tm)} >af|m] |m{ >a /| Fm)] <|m] <« <|m| <a

Using (*), this is
11 C’
<—+- 2L —.
S (Clf i <<

4. The dual space. Given a function ¢ on R" and an open set @ < R" of
finite measure, we shall define a notion of oscillation ¢/(¢p, Q) of ¢ over Q.
This oscillation will then be used to define a “modulus of continuity” of ¢ by

setting, for 6 > 0, w(6) = sup O(p, Q).
: (=4

More specifically, suppos; Q < R" is an open set of finite measure., We
shall now define the oscillation of a function o(x) over Q, C(p, Q), as
follows:

1
m(Q2)

) 1
Olp, Q) = sup %Q{Ico(X)—(pa,‘ldx (here ¢ =7n"@£f)’

where the sup is taken over all collections of subcubes of Q {Q,}, with
uniformly bounded C,-overlap (i.c., ngk < C,). As above, we set

0(0) = w,(8) = sup O(p, Q).
m( 3
We then have:

TueorEM. The dual of L—lo can be identified with the class of locally
integrable functions ¢ for which

(~) lolly = ?-@d& <w.
0

Remark. As in the case of BMO, the dual of}}; is a space of classes of
functions in which two functions belong to the same class if the difference is
constant.

Proof. Assume first that ¢ satisfies (~). Given f'eCZ with integral 0,
consider its atomic decomposition relative to Weak H L

+w

f= Z (Z ﬁk.-)-

k=—o (21
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Then
+ a0

[[Fre@dy] < ¥ _Qj‘lﬁkiH(P_(PQk,'ldx

k=-—ox i

<Clflms ¥ 2T [ lo—0g,ldx

=-w iZ1Q

+ o0

SClifllwer Y 07 < CNflhwat l@lly-
k=—om
For the converse, we notice that if L is in the dual of L_ID, EEen, since I}
= {fel [f =0} is by definition continuously embedded in {}0, L must be
given on i} by integration against some L® function ¢(x). We identify Lw¥th
¢ and we: consider, for every integer k, a sequence of cubes {Q};»; with
finite overlapping so that
Ym@Q) <27 and w27 ~2*Y [ |lo—@g,ldx.
I Opi
For every pair of indices (k, i) choose a constant ¢, such that
m{xeQul @(x)>cu}=mi{xeQul ¢(x) <cy}
and set by = 2“sgn(@—cy) 1, Then [ by =0 and ||byll, < 2 From our

o
+N M

results in Section 2, the series Y Y b, defines a sequence fy whose
k=—N'1
Wezak H! norms remain bounded as N — oo. Therefore,

LU = 1<fx> @) < ClI L),
On the other hand

+N
S 0d= 3 T [hu(x)o(dx

k=—Ni21

+N N
=Y Y [lo—cddxzc Y (2.

k=—N i>10 k=—N
Thus,
+ o C
2 o™ <=llol
k=—m c
and hence

llell. < C'ilLil,.

An interesting feature of the dual of L} is that, unlike BMO, this class forms
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an algebra under pointwise multiplication. For, if ¢ and ¥ e(LTO)*, we have,

for every cube O,

[lo (Y (x)—(p)gl dx < H(P(X)H!// (x)—oldx
2

+ (E |9 (x)~ @l Wol dx+IQl g ¢o — (Y )gl

< 2(llolle [ ()= ol dx+Ill (jz'\f/)(x)ffﬂal dx).
)

Therefore

lowlly < 2(l0llo ¥l +11¥llo el

We shall end this section by remarking, that if, instead of defining the
oscillation @ in terms of open sets, we define it in terms of cubes, ie.,

w, (8) = sup [le ()= @l dx

m(Q)<am(Q
then the Dini condition j(w* (3)/8)dd < co has been studied by Sarason [7].

5. Singular integrals.
TueoreM. Let Tf (x) =

Suppose K satisfies the following Dini condition: j'(l“(&)/é)dé < o0, where
- h)

[K(x=y)f(y)dy be a bounded operator on L*(R").
1

I'(6) = I'y(d) =sup )

b0 1x>5~ 1.2(n|

K (x+h)— K (x)| dx.
Then for feL'(R") we have

mix| [Tf (x)] >a} < —”waui for all « > 0.

+ o

Y fi=fbe an atomic decomposition of f. By a simple
k=—-o

limiting argument, it suffices to show that

Proof. Let

m || |T Z )| > «) ““f||wu1

Then by properties of the atomic decomposition,

M supp(f) == U ok

(i) 3 xgr<C and

izr !

(iil) f = 3 B
iz1

C
Z m(Qf) < E[Hf”wu"
i1

with supp ff = QF, (B! =0, and ||, < C2"

icm
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In particular, || £, < C? 2% Consider koeZ so that 270 <q < 27! and set

ko +N

S 4 oamd fi= Y fi

k==N k=kg+1
Then f!eI? and moreover
ko ko
I < Y P2m@) 1 < CIfIVE Y 292 < Clflly a2
k=N k=—N

Therefore, since T is bounded on I*(R"),

T
I ¢y, IR ¢ M,

mixeR" |Tf (%) >a} <
Now

T2l =] ¥ Tho|<C DY _kaK(X—y)*-K(X—x;‘)! dy,

k=kg+1 k=kg+1 i>10f

where x¥ is the center of Q.

Let 0% denote the “expansion” of the cube Q¥ by the factor (3 3kl
and let
= N -
= U Uo
k=kg+1i>1
Then by Fubini’s theorem,
N
[IT@dx<C Y, 2% [dy | [K(x—y)-K(x- xF) dx
G k=ko+1 i>1 of gt
N .
=C Y %Y [dy [ [K{x—(r—xi)—K(x)|dx"
k=kgt+1 iZ1 o b=
Observe that if x'¢ 0 —x¥ and yeQF then
X1 > @O y— k.
Hence
N
fIT(fldx<C Y 23 10T 3" "
<o k=kgt1l 21
ul —kg)n LrE) .
<Cffllnr Y TS C{=omdo |l
k=kg+1 o ¢
Finally, one has m (x| |T(f*)(x)} >a} < m(Q)+§ {IT(f%) and since
°Q
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N

m@< Y Y@ Tu0

k=ko+1i>1

- k- —kg A C
< T 2T Sl < Ul

kZkq

the theorem is proven.

References

[1] A. B. Aleksandrov, Essays on non locally convex Hardy clusses, in: Lecture Notes in
Math. 864, Springer, Berlin 1981, 1-89.

[2] C. Fefferman, N. Riviére and Y. Sagher, Interpolation between H? spaces: the reul
method, Trans. Amer. Math. Soc. 191 (1974), 75-81,

[3] C. Fefferman and E. M. Stein, H” spaces of several variables, Acta Math. 129 (1972),
137-193.

[4] S. Hudson, Ph.D. Thesis, University of Chicago, 1984,

[5] N.J. Kalton, Linear operators on L, for 0 < p < 1, Trans. Amer. Math, Soc. 259 (1980),
319-355.

[6] R. Latter, A characterization of H?(R") in terms of atoms, Studia Math. 62 (1978), 93-101.

[7] D. Sarason, Function Theory on the Unit Circle, Lecture Notes, Conference at Virginia
Polytechnic and State University, 1978.

[8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
University Press, 1970

[9] E. M. Stein, M. Taibleson and G. Weiss, Weak type estimates for maximal operators on
certain H? classes, Suppl. Rend. Circ. Mat. Palermo, no. 1, 1981, §1-97.

[10] A. Zygmund, Trigonometric Series, 2nd edition, Cambridge University Press, London-
New York 1968,

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO
Chicago, Illinois 60637, U.S.A,
and

FACULTAD DE MATEMATICAS, UNIVERSIDAD COMPLUTENSE
28040 Madrid, Spain

Received August 23, 1984
Revised version September 27, 1985

(1994)

icm®

STUDIA MATHEMATICA, T. LXXXYV. (1987)

On regular generators of Z>2-actions
in exhaustive partitions

by

B. KAMINSKI (Toruf)

Abstract. It is shown that for every totally ergodic Z?-action with finite entropy there
exists a regular generator in a given exhaustive partition and the set of regular generators is
dense in the set of all generators.

1. Introduction. Let (X, 4, p) be a Lebesgue probability space, .# the set
of all measurable partitions of X and % the subset of consisting of
partitions with finite entropy.

All relations between measurable partitions are to be taken mod 0.

Let ¢ be the metric on & defined by the formula

o(P, Q) =H(P|Q)+H(Q|P), P,QeZ.

We denote by ¢ the measurable partition of X into single points and by
v the measurable trivial partition whose only element is X.
Let T be an automorphism of (X, #, p). For Pe.# we define

o + o0
Pr=\/T™"P, Pr= \/ T"P.
n=1 n=-—ow
If Pr =¢ we say that P is a generator of (X, T).

A partition {e # is said to be T-perfect if

TS f=e ATTU=m(T) and K T) = (D)

where n(T) and h(T) denote the Pinsker partition and the entropy of T
respectively.

Rokhlin and Sinai showed in [9] that for every automorphism T there
exists a T-perfect partition. If T is aperiodic with h(T) < oo then for every
generator P of (X, T) the partition { = P v Pr is Tperfect. Rokhlin [7]
proved that if h(T) < % and { is T-perfect then there exists a generator P
such that { =P v Py, ie. { is a past of the process (P. T).

Now, let G be an abelian free group of rank 2 of automorphisms of
(X, #, n). We denote by b(G) the set 0}/&5{1 ordered pairs of independent
generators of G.
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