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On values of homogeneous polynomials in
discrete sets of points

by
P. WOJTASZCZYK (Warszawa)

Abstract, Let Wy(d) denote the space of all homogeneous polynomials on C? of degree N,
restricted to the unit sphere. We show a class of sets A of small cardinality such that for every
@eWyld) we have (f|o/?)"/? comparable to (A4|7* Y lp(A)")¥". We also show that every

Aded
subspace E <= Wy(d) such that dim E > $dim W, (d) contains a polynomial ¢ such that
loll., < K @ligll.

We consider the spaces Wy(d) of all homogeneous polynomials on C?
(the d-dimensional complex space) of degree N. On those spaces we consider
the norms inherited from L,(S,), ie. for peWy(d) we put

lloll, = (SI lo ()P do (())*”

where ¢ is the normalized rotation-invariant measure on S,, the unit sphere
in €Y Our main interest in this note is to compare ||¢||, with its discrete
analogue: for a finite subset 4 = S, we consider

lolAll, = (417" X lo I7)P
Aed

(where |A| denotes the cardinality of A). Our main result asserts that it is
possible to find relatively small sets A such that |[g]|d|, ~[le|l, for all
@& Wy(d) (Theorem 1). In the case p = oo this result was obtained by B. S.
Kashin in [5] by a different method. In Theorem 2 we give a simplified
version of Kashin’s proof which has an additional advantage of giving good
constants. As an application of this special case we obtain a strengthening of
the main result of [5] and also of Theorem 1 of [9].

The author would like to thank Professor B. S. Kashin for illuminating
comments and the referee for extremely valuable criticism which led to the
complete revision of the paper.

Preliminaries and notation. The natural scalar product in € will be
denoted by (-, ). We will use the unitarily invariant pseudometric on S,
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defined by

L L)l for &1, 8ae8s.

One should note that ¢ (¢, {,) =0 if and only if {; and {, lie in the same

complex line passing through zero. It will also be important that for

@& Wy(d), |¢| is constant on the sets of diameter zero in the pseudometric g.
Using (1.4.5) of [7] one easily computes that

{a o (B(r) = (2r—p4yi=1 ~ p24=

where B(r) « S, is a ball of radius r in the pseudometric ¢. We will also use
the representing formula for ¢ e Wy(d) (cf. [9], Prop. 1 or [8]):

(2) o) =D [ o) &, OVdo ()
Sq

where

@) D = dim Wy(d) = (—va—?:l +d)!

_ « \|2ZN 11
o I)-!;“——[del«:, LopPNdo ()]

The letter K will be reserved to denote a constant depending on d but on
nothing else. It may vary from one occurrence to another.

Results. Let ¢ be a positive number smaller than 1 and let 4 be a
maximal c/\/rﬁ separated subset of S,, i.e. a maximal set with the property
that for all A,, ;e with A, # A, one has o(A;, 1)) = ¢/s/N.

The next lemma summarizes some obvious properties of such sets.

LemMA 1. Let A be a maximal c/\/ﬁ separated set. Then

(a)1 The collection of balls {B(4, c/,\/l—\—f)}le,l covers Sy, so o (B (c/\/j\}'))
=47

(b) The balls {B(A, ¢/2 \/'N‘)}ZM are disjoint, so a(B(('/Z\,/ﬁ)) |47

© 17" < o(Ble/y/N)) < 47 0 (B(c/2 /W) < 41~ ||,

Our main result is the following theorem.

TrrorEM 1. There exists a ¢q =co(d) >0 such that if ¢ < ¢, and
1<p<cw and A is a maximal c/\/ N separated subset of Sy then for all
pe Wy(d)

“4) AllolAl, < llgll, < Bllol4ll,
for some constant A depending on d, p, and ¢ and B depending on ¢ and d.

Proof. Let us start with the left-hand side inequality in (4). It is trivial

(with 4 =1) for p=oc0. For p <o, using Lemma 1 (b) we obtain

SI](/)(C)I"CIU(C) 2y | le©rde(®.

Jed B2 /W)
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Since every ball B(4, c/2\/N) is invariant with respect to all unitary maps
fixing 4, we can average each integral and obtain (cf. [9], Lemma 1.3)

[ le@Pde@=le@ir [ 1K NP do(0)

BlAe/2yN) B(L,c/2JN)

_ 2 \Np
> oo (B, ¢/2/N) (1 "zcﬁ)

> (WP o (B(c/24/N)) 0757,

From Lemma 1 we get the desired conclusion with A » 4~¢@~ /7 0.75°%,
The proof of the right-hand side inequality is more involved. From
Lemma 1 (a) we have

loll, <(Y, | le@Pda(Q)"r.

AeA B¢/ ¢N)
Let {;eB(4, c/\/ﬁ) be such that
(¢ = max{p(): LeB(@, ¢/\/N)}

and {1, {;> is real positive. Obviously we have
el <(T oBl/M)e )™
Aed

< 4=Vl Z A" @ (P
Aed

<49 (T A o (Y
e

+44 (T 1A o () — o ()P

Aed
Now we will concentrate our attention on the last summand in (5). Let us
denote by L,(4) the space of all functions on the set A with the norm
(147 ¥ lay)")!/. For a maximal c/\/N separated subset of S; and {; as
above we define an operator T: W (d) — L,(4) by the formula T(¢) = {o(2)
~ @ (L) 264 Using (2) we can write
(6) T(p) = {D [ @) P2(0)do D}sen
59

where D is dim Wy(d) and &,(0) = {4, { S8 (L, OOV, Actually (6) defines an
operator from L,(S,) into Ly,(A). .

Provosirion 1. Let T Ly(S)— Ly(A) (1 < p € ) be given by (6). Then
1T < K. .

Clearly (5) and Proposition 1 give the right-hand side estimate in
Theorem 1 if ¢, is taken to be the reciprocal of the constant K from
Proposition 1 times 474"/,

The following lemma is crucial for the proof of Proposition 1.
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LEMMA 2..__Let A eS8y be such that <A, 0;> is real positive and
0(4, L) < ¢/ /N with ¢ < L. Let us pur

92 = A+ A+L) e,
Then we have

if (. v2) < 2/N,

“20NeA) e e n R

2
7Kk Y=, Ns{c\[
D 1A O =& O ot 0) /Fie

Proof. Using a unitary change of variables we can assume 2

=(«, §, 0, ..;,_9) and {, =(a, —f,0,...,0) with « real positive and
0<p< c/\/2N. Obviously in those coordinates y, = (1, 0, ..., 0). Using the

N—-1
) we have

binomial expansion and an obvious inequality ('}/V)é N(l i
k e~

(8) ez + pzy)" — (0, — pZ,)"|
¥

k=0
kodd

NN
< Blza kgo (k )(0‘ [z DV (B |zl

kodd

N
( ) /)(aaw*"(/ffz)k

N /N-1 .

< Nz, Z ( k )(alzll)N LBz
k=0 .

< (/2 /Nlzal @ lzs] + Bl L.

This clearly gives (7) for N <4. Also for o(¢, Y1) < 2/\/1§f, ie. for |z, = 1

—4/N one easily checks that (7) holds for arbitrary N. For o({, y,) = 2/\/ N
We put |zyf = 1—a/N, a >4, and we have (since N > 5) by (8)

<efa(l—a/N-+e Ja/N)N-1 ;
=cJa(l ~(a—c JaNY < e Jae e

Proof of Pr'oposition L. Since, as is well known, the norm of T as a
map from L, (S,) into L, (4) can be majorized by D |A|~ |2 19| and the
Aed

norm of T as a map from L, (S,) into L, (4) equals sup {B fl®,ldo: dea)

icm°®
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Proposition 1 will follow by the Riesz-Thorin interpolation theorem (cf.
[11]) from the following inequalities:

“ DA™ sup ¥ @, ()l < Ke,
{eSy Aed
(10) it}g&fl%(é)l do(¢) < Ke.

Proof of (9). By (1), for a fixed { there are at most 447! ¢~ 2~ D [2@-1
points A in A such that ¢(y;, {) < k/\/N. Using this and (7) we infer that

(1) Y el
Aed
< (.(\/§4d-~1a--2(d~ D426-1) ¢ % ke-—2k4d-1C—Z(d—~1)k2(d—1))
k=1

0
<C'ZII'I'3(\/ﬁ43(11“1)+4d"1 Z kld—ie"lk)

k=1
sc,“Zd-I-BK

We see from (3) that D < KN*"! and we infer from Lemma 1 (a) and (1) that
[A]71 g 2971 c26=D N=@=1_ Pytting all this together we get (9).
Proof of (10). From (7) and (11) we infer that

[10:(0ldo(f) < |A]"1e™2*3K.

As previously Lemma 1 (a) and (1) give (10).

Remark. The drawback of Theorem 1 (or rather of our proof of it) is
that the constants are bad. Both ¢, and B depend heavily on the dimension
d; ¢, gets small and B gets big when d goes to infinity. In the most
important case p = oo we can do better. The following theorem' holds.

THEOREM 2. Let A be a maximal c/\/]—\f separared subset of S, with ¢
< ‘1/6.{ Then for every @peWy(d) we have

(12) ol Alls < el < (1=66)72 [l All-

Clearly Theorem 2 follows immediately from the following

Limma 3. Let @eWy(d) with |lolle =1=¢(1,0,..., 0) be given. For
2 (1—60)%

In order to prove Lemma 3 we will use the following elementary
consequence of the Mdbius invariant Schwarz Lemma (see Lemma 1.2 of

[4D.

|
|
|
|
|
i
i
|
|
]
7
|
|
|
|
1
i
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LEMMA_ 4. Let f(z), zeC, |zl <1, be an analytic function such that
If @) <\/e for |2f <1 and f(0)=1. Then
If @ = 1= (/e+1)ld.
Proof of Lemma 3. We can clearly assume that { =(a, 8, 0, ..., 0)

with o« real positive and || < (\/Q/N and a2 1—c?N. Let us define a
function of one complex variable by

J@ =01, 5 /N,0,...,0)
Since (1, 2/\/N, 0, ..., Ol S /T+1/N and @eWy(d) we see that

If () < \/;,; for |z] <1, Moreover, f(0)= 1. Since |p ()| = oc”!,/‘(\/liffa’/oc)l,
Lemma 4 gives

[ = o (1— (/e +1)1./N Bla])

> (=N (1=(Je+ 1) e /2/a) > e (1 —(Je+1)2)
> (1 —6¢)*.

for |z < 1.

Remark. .It follows from Lemma 1 that for fixed ¢ and d the cardinality
of A is proportional to dim Wj,(d) independently of N. So in the terminology
of [3], Wy(d) is a large subspace of I7,.

Now we will present a strengthening of the main result of [5] and also
of Theorem 1 of [9].

Tueorem 3. There exists a constant K = K(d) such that Jor every o,
O<a < 1, every N = 1,2,... and every subspace E = Wy(d) with dim E
>odim Wy(d)  there  exists a  polynomial @eE  such  that
llell < K(d)a™"loll,. '

Remark. The very existence of ¢ e Wy (d) such that llolly < Klloll; with
K = 2.“/\/7? was provejd in [9] (see also [8]). Such polynomials turned out to
be quite useful in various questions about analytic functions in the ball (see
[1], .[2]_, [9], [10]). Onp can hope that the possibility to find them in some
specified subspaces (as in [5] or our Theorem 3) will also be useful. In order
to prove Theorem 3 we will use two lemmas.

LimMma S. Let F < L, (A) be a subspace of dimension k. Then there exists
xeF, |Ix| =1, such that |x(A)| =1 for at least k indices A

o5 The easy proof of this lemma can be found in [6], p. 214 and in [3], p.

LemMA 6. If A is a maximal c/\/ﬁ Separated subset of S,, then
1<, AN < Kem 24,

Agd

icm°®
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The prool is almost identical with the proof of (10) and is omitted.

Proof of Theorem 3. Let us fix ¢ = (d—1)/6d and a maximal c/\/—!\7
separated subset A S, Let J: Wye(d)— L, (4) be defined as J(gp)
= {p(A)}. From Lemma 5 with F = J(E) we get xeJ (E) such that ||x[|,, =1
and |x(A) =1 for Ae A, = /A with |4g| = dim E. We define ¢ =J~'(x) and
infer from Theorem 2 that |j¢||,, < (1—6¢)"2 In order to estimate ||¢||, we
define

YO =3 o)<, Y.
Aedg
Since |p(4) =1, Lemma 6 gives |||, < Ke™?~ Y, Using (2) and (3) we
obtain '

Ke™ 2@ Dloll, 2 [§ o (0¥ () do ()
=3 oleWD ™ =|4d D™} > 2.

Aedg

Because of our choice of ¢ we obtain |||l < Ko™t |fol]2-

Remark. Our Theorem 1 is clearly analogous to the classical
Marcinkiewicz theorems from the theory of trigonometric series (see [11],
X75 and X.7.28). There is, however, a difference. For the trigonometric
polynomials, the number of points required to estimate the L,-norm (1 <p
< ) equals the dimension of the space and only for p = 1 and p = o0 one
has to take the number of points which is proportional to the dimension (but
the proportionality constant can be an arbitrary number greater than 1). In
our case if one takes |A4| = dim Wy(2) the conclusion of Theorem 1 does not
hold. To be more precise: Let us consider numbers C(p, N) such that for
some A < 8y, |A] = dim Wy(2) = N+1, we bave

(] lp©I"do(@)? < Clp, N)(A™" T lo@IP)?

51 Asd
for all peWy(2). B

Then Theorem 2.4 of [9] gives C(w, N) = \/N and Proposition 2.2 of
[9] gives C(1, N) = \/ N. By an easy modification of arguments from Section
2 of [97 one can see that C(p, N) — co at least as fast as some power of N.

' N-w .

It is quite likely that C(p, N)= \/N for all p, 1< p§ o, al}d that
analogous estimates hold for other d's. Since the computations are likely to
be quite involved and we do not see any applications for such a result we
decided not o investigate this question in detail.
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The boundary of Taylor's joint spectrum for two commuting
Banach space operators

by
VOLKER WROBEL (Kiel)

Abstract. In this note it is shown that the boundary do of Taylor’s joint spectrum for a
puir of commuting operators on an arbitrary Banach space is contained in the union of the joint
approximate point spectrum APg and the joint approximate compression spectrum ACo, but
neither do <= APg nor fo < ACq is true in general, This is in strict contrast to the case of a
single operator where Jdo <z APo ~ ACo.

1. Introduction. In [5] and [6] F.-H, Vasilescu characterized Taylor’s
joint spectrum [3] for commuting operators on Hilbert spaces by means of
the noninvertability of a certain operator acting on a direct sum of copies of
the initial space. In this way he succeeded in giving a characterization of
Taylor’s joint spectrum in terms of classical spectral theory.

Based on Vasilescu’s characterization C. Muneo and M. Takaguchi [2]
proved that the boundary of Taylor's joint spectrum for a pair of commuting
Hilbert space operators is contained in the union of the joint approximate
point spectrum and the joint approximate compression spectrum in the sense
of A. T. Dash [1]. Since this union is of course contained in Taylor’s joint
spectrum, the result of Muneo and Takaguchi gives an easy characterization
of at least an important part of the spectrum. The method of proof in [2]
heavily relies on the Hilbert space setting. It is the purpose of this note to
show that the above-mentioned result holds true in the Banach space setting,
too. As it seems our proof is completely elementary.

Moreover, we shall show that in general neither d¢ < APo nor
do = ACo, but APo ACo is nonempty for two commuting operators.

Let X, Y, Z denote complex Banach spaces and let L(X, Y) denote the
space of all continuous linear operators from X into Y, writing L(X) for
L(X, X) and X’ for the dual space L(X, C) instead. Given Se L(X, Y) we let
S‘e L(Y', X') denote the dual operator.

Let T=(T,, ) (GTel(X), i=1,2) denote a pair of commuting
operators. Congider the sequence

89 al

T T
(1.1) 0+ X> XX~ X0



GUEST




