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Interpolation between Hardy spaces on the bidisc
by
KAIL-CHING LIN (Chicago, IlL)

Abstract, For 0 < p < co let H” = H”(R% x R}) be the real variables Hardy spaces on the

bi-upper half plane. Let (-, -); be the Calderén complex interpolation spaces, (-, *)g, 5 the Peetre
K real interpolation spaces. We calculate the interpolation spaces between H °(R% x R%)

and H™'(R% x R%), in both real (0 < p, < p, < o) and complex (1 < ps < p; < c0) methods.

1. Introduction. For 0 <p< oo let H? = HP(R%2 xR%) be the real
variables Hardy spaces on the bi-upper half plane. Let (-, *), be the complex
interpolation spaces as described in [2], (-, ')s, the Peetre K real
interpolation spaces. (We refer the reader to [1] for the general theory of
interpolation spaces.) We will calculate the interpolation spaces between
H™(R% xR%) and H"'(R% xR%), in both real (0 <p,<p; <co) and
complex (1 < po <py € ) methods
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Now we describe some basic properties of H?(RZ x R%). For 1 < p < o0,
HP? can be identified with L?(R?). For 0 < p < 1, H? can be defined via non-
tangential maximal functions as well as square functions. More precisely, let
peCP®(RY, [@=1. For t=(t;, t;) with t;>0 and y=(y;, yo)eR®, we

define n
1 Y2
oY) = @, 1) 91, 02) = <p< )(ﬂ(tz)

If x =(x;, xz) in R? I'(x) will denote the product cone
(%) =I'(x) xT(x5) = {(y, DeR% xR%: |y;—x) <t j=1,2}.

We say that a tempered distribution f on R* is in H?(R% xR%) if the
nontangential maximal function

Nf ()= sup |f*p.O)
{(M)ellx)
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is in IP(R%). To define H” by square functions, take ¢ &C (R"), f=0,
Rl

1 ’
0, and let ¥, (y) = — v Gi)x// (?) as before. Then the square function
12 1 A2
of f is defined by

dr \?
Sf (x) = ( [ 1w () dy ;535)
Ix) 182
and we say that feH" if §fel’.

It is well known that these two definitions are equivalent and ||Nf]|,,
[1Sf1l, are comparable up to a constant depending only on the choices of ¢
and . It is also a fact that both N and $ map L into itsell boundedly for
I <p<oo. See [4], [5] [9] and [13] for further details.

2. The complex method. We will recall here the definition of complex
interpolation spaces. For a couple of Banach spaces A° and A4' let
F = F(4°, 4" be the family of all functions G from the strip § = [ze(: 0
<Rez <1} to A°+ A" which satisfy the following properties:

(i) G(z) is continuous and bounded on §.

(i) G(z) is analytic in S.

(iii) G(z) is a continuous. and bounded map from {Rez =j} into
Al j=0, 1.

We equip § with the norm

Gl = max (sup |G (iy)l 0. sUplIG (1 +iy)l 1)
YeR i yeR
The complex ‘ interpolation space is
={G(0): Ge §} and the norm is given by

llall 4o 41,, = inf{llGll5: G(O) =a}.

then defined by (49 4Y),

One of the major theorems in interpolation theory states that whenever T' is
a bounded linear operator from A/ to B, j =0, 1, then T is also bounded
from (4°, A1), to (B, BY)y, for 0 < 0 < 1.

The following reiteration result is due to Wollf.

Tueorem A (Wollf [14]). Let A', A% A%, A* be Banach spaces und
assume A' ~A* is dense in A* and AP, Suppose (A%, A*), = A3, (4", A%
=A% 0<0, o<1 Then (41, A%, = A% (4, A%, = A3, where

Pl 0
T 1+l
- W;:mare ready to prove the main theorem in this section. Here, we set

14
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TugoreM 1. If 1< pg < p; < 0, then (H?, H'Y), = L?, where
i 1-6 @
-~ +

14 Po

Proof. It suffices to show that (H!, L?), = L”, where 1/p=1-0/2.
Indeed, if (H*, L), = L?, Wolils reiteration Theorem A cited above with A4*
=H!, A*=1IF (p<2), A*=1% A*=IL"" (2<p, <o) implies that
(H!, L")y = L¥ for p < 2. Using Wolffs theorem again with 4 = H', 4?
=17 (py<2), A =L (p>72), A*=L" (p<p; < ), we have (H', L),
= I” for p> 2. The other cases are standard L interpolation.

The direction (H*, L?), €L is easy. Let Nf be the nontangential
maximal function of f as defined in Section 1. Then N maps H' into L' and
L? into L? continuously. Therefore, by Janson’s theorem [10], N maps
(H', I?), into (L', L}, = L7 since N is sublinear. This means that
INSIl, € C“f”(ﬂi,l.lw' Because Nf amd f have comparable Lf-norms when
1 < p < o, we conclude that (H', L?), < L”.

Now we begin to prove the converse direction, ie. L* < (H*, L?),. Given
a function fel”, we will construct an analytic G(z) which maps the strip
{p/2 < Re z < p} into the space of tempered distributions and which satisfies
16 @)1 < CIIfll,, when Re z = p, G (2|2 < CIIfl|, when Re z = pJ2, and
G (1) = /. This will prove the theorem, because we can then compose G with
a linear mapping which takes {0 < Re z <1} onto {p/2 < Re z < p} so that
the resulting function is in the analytic family & with desired bounds. Let Sf
be the square function of f with ¥ even. Let O;= {Sf > 27}, 0,
= {M, %0, > ths}, where M, is the strong maximal operator, ie.

M, g(x) = sup|R|™" [lgl,
xeR R

where the sup is taken over all rectangles R containing x with sides paraliel
to the axes of coordinates. Define
#; = |R dyadic rectangles: RN O}l > LIR|, [RN 0y 4] <3IRI[}.
For a rectangle R =1 xJ, R, will denote the set
iy, e R: xR3: ye R 4l <t; <, 3 <t < V1)
We also set 4; = (J R.. The following result is contained in the proof of
Rext

the atomic dccomposjition for H'(R% x R%) functions:

TuroreM B (Chang-R. Fefferman [4], pp. 183-185). Let feLP. With the
above notation, we can write ‘

2 i
[ = Z i where ‘/i(x)=‘[ If*‘/’t(J’)ll’z(x—y)dyt—z%

J=—w 4)

with [|fjl,2 < 210> and [|fjln < C210].
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Following Calder6n-Torchinsky [3], we form our analytic function

G(z) = i L2 D ISl .

J=-w

It is clear that G(1) = f. If Re z = p, then

G @My < i Ifllge 27~ DYISAIIE ™" < C/ 2 2P00IsslIyr

Jj=-w = -

< CISAIRNSAE =" = ClSAIl, < ClSN,-

If Re z = p/2, we will use duality to prove ||G(z)ll; < C||f||,. Take he L*(R?),

liBll; < 1; we then have

[ (256927 )h(x)dx|
r2 J

= I(22"""”1jf*w,(y)wz(x—y)%@)h(x)dx
Aj 1l

R2 M

J
dy dt

tyty

=[S 20§ (7 )] =) B )
i 4 R?

= Zzﬁz‘“jjf*\//t(y)-h*x//i(y)M', since ¥ is even
7 4] i1y

) 12
<( g1 B2, 0 7 wop )
R 1+2

Lin 7
) 1/2
x( i1 :hw,(y)lzé’—y—:—if)
R 1t2

2" e
xRy

) 1/2
<C (Z_ £ JP=A f e w.(y)fzfi-y—fl—t) (] 1) dx)2
74

AR 2
< C(;Zj(p_z)gﬂf*'//r(ynzl{xf (v, Del'(x),
J

dy dt\"?
xea}*olﬂ“”{%i“)
162
(this is because for each (y, ¢) in 4, the rectangle centered at v with side
lengths t; and t, has a fixed portion of its area inside 0, and at the same
time outside O, ,; see [4], page 186)

< C(Z 2ip=2) ‘- ISf|2)1/2 < C(Z 2p~2) 92J |OJ|)U7'
J

0;-0j4+1

<c( § ISP = CISIE < CfI
R
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Thus, |G (2,2 < C{lf|l,- This finishes the proof of Theorem 1. m
3. The real method. The result for real interpolation we will prove is
TueoreM 2. If 0 < py < p; < o0, then (H'®, le)‘;,p = H” where

1 1-0 0

= o,

p Po Py

Recall that the real interpolation space (H", H”"), , is defined to be the
set of all f in H"+H" such that

. ° dt\'»
flhgpo, sy, , = ( ] [r“”K(t,f)J”T) <o,
where
K(t,f) =K, /3 H", H")
=inf{llfollrottllfillges: f = fo+fi, foeH™, fieH™).

We will need the following results.

TuporeM C (Wolff [14]). Ler A, A%, A3, A* be quasi-Banach spaces
satisfying A' nA* = A* A%, Suppose (A%, A%, , = A® and (4', 43),, = A%,
0<0, ¢ <1,0<q r<oo. Then (A', 4%, = A and (A, 4%, = 4> with

@0 _ 0
¢ wﬁl—(p%—(p()'

Tueorem D (Chang-R. Fefferman [5]). Let 0 < py <1, po<p <2 and
a>0. If feHP(R2 xR%), then f can be decomposed as f = g,+b,, where
gu€ L2, bye H™ with

lgalliz < C [ IS/, lbdlgo<C [ IS/
Sf€a SS >

Tneorem E (Calderdn-Torchinsky [3], p. 156). Let g(t) > 0 be defined
and nonincreasing in (0, o), let u >0 and 0 <p< 1. Then

)

(*) [fewa]’<cC Tg(t)”dt”.
u/2

Proof of Theorem 2. With repeated application of Wolff's Theorem
C, we only need to show (H", L?); , = H?, where 0 < py < 1, 1/p = (1 —0)/p,
+0/2. Again, the direction (H", Lzrsg,,, < H? is easy as in the complex case.
For the other direction, fix f in H” for the moment. For each t, take o
= (S (23" where (Sf)*(f), the nonincreasing rearrangement of
S/, is defined by (Sf)*(r) =inf{s: |{|f] > s}/ < t}. We apply the Chang-
R. Fefferman decomposition {Theorem D) to f and this «, we obtain
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J=g,+b, with

a?
lgdi3 < C [ IS/ < C [ [{S/*? > 4}|dA
Sf<a 0
< CPCTIIS TN C [ (SN WP du
(2Po/Z=po)
=I+0
and
1200/(2=pg)

”bz“:ﬁao < CS/J' ISf'T’O < C (j)‘ [(Sf)* (u)]llo du.

Now

o

R O e R

o .
= C [ IS,
0
by a change of variable 1= "9?770 gnd l:lt()+9
popo 2

= C|IS7IIz < C|If]]

r
ue
and

o0

i!- up((Z—po)IZIlo)(l ~0)-1 (? [(Sf)*]z)p/z du
f

* dt
(] )P — =
[y =c

<Clu TS OP ™ du, by (x)
u/2

0
0
{
0
0

It

2t
C {I(SH* (I (f u~"2du)dt"™, by Fubini’s theorem
0

0 oK
9]

i

C {ISH*? < CILS Moy

Moreover,

dt @ 2pp/(2=pg)

T ~0p J A —0p' royrlv dt
;Et ”ba(”Hpot gr v g [(S/)*17) o[

@ (qu piprg
-z a,
oMo

Interpolation between Hardy spaces 95
by a change of variable u = ¢>7o'* %0

£

<cj (M (LS 17 Xi0,0) ()} s,
where M is the Hardy-Littlewood maximal operator
<C i|' IS/ < ClAIE,.

)

Combining the three inequalities above, we obtain

170 g2, < C1 M
Thus, H" & (H™, LY),,,. The proof is complete. w

Remarks. (. The reason why we can only prove the complex
interpolation for the case 1< py < p; < o0 instead of 0 <py < p; S ov is
that Wolffs reiteration theorem is not applicable for quasi-Banach spaces.

2. We refer the reader to [12] for a survey of interpolating Hardy spaces
on R". It is not clear how one can adapt the classical proof to our present
setting. For instance, C. Fefferman and Stein in their proof of the result
(L™, BMO)y = L” used some properties of the sharp function,

A o 10 e f
FH(x) sxn:g o] cj;lf Jols

Qeubes

where f, is the average of f over Q. The two key properties they used are:
(a) The map from BMO to L* defined by / — f * is a bounded map.
(b) If feL" for some po> 1, then f* and f have comparable L'-
norms for po < p < 0.
However, the existence of such an operator, on the bidisc is unknown.
The most natural analoguc of the sharp function is

JH(x) = Sup IRI™! lgl.f—fz ~fs+fls

X
Rrectuogles

where R = I xJ and fy, [y, fr are the averages of f over I, J and R
respectively, But this sharp function fails to satisfy (b) (see [8] for an
example). On the other hand, if we let f LS *2 be the sharp functions z;lo;xg
x and V] direction, then although the iterated sharp function f"17* ¢
==(f#’) 2 does have comparable L” norm with f, it does not map BMO
into L*. Tt is the idea in Calderén-Torchinsky [3] and Chang-R. Fefferman
[4] which makes the above proofs work.
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On values of homogeneous polynomials in
discrete sets of points

by
P. WOJTASZCZYK (Warszawa)

Abstract, Let Wy(d) denote the space of all homogeneous polynomials on C? of degree N,
restricted to the unit sphere. We show a class of sets A of small cardinality such that for every
@eWyld) we have (f|o/?)"/? comparable to (A4|7* Y lp(A)")¥". We also show that every

Aded
subspace E <= Wy(d) such that dim E > $dim W, (d) contains a polynomial ¢ such that
loll., < K @ligll.

We consider the spaces Wy(d) of all homogeneous polynomials on C?
(the d-dimensional complex space) of degree N. On those spaces we consider
the norms inherited from L,(S,), ie. for peWy(d) we put

lloll, = (SI lo ()P do (())*”

where ¢ is the normalized rotation-invariant measure on S,, the unit sphere
in €Y Our main interest in this note is to compare ||¢||, with its discrete
analogue: for a finite subset 4 = S, we consider

lolAll, = (417" X lo I7)P
Aed

(where |A| denotes the cardinality of A). Our main result asserts that it is
possible to find relatively small sets A such that |[g]|d|, ~[le|l, for all
@& Wy(d) (Theorem 1). In the case p = oo this result was obtained by B. S.
Kashin in [5] by a different method. In Theorem 2 we give a simplified
version of Kashin’s proof which has an additional advantage of giving good
constants. As an application of this special case we obtain a strengthening of
the main result of [5] and also of Theorem 1 of [9].

The author would like to thank Professor B. S. Kashin for illuminating
comments and the referee for extremely valuable criticism which led to the
complete revision of the paper.

Preliminaries and notation. The natural scalar product in € will be
denoted by (-, ). We will use the unitarily invariant pseudometric on S,
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