

Interpolation between Hardy spaces on the bidisc

by

KAI-CHING LIN (Chicago, Ill.)

Abstract. For $0 let <math>H^p = H^p(R_+^2 \times R_+^2)$ be the real variables Hardy spaces on the bi-upper half plane. Let $(\cdot, \cdot)_\theta$ be the Calderón complex interpolation spaces, $(\cdot, \cdot)_{\theta,p}$ the Peetre K real interpolation spaces. We calculate the interpolation spaces between $H^{p_0}(R_+^2 \times R_+^2)$ and $H^{p_1}(R_+^2 \times R_+^2)$, in both real $(0 \le p_0 < p_1 \le \infty)$ and complex $(1 \le p_0 < p_1 \le \infty)$ methods.

1. Introduction. For $0 let <math>H^p = H^p(R_+^2 \times R_+^2)$ be the real variables Hardy spaces on the bi-upper half plane. Let $(\cdot, \cdot)_{\theta}$ be the complex interpolation spaces as described in [2], $(\cdot, \cdot)_{\theta,p}$ the Peetre K real interpolation spaces. (We refer the reader to [1] for the general theory of interpolation spaces.) We will calculate the interpolation spaces between $H^{p_0}(R_+^2 \times R_+^2)$ and $H^{p_1}(R_+^2 \times R_+^2)$, in both real $(0 < p_0 < p_1 \le \infty)$ and complex $(1 \le p_0 < p_1 \le \infty)$ methods.

I would like to express my deep gratitude to Professor Sun-Yung Alice Chang, my thesis advisor, for her guidance and encouragement. I also thank Professor John Garnett for many valuable discussions.

Now we describe some basic properties of $H^p(R_+^2 \times R_+^2)$. For $1 , <math>H^p$ can be identified with $L^p(\mathbf{R}^2)$. For $0 , <math>H^p$ can be defined via non-tangential maximal functions as well as square functions. More precisely, let $\varphi \in C_c^\infty(\mathbf{R}^1)$, $\int_{\mathbf{R}^1} \varphi = 1$. For $t = (t_1, t_2)$ with $t_j > 0$ and $y = (y_1, y_2) \in \mathbf{R}^2$, we define

$$\varphi_t(y) = \varphi_{t_1}(y_1) \varphi_{t_2}(y_2) = \frac{1}{t_1 t_2} \varphi\left(\frac{y_1}{t_1}\right) \varphi\left(\frac{y_2}{t_2}\right).$$

If $x = (x_1, x_2)$ in \mathbb{R}^2 , $\Gamma(x)$ will denote the product cone

$$\Gamma(x) = \Gamma(x_1) \times \Gamma(x_2) = \{ (y, t) \in \mathbb{R}^2_+ \times \mathbb{R}^2_+ \colon |y_j - x_j| < t_j, j = 1, 2 \}.$$

We say that a tempered distribution f on \mathbb{R}^2 is in $H^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$ if the nontangential maximal function

$$Nf(x) = \sup_{(y,t) \in I(x)} |f * \varphi_t(y)|$$

is in $L^p(\mathbf{R}^2)$. To define H^p by square functions, take $\psi \in C_c^\infty(\mathbf{R}^1)$, $\int \psi = 0$, $\psi \neq 0$, and let $\psi_t(y) = \frac{1}{t_1 t_2} \psi \left(\frac{y_1}{t_1} \right) \psi \left(\frac{y_2}{t_2} \right)$ as before. Then the square function of f is defined by

$$Sf(x) = \left(\iint_{I(x)} |f * \psi_t(y)|^2 \, dy \, \frac{dt}{t_1^2 \, t_2^2} \right)^{1/2}$$

and we say that $f \in H^p$ if $Sf \in L^p$.

It is well known that these two definitions are equivalent and $||Nf||_n$ $||Sf||_{\alpha}$ are comparable up to a constant depending only on the choices of ω and ψ . It is also a fact that both N and S map L^p into itself boundedly for 1 . See [4], [5], [9] and [13] for further details.

- 2. The complex method. We will recall here the definition of complex interpolation spaces. For a couple of Banach spaces A^0 and A^1 let $\mathfrak{F} = \mathfrak{F}(A^0, A^1)$ be the family of all functions G from the strip $S = \{z \in C: 0\}$ < Re z < 1 to $A^0 + A^1$ which satisfy the following properties:
 - (i) G(z) is continuous and bounded on S.
 - (ii) G(z) is analytic in S.
- (iii) G(z) is a continuous and bounded map from $\{\text{Re } z=i\}$ into A^{j} , i = 0, 1.

We equip & with the norm

$$||G||_{\tilde{\sigma}} = \max \left(\sup_{y \in R} ||G(iy)||_{A^0}, \sup_{y \in R} ||G(1+iy)||_{A^1} \right).$$

The complex interpolation space is then defined by $(A^0, A^1)_0$ $= \{G(\theta): G \in \mathcal{R}\}$ and the norm is given by

$$||a||_{(A^0,A^1)_{\theta}} = \inf\{||G||_{\tilde{a}}: G(\theta) = a\}.$$

One of the major theorems in interpolation theory states that whenever T is a bounded linear operator from A^{j} to B^{j} , j = 0, 1, then T is also bounded from $(A^0, A^1)_{\theta}$ to $(B^0, B^1)_{\theta}$, for $0 < \theta < 1$.

The following reiteration result is due to Wolff.

THEOREM A (Wolff [14]). Let A^1 , A^2 , A^3 , A^4 be Banach spaces and assume $A^1 \cap A^4$ is dense in A^2 and A^3 . Suppose $(A^2, A^4)_0 = A^3$, $(A^1, A^3)_0$ $=A^2$, $0<\theta$, $\varphi<1$. Then $(A^1, A^4)_{\xi}=A^2$, $(A^1, A^4)_{\psi}=A^3$, where

$$\xi = \frac{\varphi \theta}{1 - \varphi + \varphi \theta}, \quad \psi = \frac{\theta}{1 - \varphi + \varphi \theta}.$$

We are ready to prove the main theorem in this section. Here, we set $H^{\infty} = L^{\infty}$.

THEOREM 1. If $1 \le p_0 < p_1 \le \infty$, then $(H^{p_0}, H^{p_1})_n = L^p$, where

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}.$$

Proof. It suffices to show that $(H^1, L^2)_{\theta} = L^p$, where $1/p = 1 - \theta/2$. Indeed, if $(H^1, L^2)_0 = L^p$, Wolff's reiteration Theorem A cited above with A^1 $=H^{1}$, $A^{2}=L^{p}$ (p < 2), $A^{3}=L^{2}$, $A^{4}=L^{p_{1}}$ $(2 < p_{1} \le \infty)$ implies that $(H^1, L^{p_1})_0 = L^p$ for p < 2. Using Wolff's theorem again with $A^1 = H^1$, A^2 $=L^{p_0}$ $(p_0 < 2), A^3 = L^p (p > 2), A^4 = L^{p_1} (p < p_1 \le \infty),$ we have $(H^1, L^{p_1})_{\theta}$ = L^p for p > 2. The other cases are standard L^p interpolation.

The direction $(H^1, L^2)_0 \subseteq L^p$ is easy. Let Nf be the nontangential maximal function of f as defined in Section 1. Then N maps H^1 into L^1 and L^2 into L^2 continuously. Therefore, by Janson's theorem [10], N maps $(H^1, L^2)_{\theta}$ into $(L^1, L^2)_{\theta} = L^p$, since N is sublinear. This means that $\|Nf\|_p \leqslant c \|f\|_{(H^1,L^2)_\theta}$. Because Nf and f have comparable L^p -norms when $1 , we conclude that <math>(H^1, L^2)_\theta \subseteq L^p$.

Now we begin to prove the converse direction, i.e. $L^p \subseteq (H^1, L^2)_{\theta}$. Given a function $f \in L^p$, we will construct an analytic G(z) which maps the strip $\{p/2 \le \text{Re } z \le p\}$ into the space of tempered distributions and which satisfies $||G(z)||_{H^1} \le C||f||_{L^p}$ when Re z = p, $||G(z)||_{L^2} \le C||f||_{L^p}$ when Re z = p/2, and G(1) = f. This will prove the theorem, because we can then compose G with a linear mapping which takes $\{0 \le \text{Re } z \le 1\}$ onto $\{p/2 \le \text{Re } z \le p\}$ so that the resulting function is in the analytic family & with desired bounds. Let Sf be the square function of f with ψ even. Let $O_i = \{Sf > 2^j\}, \tilde{O}_i$ = $\{M_s \chi_{O_1} > \frac{1}{100}\}$, where M_s is the strong maximal operator, i.e.

$$M_s g(x) = \sup_{x \in R} |R|^{-1} \int_R |g|,$$

where the sup is taken over all rectangles R containing x with sides parallel to the axes of coordinates. Define

 $\mathcal{R}_i = \{R \text{ dyadic rectangles: } |R \cap O_i| \ge \frac{1}{2}|R|, |R \cap O_{i+1}| < \frac{1}{2}|R|\}.$ For a rectangle $R = I \times J$, R_+ will denote the set

$$\{(y, t) \in \mathbb{R}^2_+ \times \mathbb{R}^2_+ : y \in \mathbb{R}, \frac{1}{2}|I| < t_1 \le |I|, \frac{1}{2}|J| < t_2 \le |J|\}.$$

We also set $A_{I} = \bigcup R_{+}$. The following result is contained in the proof of the atomic decomposition for $H^1(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$ functions:

Theorem B (Chang-R. Fefferman [4], pp. 183-185). Let $f \in L^p$. With the above notation, we can write

$$f = \sum_{j=-\infty}^{\infty} f_j, \quad \text{where} \quad f_j(x) = \iint_{A_j} f * \psi_t(y) \psi_t(x-y) \, dy \, \frac{dt}{t_1 \, t_2}$$

with $||f_j||_{1,2} \le C2^j |O_j|^{1/2}$ and $||f_j||_{H^1} \le C2^j |O_j|$

Following Calderón-Torchinsky [3], we form our analytic function

$$G(z) = \sum_{j=-\infty}^{\infty} f_j 2^{j(z-1)} ||Sf||_p^{1-z}.$$

It is clear that G(1) = f. If Re z = p, then

$$\begin{split} \|G(z)\|_{H^{1}} & \leq \sum_{j=-\infty}^{\infty} \|f_{j}\|_{H^{1}} \, 2^{j(p-1)} \, \|Sf\|_{p}^{1-p} \leq C \sum_{j=-\infty}^{\infty} 2^{jp} \, |O_{j}| \, \|Sf\|_{p}^{1-p} \\ & \leq C \, \|Sf\|_{p}^{p} \|Sf\|_{p}^{1-p} = C \, \|Sf\|_{p} \leq C \, \|f\|_{p}. \end{split}$$

If Re z=p/2, we will use duality to prove $||G(z)||_2 \le C ||f||_p$. Take $h \in L^2(\mathbb{R}^2)$, $||h||_2 \le 1$; we then have

$$\begin{split} & \Big| \int_{\mathbb{R}^{2}} \left(\sum_{j} f_{j}(x) \, 2^{j(x-1)} \right) h(x) \, dx \Big| \\ & = \left| \int_{\mathbb{R}^{2}} \left(\sum_{j} 2^{j(x-1)} \int_{A_{j}} f * \psi_{t}(y) \psi_{t}(x-y) \frac{dy \, dt}{t_{1} \, t_{2}} \right) h(x) \, dx \right| \\ & = \left| \sum_{j} 2^{j(x-1)} \int_{A_{j}} f * \psi_{t}(y) \left(\int_{\mathbb{R}^{2}} \psi_{t}(x-y) h(x) \, dx \right) \frac{dy \, dt}{t_{1} \, t_{2}} \right| \\ & = \left| \sum_{j} 2^{j(x-1)} \int_{A_{j}} f * \psi_{t}(y) \cdot h * \psi_{t}(y) \frac{dy \, dt}{t_{1} \, t_{2}} \right|, \quad \text{since } \psi \text{ is even} \\ & \leq \left(\int_{\mathbb{R}^{2}_{+} \times \mathbb{R}^{2}_{+}} \left| \sum_{j} 2^{j(x-1)} \chi_{A_{j}}(y) f * \psi_{t}(y) \right|^{2} \frac{dy \, dt}{t_{1} \, t_{2}} \right)^{1/2} \\ & \times \left(\int_{\mathbb{R}^{2}_{+} \times \mathbb{R}^{2}_{+}} \left| h * \psi_{t}(y) \right|^{2} \frac{dy \, dt}{t_{1} \, t_{2}} \right)^{1/2} \\ & \leq C \left(\sum_{j} \int_{A_{j}} 2^{j(p-2)} \left| f * \psi_{t}(y) \right|^{2} \frac{dy \, dt}{t_{1} \, t_{2}} \right)^{1/2} \left(\int_{\mathbb{R}^{2}} \left| h(x) \right|^{2} \, dx \right)^{1/2} \\ & \leq C \left(\sum_{j} 2^{j(p-2)} \int_{A_{j}} \left| f * \psi_{t}(y) \right|^{2} \left| \left\{ x \colon (y, t) \in \Gamma(x), \right\} \right| \frac{dy \, dt}{t_{1}^{2} \, t_{2}^{2}} \right)^{1/2} \end{split}$$

(this is because for each (y, t) in A_j , the rectangle centered at y with side lengths t_1 and t_2 has a fixed portion of its area inside \mathcal{O}_j and at the same time outside O_{j+1} ; see [4], page 186)

$$\leq C \left(\sum_{j} 2^{j(p-2)} \int_{O_{j} - O_{j+1}} |Sf|^{2} \right)^{1/2} \leq C \left(\sum_{j} 2^{j(p-2)} 2^{2j} |O_{j}| \right)^{1/2}$$

$$\leq C \left(\int_{\mathbb{R}^{2}} |Sf|^{p} \right)^{1/2} = C ||Sf||_{p}^{p/2} \leq C ||f||_{p}^{p/2}.$$

Thus, $||G(z)||_{L^2} \le C||f||_p$. This finishes the proof of Theorem 1.

3. The real method. The result for real interpolation we will prove is Theorem 2. If $0 < p_0 < p_1 \le \infty$, then $(H^{p_0}, H^{p_1})_{\theta, p} = H^p$, where

$$, \quad \frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}.$$

Recall that the real interpolation space $(H^{p_0}, \dot{H}^{p_1})_{\theta,p}$ is defined to be the set of all f in $H^{p_0} + H^{p_1}$ such that

$$||f||_{(H^{p_0},H^{p_1})_{\theta,p}} = \left(\int_0^\infty [t^{-\theta}K(t,f)]^p \frac{dt}{t}\right)^{1/p} < \infty,$$

where

$$\begin{split} K(t,f) &= K(t,f;\,H^{p_0},\,H^{p_1}) \\ &= \inf \big\{ \|f_0\|_{H^{p_0}} + t \, \|f_1\|_{H^{p_1}} \colon f = f_0 + f_1, \,\, f_0 \in H^{p_0}, \,\, f_1 \in H^{p_1} \big\}. \end{split}$$

We will need the following results

THEOREM C (Wolff [14]). Let A^1 , A^2 , A^3 , A^4 be quasi-Banach spaces satisfying $A^1 \cap A^4 \subset A^2 \cap A^3$. Suppose $(A^2, A^4)_{\theta,q} = A^3$ and $(A^1, A^3)_{\phi,r} = A^2$, $0 < \theta$, $\phi < 1$, 0 < q, $r \le \infty$. Then $(A^1, A^4)_{\xi,r} = A^2$ and $(A^1, A^4)_{\psi,q} = A^3$ with

$$\xi = \frac{\varphi \theta}{1 - \varphi + \varphi \theta}, \quad \psi = \frac{\theta}{1 - \varphi + \varphi \theta}.$$

Theorem D (Chang-R. Fefferman [5]). Let $0 < p_0 \le 1$, $p_0 and <math>\alpha > 0$. If $f \in H^p(\mathbf{R}_+^2 \times \mathbf{R}_+^2)$, then f can be decomposed as $f = g_\alpha + b_\alpha$, where $g_\alpha \in L^2$, $b_\alpha \in H^{p_0}$ with

$$||g_{\alpha}||_{L^{2}}^{2} \leqslant C \int\limits_{Sf \leqslant \alpha} |Sf|^{2}, \quad ||b_{\alpha}||_{H^{p_{0}}}^{p_{0}} \leqslant C \int\limits_{Sf \geqslant \alpha} |Sf|^{p_{0}}.$$

THEOREM E (Calderón-Torchinsky [3], p. 156). Let $g(t) \ge 0$ be defined and nonincreasing in $(0, \infty)$, let u > 0 and 0 . Then

$$\left[\int\limits_{u}^{\infty}g\left(t\right)dt\right]^{p}\leqslant C\int\limits_{u/2}^{\infty}g\left(t\right)^{p}dt^{p}.$$

Proof of Theorem 2. With repeated application of Wolff's Theorem C, we only need to show $(H^{p_0}, L^2)_{\theta,p} = H^p$, where $0 < p_0 \le 1$, $1/p = (1-\theta)/p_0 + \theta/2$. Again, the direction $(H^{p_0}, L^2)_{\theta,p} \subseteq H^p$ is easy as in the complex case. For the other direction, fix f in H^p for the moment. For each t, take $\alpha = (Sf)^*(t^{2p_0/(2-p_0)})$, where $(Sf)^*(t)$, the nonincreasing rearrangement of Sf, is defined by $(Sf)^*(t) = \inf\{s: |\{|f| > s\}| \le t\}$. We apply the Chang-R. Fefferman decomposition (Theorem D) to f and this α , we obtain

$$f = g_{\alpha} + b_{\alpha}$$
 with

$$||g_{\alpha}||_{2}^{2} \leqslant C \int_{Sf \leqslant \alpha} |Sf|^{2} \leqslant C \int_{0}^{\alpha^{2}} \left| \{ |(Sf)^{*}|^{2} > \lambda \} \right| d\lambda$$

$$\leqslant C t^{2p_{0}/(2-p_{0})} \left[(Sf)^{*} (t^{2p_{0}/(2-p_{0})}) \right]^{2} + C \int_{0}^{\infty} \left[(Sf)^{*} (u) \right]^{2} du$$

 $=I_1^2+I_1^2$

and

$$||b_{\alpha}||_{H^{p_0}}^{p_0} \leqslant C \int_{S/2\alpha} |Sf|^{p_0} \leqslant C \int_{S/2\alpha}^{t^2 p_0/(2-p_0)} [(Sf)^*(u)]^{p_0} du.$$

Now

$$\int_{0}^{\infty} t^{-\theta p} (tI_{1})^{p} \frac{dt}{t} = C \int_{0}^{\infty} t^{-\theta p + p + pp_{0}/(2 - p_{0})} \left[(Sf)^{*} (t^{2p_{0}/(2 - p_{0})}) \right]^{p} \frac{dt}{t}$$

$$= C \int_{0}^{\infty} |(Sf)^{*}|^{p},$$
by a change of variable $\lambda = t^{2p_{0}/(2 - p_{0})}$ and $\frac{1}{p} = \frac{1 - \theta}{p_{0}} + \frac{\theta}{2}$

and

$$\int_{0}^{\infty} t^{-\theta p} (tI_{2})^{p} \frac{dt}{t} = C \int_{0}^{\infty} u^{p((2-p_{0})/2p_{0})(1-\theta)-1} \left(\int_{u}^{\infty} [(Sf)^{*}]^{2} \right)^{p/2} du$$

$$\leq C \int_{0}^{\infty} u^{-p/2} \int_{u/2}^{\infty} |(Sf)^{*}(t)|^{p} dt^{p/2} du, \quad \text{by (*)}$$

$$= C \int_{0}^{\infty} |(Sf)^{*}(t)|^{p} \left(\int_{0}^{2t} u^{-p/2} du \right) dt^{p/2}, \quad \text{by Fubini's theorem}$$

$$= C \int_{0}^{\infty} |(Sf)^{*}|^{p} \leq C ||f||_{H^{p}}^{p}.$$

Moreover,

$$\int_{0}^{\infty} t^{-\theta p} ||b_{\alpha}||_{H^{p_0}}^{p} \frac{dt}{t} = \int_{0}^{\infty} t^{-\theta p'} \left\{ \int_{0}^{2p_0/(2-p_0)} [(Sf)^*]^{p_0} \right\}^{p/p_0} \frac{dt}{t}$$

$$= C \int_{0}^{\infty} \left\{ \frac{1}{u} \int_{0}^{u} [(Sf)^*]^{p_0} du, \right\}^{p/p_0} du,$$

 $= C ||Sf||_{p}^{p} \leq C ||f||_{ren}^{p}$

by a change of variable $u = t^{2p_0/(2-p_0)}$

by a change of variable $u = t^{-100}$

$$\leqslant C\int_{0}^{\infty} \left\{ M\left(\left[(Sf)^* \right]^p \chi_{(0,\infty)} \right) (u) \right\}^{p/p_0} du,$$

where M is the Hardy-Littlewood maximal operator

$$\leqslant C\int\limits_0^\infty |(Sf)^*|^p\leqslant C\|f\|_{H^p}^p.$$

Combining the three inequalities above, we obtain

$$||f||_{(H^{p_0},L^2)_{\theta,p}} \le C ||f||_{H^p}.$$

Thus, $H^p \subseteq (H^{p_0}, L^2)_{\theta,p}$. The proof is complete.

Remarks. 1. The reason why we can only prove the complex interpolation for the case $1 \le p_0 < p_1 \le \infty$ instead of $0 < p_0 < p_1 \le \infty$ is that Wolff's reiteration theorem is not applicable for quasi-Banach spaces.

2. We refer the reader to [12] for a survey of interpolating Hardy spaces on R^n . It is not clear how one can adapt the classical proof to our present setting. For instance, C. Fefferman and Stein in their proof of the result $(L^{p_0}, BMO)_{\theta} = L^p$ used some properties of the sharp function,

$$f^{\#}(x) = \sup_{\substack{x \in Q \\ Q \text{ cubbs}}} |Q|^{-1} \int_{Q} |f - f_{Q}|,$$

where f_0 is the average of f over Q. The two key properties they used are:

(a) The map from BMO to L^{∞} defined by $f \to f^{\#}$ is a bounded map.

(b) If $f \in L^{p_0}$ for some $p_0 \ge 1$, then $f^{\#}$ and f have comparable L^{p_0} norms for $p_0 .$

However, the existence of such an operator on the bidisc is unknown. The most natural analogue of the sharp function is

$$f^{*}(x) = \sup_{\substack{x \in R \\ R \text{rectangles}}} |R|^{-1} \int_{R} |f - f_I - f_J + f_R|,$$

where $R = I \times J$ and f_I , f_J , f_R are the averages of f over I, J and R respectively. But this sharp function fails to satisfy (b) (see [8] for an example). On the other hand, if we let $f^{\#_1}$, $f^{\#_2}$ be the sharp functions along x and y direction, then although the iterated sharp function $f^{\#_1\#_2} = (f^{\#_1})^{\#_2}$ does have comparable L^p norm with f, it does not map BMO into L^∞ . It is the idea in Calderón-Torchinsky [3] and Chang-R. Fefferman [4] which makes the above proofs work.

References

- J. Bergh and J. Löfström, Interpolation Spaces An Introduction, Springer, New York 1976.
- [2] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
- [3] A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, II, Adv. in Math. 24 (1977), 101-171.
- [4] S.-Y. A. Chang and R. Fefferman, A continuous version of duality of H¹ with BMO on the bidisc, Ann. of Math. 112 (1980), 179-201.
- [5] -, -, The Calderón-Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), 455-468.
- [6] C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between H^p spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 74-81.
- [7] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- [8] R. Fefferman, Bounded mean oscillation on the polydisk, Ann. of Math. 110 (1979), 395-406.
- [9] R. Gundy and E. M. Stein, H^p theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1026-1029.
- [10] S. Janson, On the interpolation of sublinear operators, Studia Math. 75 (1982), 51-53.
- [11] S. Janson and P. Jones, Interpolation between H^p spaces: the complex method, J. Funct. Anal. 48 (1982), 58-80.
- [12] P. Jones, Interpolation between Hardy spaces, in: Conference on Harmonic Analysis in Honor of A. Zygmund, Vol. 2, 437-451.
- [13] K. G. Merryfield, H^p-spaces in poly-half spaces, Ph. D. Thesis, University of Chicago, 1980.
- [14] T. Wolff, A note on interpolation spaces, in: Harmonic Analysis, Proceedings, Minneapolis 1981, Lecture Notes in Math, 908, 199-204.

UNIVERSITY OF CHICAGO Chicago, Illinois 60637, U.S.A.

Received April 1, 1985 (2044)

On values of homogeneous polynomials in discrete sets of points

by

P. WOJTASZCZYK (Warszawa)

Abstract. Let $W_N(d)$ denote the space of all homogeneous polynomials on C^d of degree N, restricted to the unit sphere. We show a class of sets Λ of small cardinality such that for every $\varphi \in W_N(d)$ we have $(\int |\varphi|^p)^{1/p}$ comparable to $(|\Lambda|^{-1} \sum_{\lambda \in \Lambda} |\varphi(\lambda)|^p)^{1/p}$. We also show that every subspace $E \subset W_N(d)$ such that $\dim E \geqslant \frac{1}{2} \dim W_N(d)$ contains a polynomial φ such that $\|\varphi\|_{L^p} \leqslant K(d) \|\varphi\|_2$.

We consider the spaces $W_N(d)$ of all homogeneous polynomials on C^d (the *d*-dimensional complex space) of degree N. On those spaces we consider the norms inherited from $L_n(S_d)$, i.e. for $\varphi \in W_N(d)$ we put

$$\|\varphi\|_p = \left(\int\limits_{S_d} |\varphi(\zeta)|^p d\sigma(\zeta)\right)^{1/p}$$

where σ is the normalized rotation-invariant measure on S_d , the unit sphere in C^d . Our main interest in this note is to compare $\|\varphi\|_p$ with its discrete analogue; for a finite subset $\Lambda \subset S_d$ we consider

$$||\varphi|\Lambda||_p = (|\Lambda|^{-1} \sum_{\lambda \in \Lambda} |\varphi(\lambda)|^p)^{1/p}$$

(where $|\Lambda|$ denotes the cardinality of Λ). Our main result asserts that it is possible to find relatively small sets Λ such that $\|\varphi\|\Lambda\|_p \sim \|\varphi\|_p$ for all $\varphi \in W_N(d)$ (Theorem 1). In the case $p = \infty$ this result was obtained by B. S. Kashin in [5] by a different method. In Theorem 2 we give a simplified version of Kashin's proof which has an additional advantage of giving good constants. As an application of this special case we obtain a strengthening of the main result of [5] and also of Theorem 1 of [9].

The author would like to thank Professor B. S. Kashin for illuminating comments and the referee for extremely valuable criticism which led to the complete revision of the paper.

Preliminaries and notation. The natural scalar product in C^d will be denoted by $\langle \cdot, \cdot \rangle$. We will use the unitarily invariant pseudometric on S_d