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The restriction of the Fourier transform
to some curves and surfaces

by
BARTOLOME BARCELO (Minneapolis, Minn.)

. Abstract. Given the curve p(t) =t k> 2, in a compact neighborhood of the origin, we
prove for the restriction of the Fourier transform the inequality

1000y < Cona T

where 1 < g < p//ik+1), p' > max[4, k+1], 1/p+1/p’ = 1 and do is the Lebesgue measure on y.
This result is sharp. :
We also obtain for the “cone” surface I' generated by y:

17 ey < Coll My,

where p' 22k (p >4 if k=2), g =p/(k+1) and do is a natural homogeneous measure on I".

. Imtroduction. In [11] A. Zygmund studied the restriction of the Fourier
transform to the circle S* in R% Later, P. Sj6lin [5] generalized this result to
more general curves in the plane, showing that in a compact neighborhood
of the origin of the curve y(f) = ¢*, k> 2, we have the inequality

1) (jlf(f)lqda(f))‘llq < Cp.q “f”LP(nz)

where 1 <g<pfk+1), P22k, 1/p+1/p'=1 and do is the Lebesgue
measure on y.

The restriction of the Fourier transform depends mainly on the
curvature at each point, and so we are interested in local results. The
theorem remains true if y is a curve with a contact of order k—1 with its
tangent at the origin. Zygmund’s result is recovered by taking k = 2.

A. Rulz [4] improved the theorem by extending it to 1 < q < p'/(k+1)
with p' >4 and q = p'/(k+1) if p’ > 2k

A. Ruiz’ proof uses Geometrical Fourier Analysis, and this allows to

" obtain sharper results than the previous ones, which were obtained by
analytic methods. Moreover, it shows more clearly the behavior of the
Fourier transform that appears in the problem.

1980 Mathematics Subject Classifications: Primary 42B99, Secondary 53A05, 35A22.


GUEST
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In this paper we give a different geometrical decomposition of the curve
and a more careful analysis of the inequalities involved, arrlvmg at the
following result:

Tueorem 1. Let y be the curve y(1) =1", k>
neighborhood of the origin we have

(2) ; ¢ -Ilfi'Lq(y-) < Cp.q“f“l‘p(nz) poak
in the cases 1 <gq < p/(k+1) and p' > max[4, k+1].

Then we show in Proposition 4 that p' > k+1 is a necessary condition.
That p’' > 4 is necessary in case k = 2 was already known (see [10], [11]).
Also, the necessity of the condition g <'p'/(k+1) was' known, by a simple
homogeneity argument due to A. Knapp [8].

In the second part of this paper we study the restriction of the Fourier
transform. to the infinite surface of the “cone” whose sections are as the
preceding ‘curve y(f) = t~.

In order to state precisely the picture we build our surface I' by taking
in the space the curve

2. Then in a compact

(Zﬂtkv t 3):

and then joining each point of this curve with the origin (0, 0,0) by a
straight line which is a generatrix of the surface (see the figure).

0gtgl,

yt)=(2—tk t,3)
0<gtgt

In fact we can ;ake I' to be a homogeneous surface whose section at
helght z =1 has a contact of order k—1 with its tangent at the origin.
" If we parametrize this sufface w1th the cylindrical coordinates

x=rcos 0, y—-rsm@ z=r,

0<0<2r, r>0,

R

icm
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then the Lebesgue measure on I' is comparable to rdrdf. We then obtain the
following theorem:

THEOREM 2. Given I' as indicated above, we have the inequality

3) (lj_lf (ON7do ()" < Cyllf 1l o s,
for every function feS(R®) and p' =2k (p' >4 if k=2), g=pf(k+1), and
do is the measure do = r'*~W/&+D gp 4o,

The measure do that appears in the preceding statement may look
strange at first sight, but it is natural due to the fact that I"'is an infinite
surface and to the homogeneity of the Fourier transform. If we have only a
compact piece of I' we can take as do the Lebesgue measure rdrdf.

In Propositions 5 and 6 we sketch the standard proof of these facts and
also of the necessity of the condition g < p//(k+1), already known by
Knapp’s argument. ' ‘

A particular case of Theorem 2 is the restriction of the Fourier
transform to the right circular cone (take k = 2), which was obtained in [1].
Theorem 2 can also be thought of as a generalization of Theorem 1.

I am deeply grateful to Professors A. Cérdoba and J. L. Rubio de
Francia for their constant stimulus and advice in treating these problems.

1. The restriction to curves.

TueoREM 1. Let 7y be the curve y(t)=(t, 1", k=2, in a compact
neighborhood of the origin in R*. Then for every function feS(R?) we have the
“a priori” inequality

(4) ’ I‘flqu(y) < Cp,q ”f”Lp(RZ)

for 1<g<
=1

Proof. We can suppose, without loss of generality, that the curve is y(z)
with 0 € r < 1.

We are now going to expand the curve a little by a thickness é and
divide the resulting “collar” in rectangles adapted to the geometry of the
curve.

Because there is null curvature at the origin, the rectangles will become
shorter as one moves away from the origin.

To compute the size of the rectangles, if R, is the nth rectangle from
the origin and its projection on the x-axis is the segment [x,- ,, x,], With 4x,
= X,—X,,, letting g(x) = x*, we have

p'/(k+1) and p' > max[4, k+1], where p’ is such that 1/p+1/p’

.

(4%,)* +o(dx,)?

g (xn+ l) =4 (xn) +gr (xn) Axn+gl/gxn)
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and setting

we obtain the difference equation

Ax, = cx@ 0k §UZ,

Solving it we obtain
x, & nAR SV Ax, o nBRk 12,

Now, since the length of the long side of R, is approximately that of its
projection, A4x,, we can suppose that R, is the rectangie of dimensions

n(2—-k)/k 51/& %

and then there are 5~'/% rectangles in the decomposition.

2=kl gV/2

As we shall see in the course of the proof, it is important to observe at
this point that to compute exactly the size and the shape of each rectangle
only would change the constant C of the inequality (4) into a diferent one
independently of é.

If I, is the segment of the curve y inside R,, ¥y, is the characteristic

function of I, -and ¢, is the characteristic function of R, we have

s—1/2

lgf(f) Zl

3—1/2

a1, @de@ <51 7© T aodd
' e N

=12 -2

L]
[§/Q Zl a.rﬁ..(f)d~f|<§ltfllp|| i[,l ay Gu |+

n? n=

_C
]
where 1/p+1/p' = 1. Then to prove (4) it is enough that, for every é >0
sufficiently small, we have

5-12 3~1/2

) Y andul@ly <CO('Y layld n=r giyu
n=1 n=1

icm
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For this, since p’' > 4,
=12 :
(6 I Zl ay Gu(Ol = ( jz 1% 0 3u(©) Y, G B (O P12 dE)HP 112
n= R4 n m

<] [X 00 903 9 (0 )27
R nm
by the Hausdorff-Young inequality, where 1/s+2/p’' = 1.

To handle this last expression, we observe that supp (¢, * ¢,,) has a finite
overlapping when n, m vary (this is a particular case of Lemma 6). Then on
applying Propositions 1 and 2 that follow, the last expression in (6) is less
than or equal to

C(X Iyl lanl® [l * @ (0)* dx)/2

c (Z ‘anls |am|s 5(k+ Lk 5(k+ 1)/2ks 1/2s
< .
= n(k—' 2)/k m(k— 2)/k (In(lk— 2)/k _ m(Zk— 2)/kl + 1).1— 1 >

nm

< C [5(k+ 1k §lk+ 1)/ 2ks (Z |an|q’ n(2—~k)/k)1/p1 (Z Iamlq' m(z—k)/k)ilpl]l/zs
n m

= C[3(E om0k 1) P1]12 < C3 ( fa M 5H)
" n

and so (5) is proved.
Prorosition 1.

5(1( +1)/k 5(}; +1)/2ks

(0] .[z [@n*Pm()'dx < C 710 20K (= 207K (| 2= DIk _ gy 2= 20k 1)~ 1

Proof. We have
Jz (@0 * @ (X dX < || @y * Pl ISUPD (@ % Pl
[ ]

To compute |supp (¢, * @,)| = [R,+R,| observe that the thickness of R,
(resp. R,,) being negligible compared with the length of R,, (resp. R,) if n # m,
the size of R,+R, will be smaller than two times the area of the
parallelogram made up by the vectors u,, u,, where

u, = (4x,, dyy)
and Ay, is the projection of R, on the y-axis. We have
Ay, = A%, g (x,) = =Pk G k=1 = ng

and so
u, = (n(2~k)/k 5l/k’ na), U =~(m(2-k)/k 51[k, m&);
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therefore ‘
2Rk Sk s

= C§k+ DIk (n(2-k)/k f— 2= blky
(2= Rk GLUE s

®)  IRFRJ<C

The greatest intersection of R, with Ry, Apm, if n#m is
A 2 ac

where ¢ =0, ¢ = b/sin o = §/sin o and

(e Dk (2= R0k (2= B - -
sin o :lu‘ Xty = 0 2/|k (2= 1)k (2 — )k | = §U= Wk pl2k DI — 2= DI,
fuq Jug 0% m n
/Z‘
[ A/
¥
Anm
Therefore
52 Sl Lk

(9) A < Sin o = [ DT B
and since

“(pll* q7m”m < Anm

bearing in mind the case n = m, we finally obtain (7) from (8) and (9).
ProrosiTION 2. We have the inequality

letol®

;nn(k— 20K = BV ([ 2K~ 2K (k= 237k o= T
C(Zla |q n2- k)/k)llpj, (Zl ' m2= k)/k)‘/l’l
m
whenever
11 4
S =1, = e s=q, > 1,
q+q' q 1 P q q
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Proof. The proposition can be thought of as a discrete analogue of the
following Proposition 3, its continuous translation, where

k—2 1 2k—2
o= % (—;1“), M=—-k—‘, B=s5~1, p=p;.
PRQPOSITION 3. Let f,gelP[1, ). Then

F(¥g)

(10) ] 15 Ty Ay < Clifly gl

whenever

1 1 11
I+—==4+MB+22, =-+==1, 0<f<l, p>1, M>=1.
r p p P

Proof. Taking the bound x™— y™ > (x—y) in the denominator of the
integrand and applying Holder’s inequality and fractional integration, we
would obtain the same result but with the condition 0 < M < 1. This
restricts to be p' > 2k in Theorem 1. But we have to bear in mind that the
“singularity” is not (x— y)” but, if for example M is an integer, it would be

(M —yMYP = (xmp) (ML XM 2y ML

and this allows us to take 0 < f < 1, as we want.
Taking absolute values inside the integral (10) we can assume f(x) >0
and g(x) = 0. We separate now the integral into three pieces:

f (X9

!;‘TM_MH-I dxdy = (a)+(b)+(c)

where
o S(x)g(y)
@= 1| 517

f™e) dxdy

1285ly<2 XY * (M= yM+ 1)

dxdy,

(b) =

. S(x)g(y)

L EE i

We will bound (a); (c) can be treated in a similar way. For (a)

(&) = ] 19 () dx <1l Ikl
1
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if 1/g+1/q¢' =1 where we have put

_ 9 g(» 12 gO)dy
) = | ey 7 Y <= Ly 1y
1
=;27;h1 (%)

We will now show that h; (x) is of weak type (p, 4,):
Lemma 1. If 14+1/q, = 1/p+MpB where 0 < f <1, M 21, q; < 0, then

‘ o
{x| h(x) > A} < c(ﬂiﬁ) _

Proof. By the homogeneity of this inequality we can assume ||gl/, = 1.
Then

© g0)

g
LTy |

hl (X) - |x~y|>1]x—'y|Mﬂ

dy<C dy =kxg(x)

the kernel being

ift<1,
if t>1.

0
k(t) = {1#1‘!3
Given a real number u that we shall fix later, we can truncate the kernel
as k =ky+k, where
ky =k xom Ko =k X0
But kxg(x) =k, *xg(x)+k, *g(x) and

ke *g () < llklly -llgll, = llkolls  L/p+1/p =1,
with
., 2 dt M
||km||;, = " T ~u Mpp'+1
n

because MBp’ <1 is equivalent to g, < oo, Therefore putting

[k ooll = = M+ D:110" =
we will have k,*g(x) <A and
[{x] y (2) > 22} < x| ky#g(x) > A +1{x] ke #g(x) > A}

: ko#gll® k17 llgll®
= 1{x] ki eg0) > 2y <l Wl ol
_ Wkl

A

icm
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But
L dt
IK4lly = I‘T, H
1t

if MB>1, |k, =constant, but MB>1 implies g, <p and then
1/47 < 14", while if MB <1, ||K,|l, = p~™f*t and

ety _u*1 1
FE T 20

because

since 1+1/q, = 1/p+ MB.
We shall now see that h(x) is of weak type (p, q):
LemMa 2. If 141/q = 1/p+MB+2a where 0 <f <1, g<o, M>1,

1= g ("MBY DAy ”“lm

then

11 by > < ¢ (14l .

Proof. As in Lemma 1 we assume |jg||, = 1. Since
1
h(x) < ;2',"11 (x)’

for A+B =1 we have

(el B> AU < U] 1/x% > G4 +1{x) by (9 > 221,
But
Hxl 1/%2* > A4)| < (1/AV/2

y=1/x?

A4 =

(1/AA)|I2a

and by Lemma 1
I{x| hy(0) > A%} < C(1/AB
with 1+1/q, = /p+MP. Taking 4 =2aq, B = gq/q,, the condition of the
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statement of the Lemma, 1+1/g= l/p + Mf+20, implies A+B =1 and

then
1 \!/2a 1\¢ 1\
1 h(x)>i}|<(;,z) +C(,1B) <C(;>~

LeMMA 3. If, in addition to the assumptions of Lemma 2, g > 1, we have
the strong mequahry

Kl < Cligll,-

Proof is a straightforward application of
interpolation theorem.
According to Lemmas 1,.2 and 3 we obtain
f (x)g(y)
11 (a) =
an ) iix P —y T 17

ClIfllg Ilgl!p = ClIf1l5llgll

because if p’ =¢, Lemma '3 works and also ¢' = p.
We will now bound the integral (b):

the Marcinkiewicz

dxdy < || flly 1]

F¥g0) T
b) = dxdy = ( f(x)1(x)dx
®) 1/285y<2 XY (IxM— yM|+ 1) y "1f (1)
where I(x) is such that if x = 2" with n> 1 then
e[ o SO
Tt Xy (M= yM 1)
Since
min (xM~1, yM Y x— ) < M — yM| < max (M, yMT ) [x -y,
for x ~ 2" we have
P 10))

() =
N e T
and therefore
1 g0

l(x) 2¢+(M 1)8 j‘(lx y|+1)ﬂ y.
Levma 4. [f 1+1/q = 1/p+Mﬁ+2a, 0<p<l, M>
4
Hx| 1(x) > A} < C(”g;{l,,) '

Proof. We can assume ||g||, = 1 by the homogeneity of the inequality

1, g < 00, then

icm
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and we write

1
109 < zzrpr=my h2 ()
where
f q(»
i (x—yl+1)f

By a fractional integration theorem ([7], p. 119) we see that h, (x) is of weak
type (p, g1}

hy (x) = dy.

{xl ha(x) > A} < C(1/)™
provided that g, < co, 1+1/gq, = 1/p+p.
Taking now
A=Q2u+M-1)p)g, B =q/q,

by the hypothesis of the Lemma‘ we obtain A+ B = 1. Then

Hoxl 1) > A} < o] xM@er 00 5 G 4 {x] by (x) > AP}

c 1 1/(2a+ (M- 1)5) 1 a3 1\e
<Clo — ] =Cl=
(M) +c @) c (1) .

By the Marcinkiewicz interpolation theorem, if we suppose also g > 1,
we obtain

lly < Cligllp,
SO

(12) (b) = ff(X)l(X)dx e 1l < ClIf Nl Nlgll, = ClLA I Hlgll,

because g’ = p. :
Finally, joining (11) and (12) and remembering that (c) is similar to (a)
we have

Fdxdy = (a)+(b)+(c) <

Wt 1890, CIfl, Vel

Xy (XM =M 1)

and this concludes ‘the proof of Proposition 3.

We are now going to show that Theorem 1 is sharp. We recall that the
necessity of the conditions g < p'/(k+1) and p’ > 4 if k = 2 is already known.
Thus in order to show the necessity of the condition p’ > max[4, k+1], all
that we need is the following result:

Prorosition 4. Theorem 1 is false if p'=k+1, g=1.

Proof. If we had the estimate

1711y < ClNr sy

4 -~ Studia Mathematica LXXXIV/1
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for every function jeL**V%(R?), we would also have its dual bound

g do lyps1em2, < Clgll

for every function ge L*(y), where do is the singular Lebesgue measure on .
Taking g = 1 we would have

ll(do ”Lk+1(n2) <C

and this is false as we shall see now.
Indeed, if we parametrize the piece of the compact curve y with

y: [0, 17> R,

then by the definition of the Fourier transform

y) = (u, u),

1
(dof (5, 1) = [~ ! ] d

e—Zni(us-l-ukl) /1+k7 =2 gy

[cos (2m(us+u* 1)) /1+ k2u?* "2 du

Oty 1 Oty =

1 N r st
—i [sin(2m(us+ k1) /1+k*u™ "2 du.
‘' 0

Since |(do) (s, f)] is greater than or equal to the absolute value of its

imaginary part and /1+k>u2*"2 is bounded above and below by constants,

to prove

ll(do) ”Lk+l(nl) =
it is enough to prove

M (s, Dl 1 g2, = ®
where

I(s, t) = }sin (27 (us + v 1)) du

If we assume s > 0, t > 0, then making in this last integral the change of

variable
. v=us+utt =uls+ut),
_ dv
dv = (s+ktut ") du, du= STt
gives
s+t o
) 16,0=| sin (2mv) dv.

o S+ktuF~1

icm°
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We separate this integral into two pieces:

(i) If s < krw* ™, then keu* < v < 2ktu, and we write v =~ kri*, because to
put v = ktu* 1nstead of its exact value does not affect the calculations that
follow. In a similar way we can write

dv dv
du Xy X e
ke Ak =Tk

(i) If s> kn*~!, then v = us, du = dvfs.
Now if s = ktu*~" then u = (s/kt)/*~ 1, So

kbl /s\Uo=D G \1/6—1)
“pen(y) =<(})
and the integral (13) is

ki 1/tk—1
1 cstin z ) sin (2mv) 1 s
e ot
ek Hk=1)

v=us+ut = (k+1)t*

I(s, 1) = sin (2rv) dv.

flvl=sin(2xv)

1%%
N %

le sin (2nv)
3 ROk

e
mlA

But

>0 if0<C <

e

-+

NN
fl
Bl

Thus if (s, t) is such that
(14) =13+

then

ml»—
Blw

g\ k1)
<c<? <3+i=

s+

1
I(s,t) >~ [ sin(2nv)do,
S 3ja

and
s+t
| sin(2nv)dv = 15

3/4
for all pairs (s, t) such- that

2n+1 1 2n+1

- < <
(15) 3 8\S+t\ 2

=1 integer.
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The condition (14) reads
Ct'r s CytV* with C, < C,

and thus if R is the region of the plane formed by the pairs (s, 1), s = 0,1 = 0
fulfilling the conditions (14) and (15) (see the figure) we have

oy 115 = [ (s, ) dsdt
R

’

cortlk (1

»
2 C; J‘ _[ (m) dsdt 2> Cy r Wd[
it

Iy cqilhk

where I = {t| (s, t)eR}.

¢

The integral diverges if (1—p/)/k+120, thus if p’<k-+1 we have
lido) |l = 0.

2. The restriction to surfaces. Let I' be the infinite cone surface whose
sections are like the curve y(f) = t* as stated in the introduction.

Tueorem 2. We have the inequality
(16) (}[W(ﬁ)l" 2= Rftk+ 1) dr-d@)”" < C,,[]fl[mﬂ)

Jor every function feS(R®) with p' 22k (P >4 if k=2), q= Pk +1).

Proof. In order to prove (16) we are going to make a suitable
decomposition by cutting I' into different pieces.

We can assume that I' has its vertex at the origin. We divide I into
dyadic blocks I',, ne Z, where I', is the part of the surface whose height z is
such that 2" z'g 2" L

We take the curve y formed by tlie intersection of I' with the plane
perpendicular to the z-axis at height z = 1 and divide y into 5~ /% segments

I, v=1,2,...,6"

icm
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as in the proof of Theorem 1. We recall that I, is the piece of y at angular
direction v and with length y(~®/k §lk

If a, = v¥*§* is the origin of I,, we join each a, with the cone vertex
along generatrices and so the surface I' is cut up into 6~/2 triangular
strips T,.

We cut now each I', into § /2 sections perpendicular to the z-axis and
equidistant from each other, of length 2762, and we expand I' by
homogeneity in such a way as.to have thickness &r at height r.

We then obtain the “fat” cone I'*, divided as we wish:

Ir* = U anv
njv
where Q,;, is the block of dimensions
zﬂv(Z—k)/kéllk X 27151/2 in&

which is at height z = 2"+2"§'2j and at angular direction 6 = v¥*§'/*

8v2

w2k g1k

To prove (16) it is enough to prove it for functions f that are constant
in each Q,;, and show
4 1/a
df)

oo 5= 12 51/2 iy
njv o~
Z X X gamenm P
t+oo 812 571/2
SC( X X X laylrs 2%

§-+0 n=—w j=1 v=1
n=—c j=1 v=1

a7  lim (%

where a,;, is the value taken by f in Q,, and @, is the characteristic
function of Q.
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By duality, for 6 > 0 fixed and small enough, (17) is equivalent to

(18) COY||3 @y upy

njv

a’l \4 <
Z QIR Pup|| <
P

where p’, ¢’ are the conjugate exponents of p, g respectively.
In this way, since p’ > 4 we can apply the Hausdorff~Young inequality

k k .
and writing }—3——-~ = F we obtain

tg
(tosael <)

njv am!p d 1/2s
2 Z Z m 3k/p’ om- 3k/p' (/)njv * (pmlu (X) X

nm jl v =

(l
Z 2n 3k/p (p"f\'(

<(s

adyiy d 1,
S (Z (I Z Z#ﬁ%lﬁ/?(pnjv*@n-r,l,u(x)
’

20 n jl v

<CT+Y)™

(a) (b}

ls 1/s\1/2
tlx> )

where ) is the sum in r with r > [log, §| and Y. is the sum in r with 0 <
(a) (b)
< |log, 6.
(i) First case. We are going to estimate Z which corresponds to all pairs

(m, n) with m < n, r =n—m > |log, |, that 1s with 2" < 82",
Therefore, for fixed r =n—m, we have except for finite overlappings
independent of §

((pnjv * (pmlp) .((pnj’v' * (f)ml’u’) = 0 lfj #J’ or v 5£ V’
whereas
Supp ((pnjv * (pmlu) = supp ((/)njv * (pml’u’)

for all I, 4, ie. for §7Y?-67"2 = §~* pairs of indices. Consequently

a.., a ls 1/s
(19) (f Z Z = 3k'/'iv 2:lak/p Prjy * Pty (X) c!x)

Ian,/vl . s
< c (Z 2n-3ks/p’ 2m‘3ks/p’ “(P"]V * Z aml# q)mm (x)la dx
njv In

5—1(.\-—1) Ia jvlsla " Is ! 1/s
c (Z ; L s gty 1Py O () dx) :
nojv iu

But now

_f"f)njv * Oty (x”s dx < CsU T+ G+ /l(z_k)s/k Y= kik p3ms o3

icm
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”(pnjv * (pmlu” oo

~ !SUPP((Pmm)I — 51+1/2+ 1/k 23m#(2_k)/k‘

|supp ((pnjv * (.pmlu)l o~ ISuPp ((Pnjv)l = §1+1/2+1ijk93n V(z—k)“ﬂ

Thus the expression (19) is less than or equal to

(20)

51 —s5(1+1/2+1/k)(.\'+ 1) 23ms 23n

ranjv's lamlyl

n jl v

c (Z Z Z 2;-~3ks/p' 2m~3ks/p'

Lemma 5. We have the inequality

2y

whenever p,s = ¢,

(0= sl TR

s 172

55

Iaj Isla } ’S —(s— k- 1/, ¢ k- 1/p
AL mip < C& (s—1)/2 (Z Ianjvlq \J(k Z)/k) Pl (Z ]amlu[q u(k 2)/k) 1
v "

(k= 2)sk (k= 2)/k
oy sfk /

Proof. We write

where

g =pfk+1)

|a 'v|3|aml ls
Zﬁr%mkf—mf ZAVA# P ZAB
v
PR
v (k—zwc»l/pl’
k=2 k=2 1 _(k=2)(k—1)(s~1)
TV Tk m 2% :
ko2 k=2 L (=2t =)
=TTk T % :
Aﬁ‘
Bv_}“:,;)u#ﬂ'

Because of 1 < p, < co, by Holder’s inequality we have

gA‘,B,, (ZAm)l/m (Z BF])I/pl

(22)

Now

v

Piy1/pt
u
)1 i

1 1
Py

P1

)Pi)llpi
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with
a2\ el 17 1/2:(2 = kyjk+ 1)1/}
_ 2-RIPL A 5 1242~ “1/py
( Z ap‘l) —'( Z v ) =%
v=1 V v=1
= § = 1(s—1)/2k
and
A y 5—1/2 Y
u r1\1/py ~ 8P 2 —(s— PiyL/p
LA SEAD) (X w5 ik (p gl
H H n u=1 [
since
5= 1/2
( 2 'u"ﬁp’l)l/ﬂﬁ ~ 5"1/2'(—ﬂp'1+1)‘1/17'1 = §—(s= 12k
n=1
Therefore

(ZBg’x)l/Pi < 5—(k—1)(s—1)/2k5—(s-1)/2k(z A‘f:l)l/ﬂl
v »
- 5—@—1)/2(2/1‘1:1)1/171.

M

Combining this with (22) yields (21) and Lemma S is proved.
Bearing now in mind that
5= 1/2

5 (Dl 27087 < 5N (7 iau s
v

Jj=1 Jv

applying Holder’s inequality (since p, > 1), substituting (21) into (20) and
grouping terms we finally obtain

I < C2-r(3s=3/2s ghis— s X |17 V2RI §1+ 172 17k 23n)1/"1

n o jv
’ - —ml y
. (Z ‘an—r,l,ulq #‘2 k)/k51 +1/2+1/k 23(n r)) /Pl] 1/s
I
< Cz-r~(3:- 3)/2s 5k-(s— 1)/s (Z [anjv,ql v(z—k)/k 51 +1/2+4 1k 23»)2/1’15
njv
where we have used
2/, 2,
Z Al P1 < (Z An) /Py
n n
with
A,, — (Z ,anjvlq, V(Z—k)/k 51 +1/2+ 1)k 23n)
v

which is correct if 2/p, > 1, and this is equivalent to p’ = 2k.
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Then finally
— anjv an—r,l,u 1
2= Y (IR Y st Gupy* Pac i ()] dx
m r?llcgzﬁ[( il om3k/p 2(n=r)-3k/p njv n—-rlu

< C Z 2—"(3&—' 3)/2s ék(s— 1)/s (Z Ianjvlq' v(.’l —k)/k 51 +1/2+1/k 23)1)2/11’
r2|logy8| njv
S C5(3 +2k)(s— 1)/25(2 lanjvlq, v(Z‘k)/k 5 1+1/2+1/k 2371)2/11' X
njy

(ii) Second case. We are going to estimate

Z anjv an—r,l,u d s
Z 2 3k[p = n)-3kp Pnjy * Pp—r,1p (x)| dx .

(b 0Sr$]log26|< nojlowu

r=n—m 2 |log, 6| means 2" > 62", that is, the diameter of I'* is bigger than
the thickness of any block in I'*.

For fixed r = n—m and the angular directions v, y1, we want to know to
how many supports of the type

supp((Pnjv* (pmlp): j5 V= 1': 2; cees 6-‘1/21
a point inside the integrand in ) belongs. This will be the vertical
®

overlapping.

In order to do this, we observe that if 2" < §1/22" that is, the diameter
of I'% is smaller than the height of any block in I'*, then

SUPP(Pnjy * Pt} N SUDD (P * Ppuery) = D
except for
—jl+v—v|<C
where C is a constant independent of 4.
On the other hand, if we keep ¢,;, fixed, then
SUPP (@njy * Priku) O SUPP(Pujy * Pricry) # D

for certain indices k' and y'.

If we fix the angular directions y, u' in this last intersection, it will not
be empty for all k, k'. Thus, with fixed angular directions, a point will belong
to at most Y/ supports at the same time.

m
W rings I'¥,, where I'¥*, is the

If 2" > 612 2" we consider in I'}; the
ring of height 6'/22" obtained as the union {J Qp, with p varying over all
kop
angular directions and k such that

51/2 ] < 51/2 om ke < 51/2 2"(l+ 1)

|
i

!
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Hence

[r i+ Supp((/)njv)] n [[ml’+SL[pp((Pnj’v")] #* (b
for I4j = I'+Jj', while this intersection has a finite overlapping independent of
5 if I4j# I+

Hence, fixing n, m, a point in 'y +supp(g,;) belongs to at most

m

()1/2 2n
different sums of this kind.
Since

SUPD (@i * Y. Prag) O SUDD (Pjy % 2. Prir) # D
# u

for all k, k&' with supp(z i) < Tty and supp (Y, @) = Iy and there are
I3

2""™ such pairs of mdlces, it follows that a point in supp{g,; %Y. Qu)

belongs to at most »

om on
(5_1/22n> (m) o” 12

different supports of this class.
Therefore

a" v q, 1./5‘
(23) (‘ Z Z 2n 3k/{1 2::“3“’(/11’ (prljv * (pmlu (x)r dx)
n Jjt

5 1/2:(s—1)

1/s
<C (Z Zl:mm;—s TI3 gy Pagy * Y. Gt Prnt (x)l”dx) .
[ [ v I3

Now, for fixed r =n—m and j, I, we are going to study the horizontal
overlapping and for this it is enough to observe the size and distribution of
the different supports

supp ((pnjv * (pmlu)

i
m

icm
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in the plane S, which is perpendicular to the z-axis at height
z = 2" QM4 S On g I§1/2 o
We shall have
IZ Qnjv (pnjv * z [ Pl (X ' Z M(V u)s ! Ian_]u, ]amlux H‘pnjv * Qi (x I dx
where M = M (v, ) is the overlapping function. That is, for fixed r = n—m, j
and [, M (v, ) is the maximum number of other SUPP(@yjy * @my}'s a point
in supp (@, * @,y,) can lie in.

The geometrical situation is complicated because the large side of Qi
may be smaller than the large side of Q,,,. We are going to distinguish and
treat separately each of the following four possible cases, depending on v, u:

(8) p2hkom < @Rk gn (2= hlk (2= Dk _ 2k= 2Ky < pn=m

(b) 'u(z k)fk om < v(”l ky/k 2", #(2 k)fk (v(lk 2)fk _ 'u(Zk l)lk) > 2n—m

(C) p2= Rk Qm 5 \(2=Rfk g (2= Rk (y(2K= 20k _ 2k =2k

(d) ,”(Z_k)/k om > v(Z-‘k)/k 2n’ ‘u(Z*k)/k(v(Zk—Z)/k

gu—m
>

\\/ﬁ’\\

(2k— 2)/k)

on—m

u

(c) (d)

[—F

Lemma 6. (i) In cases (a), (c) we have the bounds

2n— m ”(k— 2)/k

M< V@D D 1 ] ifvsp, or pu<v with M <
Qn=m(1/2+ (k= 1K)
M < [V 20k (=23 3] fu<y with Mzu

(i) In cases (b), (d) we have the bound
M <4.

Proof. The technical proof is done at the end of the proof of Theorem 2.
LemMma 7. For each of the preceding cases we have:
(a) "' I(Pnjv * (me;L(x)P dx S C5(1 +1/2+1/k)s+1) 23n 23mx v(2—1\:)/1: #(Z—k)s/k_

“(pnjv * (Pmlu (x)|s dx

2n(2+s) 2m(23+1)
< C5(1 +1/2+ Lfk) s+ 1)

‘,(k" 2)/k H(k_ 2)/k (l V(Zk— 2)fk __ #(Zk- 2)/k| + 1):— 1°



GUEST


60 B. Barceld

(C) J‘I(Pnjv * Py (X)Is dx < CHU+ 12+ 1/k)s+ 1) gm(2+5) gm(2s+ 1) (2~ k)s/k H(Z~k)/k‘

@ Jl@ngy * oy (2" dx

21:(2-“') 2m(2s+ 1)
< C5(1 +1/2+ 1/k)(s+ 1)

v(k— 2)/k M(k—l)/k (W(Zk" 2)/k _u(zk- 2)/k| + l)s" 1

Proof. The proof is similar to that of Proposition 1 with obvious
modifications.

According to Lemmas 6 and 7 and considering that in case (¢) we have
Rtk gm 5 y@-kkon and in case (d), M2 Rk YETBKIE  after some
computations we arrive at

“Z anjv (pnjv * Z amlu (/)mlp (x)ls dx
v "

2n((3k-— 2)s/2k+(3k+ 2){2k) 2m((3k~ 2)8{2k +(3k~ 2)/ 2k} |anjvls |am1ulx

= = = = S 1
0= BhsTh =2k 2k =20k (2R =B/K[ )

Inserting now this expression in (23), applying the fractional integration
of Proposition 2 and grouping terms, we have, noting that p, s = ¢/

s 1/s
dx>

< C2 1= ks Sk+ Vs~ 1)/s(z (Z !anjv'ql 23n (2 - k)fk sltya+ l/k)llm
n o Jjv

. - - N 1/p1\1/s
(;: [an-—r,l,u‘q 23(n " 'u(Z k)/kbl+1/2+ 1/k) Pl) “
pl

anjv an-nl,u
(j. Z Z 2n~3k/p’ 2(,,—;).31(/,,' (Pnjv * (pn—r‘l,u (x)
n jl vu

. Taking now p’ > 2k, like in the first case, we obtain

Z(Z‘anjvlq'zanv(zw)/k(;l+1/2+1/k)1/111(2lan_rl“‘q, 231 (2= lk g1+ 12+ I,k)1/p1
n v lu

< (Z lam'q' 231 y(2~Kfk §1+1/2 +1/k)2/ﬂz .
njv
From this it follows that

Z < C( 2 s~ l)lks) 5(k+ IMs— 1)/ (Z Ia"lvlq' 23" vkl-k)/k (\51 + 12 l/k)Z/q’ .

(b) rz0 njv
But
Y 2-re= s o L o8-l
5o Tlog2 ks

and so, bearing in mind that 1/g = (k+1)(s ~1)/2s because ¢ = p'/(k+1) and

- ©

Restriction of the Fourier transform 61

icm

2/p'+1/s = 1, we finally obtain

<+
,

a) (b

anjv ~ -~
Z SR+ 10174 Prjv
njv

< Callq (Z lanjv’q' 2371 V(Z —k)k 5(1 +1/2+ llk))llq’

njv

which is (18) and the proof of Theorem 2 is done.

Proof of Lemma 6. We study the whole geometrical situation in the
S plane. In cases (b), (d) it is clear that there is a finite overlapping and so
M is bounded by a constant independent of the decomposition. Case (c) is
similar to (a).

We thus treat case (a). For fixed v, u we project

SUpp ((/)njv * (Pmlu)

on a straight line r perpendicular to the direction of the larger side of Qi If
we take supp(@n.+1), the projection of SUPP(Pujy * Pm1p+1) OR F S

displaced a distance d, with respect to the projection of SUPP (Pnjy * Ppar)s
where d, is the length of the larger side of supp(gp,,;,) on the line r, that is,

d“ = 51/k om N(Z - k)}k sin lau —avl ~ 52m H(Z—k)/k Lu(Zk- 2k _ v(Zk-— 2)/kl

where «, is the angle formed by SUpPP (@) With the axis x =0, and so

sin o, & C (u2 511,

e

The respective projections are further away or closer to the origin
according as u<v oor v< .

If for example u = v and we take u+1, ..., u+M, (with M, < 543,
then

Supp ((pnjv * (pmlu) [l SUPP ((pnjv * (pm,l,u+M1) = 0


GUEST


62 B. Barcelé
if
(24) dytdyer+ o dyipg, > 82"

because 82" is the thickness of supp((pmv)
In order to find the overlapping function M we must take the first M,
such that

(25) Ayt dy i+ oo dy gy, > 02"

and then M(v, p) = max{M;, M,}.
We must be careful, because it could be for example that in (24) no M,
satisfies the relation because we arrive at the end 6~ /% and still

. i oo d gy < 52"
or that in (25)
' ’ dytd,y+ ... +d, <2

We must then consider these possibilities.
Similar considerations can be done in the case u<v

(1) Let < v; two cases can occur:

(1.1) dy+dy+ ... +d, 262"
or

1.2) dy+dy+ .. +d, <020

(1.1) In this case, if we take f(u)=d,, then f is decreasing because
f/ (M} =g (g’:_l;__lfv&k« 2)/k M(Z—Zk)/k__. 1) < 0;
this tells us that

ditdyy+ o Fdyy <dy+d o Fdyy

and so the most unfavorable case shall be to take the first M such that

dytdygi .o dyyy 262,
As

M
Qb dyi oot gy = 02" Y (e )20 (2 2 (4 32K~ 2K
J=0 '

we are looking for M such that

M
Z (” _’_j)(z— k)/k (V(Zk-— 2)/k __ (‘u +j)(2k- 2)/k) ~ Ll
i=0

Restriction of the Fourier transform
(1.1.1) If M <2u with p < v/4, then

M
mem oy Z (“ +j)(2~'k)/k (v(2k- 2)/k __(‘” +j)(2k—2)/2)

i=0

> M,LL‘Z - k)k (v(2k -2k __, #(Zk— Z)Ik)
because
# S. M+/ < 3” aﬂd v(2k~‘2)/k__(‘u_+_j)(2k—2)/k ~ v(Zk—ZJ/k
for every j; so

2n— m M(k —~2)k
!V(Zk—- 2)/2 __u(2k— 2)Ik| +1 '

M<
(1.1.2) If M > 2u with p < v/4 then

M
Z ()2 k)/k(v(Zk DIk _ (14 )2k 2)/A)

M
= VIR T (g eI ()
i=0 j=0

~ g V(Zk = 2)/k ((IJ + M)Z/JL — 'u2/k) — _;12 ((H + M)Z — MZ) =~ v(Zk— 2)/k M 2/k __ MZ .

But M < 2"™"/y since

M
n-m o~ Z (#+j)(2~k)/k(v(2k“‘l)/k_(#+j)(2k—2)/k)
j=0

M
Z () o — =) (uet )% D

M
= Z (v=p=j) =M+ ((v—p—M/2).
Hence M < 2" "/v and then

20 m oy (2K 2 NI LD o €2 (2K 20k pp(2- 200k q)

on-m (2= 2k)k '
2k~
s (E) T

V
that is,
2(:»-"' my(1+(2k~2)fk)-1/2 2(!1“ m)(1 +(2k— 2)/k)+1/2
v(2k~ 2)k = lv(Zk-— 23k 'u(2k~ 2)/k; + 1 "
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(1.1.3) u = v/4; in this case
M M
21]'—m ~ Z (“_I_j)(z—k)/k (V(Zk—2)/k__('u_+_j)(2k~—2)/k) > v(2~k)/k Z (V'—',lt-j) ﬂ(k—-Z)/k
j=0 j=0

= M{(v—p)—M/2),
S0 .

(1.2) In this case we shall take M =max {M, M,, M3}, where M,
=v—yu, M, is the first M, such that

dytdy—y+ . Fdy gy, =02
and M, the first M; such that
dytdyi gt Fdyy g, 202

(1.2.1) We are going to bound M, =v—pu.
As dy+d,_+ ... +d, < 52",

V-
gn-m > Z (V _j)(Z ~k)k (v(lk - 2)k (V — ]-)(Zk - 2)/k)
=0

k .
=~ E(VZ/k _ ”Z/k) v(Zk 2)/k *"%(V?' — NZ) ,

(12.1.1) If u<v/4 then

_ k—1
qn=m > ) v2 =~ ‘/2;
therefore
2 Qn=m)(1 +(2k - 2)/ky2 n=m)(1 —(2k- 2)/K)/2
M, vg20mmiZ g ~ )
v(2k 2)/k |v(2k -2k __ M(Zk - 2)/k' + 1

(12.1.2) If u = v/4 then

" v p
N2~ k) k ko~ A2k~ ~ - - il
.zo(v __.J)( ) (v(l Z)Ik_(v __J)(lk 2)/2) o~ H(Z k) H(k 2)/2 Z j o (V*"‘/.t)z,
I= J=0

SO
gr:—m N on~m Iu(k =2k
v—u - |v(2k-2)/k__‘u(2k-2)/kl+ 1 '

M;<v—pu<g
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(1.2.2) We are going to bound M,. This is easy because

My
s 2 (u—j)2=hik (v(2k~ Dk _ (4 — )2k~ z)/z)
Jj=0
My
> .ZO B (2= 20k _ (2K~ DKy = (M, + 1) y@~ 00k (V2= Dk _ (2= 2y
j=

from which we obtain the desired relation.
(1.2.3) We are looking for M; such that

M3
on=m o Z (v j)2 ol (v )2 20— yi2k= 20k
Jj=0
As
M3 M3
(V +J‘)(2—k)/k ((V +j)(2k— 2)k __ v(2k— 2)/k) 2 Z (V +j)(2-k)/kjv(k— 2)/k
j=0 j=0
My /oy \Gk-2)fk
=y <‘——‘> iz M3,
j=0 \V+J
it follows that M, < (2""™2; therefore if u > v/4 then
on—m #(k— 2)/k

(2n--m)1/2 S

lv(Zk —2)k __ #(Zk— 2)/k| +1

because the quotient is as 2" ™/(v—u) and (v—p)? < 2" ™ like in 1.2.1.2,
while if u < v/4 then
2(n—m)(1/2+(2k-2)/k)/2 ?

—m1/2
My <@ Mg = 1]

S DR

—u
as in 1.2.1.1.
(2) Let now > v; as before, there appear two following cases:
(2.1) dy+dyry+ ... +d, = 02"
or
(22) dy+dyp i+ ... +d, < 52",
(21) f(4) =d, is an increasing function because

F () = 82m (] +k%2 (2= 20k u(z—kwkﬂ) >0

and then the most unfavorable case is to take the first M such that

At dyo g+ ol =82

5 ~ Studia Mathematica LXXXIV/(
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As
M
R T NV i ) i (T e L L PP
j=0

we must find M such that

M
Z ('u_.j)(z—k)/k(('u____j)(Zk--Z)/k~v(2k'— z)/k) o onm
=0
We shall use Abel’s summation formula, which reads
M

M
Y a;b; = sy bo+ jZO(SM_SJ)(‘bJH ~b),

j=o

where s; = ag+a;+ ... +a;.
In this way

M
Z ()2 ()25 D62k 2)/k)

Jj=0

M
- Z (1t — )21k (2= 2Dfk _ (2K~ [k
j=o

k M
=5 T (= (i MY 20
j=0

But

(=) = (e MPE) (= )P () 2R DIy 2 DR 2 b
'
because for v¥* g (u— M)>*

(== (= MYP* < ()P — 2
and
(% = ) 527 ()2 Dy 28 208 2,
since this last inequality is equivalent to

(=)= =2 (g = 28 D g 2
and
v(2k~ 2)/k (ll __j)(Z“k)/k S vl/k (,“*"'j)(k - 2)[k

because

2k = 2)fk— 2/k - N 20k -
e Vk= 20k 20k 2)/k<(ﬂ__})z(k 2)/k

as v< u—j for every j.

icm°®
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Therefore we have

” .
2_2n—m ? 2 Z ('u__j)(z—k)/k((“_j)(Zk—2)/2__v(2k-2)/k) .
j=0

)(2 k)/k ,Ll(Zk 2)/I¢_v(2k 2)/k)

Mz

> M#(Z-k)/k (2 Dk _ (2= 2)/ky

and so

n=m 'u(k - 2)fk
M< |H(2k— 2)/k__v(2k—2)/k| +1°
(2.2) In this case
uzv:v . +j)(2—k)/k (M(Zk— z)/k__(v +j)(2k— 2)/k) <m,
i=0

If u< 2v then

s ‘
Z (v+j)@ 0k (u(zxc—zwc__(v+j)(2k—-2)/k) ~ -k Z (—v — j) ple= 2k
i=0 i=0

= (u=W =3 E—)? =$u-vp?,
while if p > 2v then

n=v

Z (V +j)(2—k)/k (u(Zkf* 2k _ (V +j)(2k-— 2)/k)

j=0
BV n—v
2 UPIY (4)TIR T (4)
Jj=0 ji=0
o ¢ k—1
o 2k 2)/k§(u2/k V2 L (2 —v?) 5 I

Now the reasoning follows as in 1.2.

ProrosiTioN 5. If inequality (16) in the statement of Theorem 2 is satisfied
on I' and the measure do is as the Lebesgue measure on a compact piece of I,
then necessarily :

Proof. We can adapt Knapp’s argument to this situation. Taking for
example the truncated cone I'y, let R, be the rectangle of dimensions VR x 8
x 1 adjusted to the surface as in the figure and let ¥ be a regularization of
the characteristic function of this rectangle. We have

1) g, = €61


GUEST


68 B. Barcelo

whereas
“ l[J”p ~ §U R -1y,

This can be computed directly and also follows from the uncertainty principle.

-

Re

y

Then if (16) is satisfied by every feL”(R%) we would have
colka ¢ S+ 1~ 1)p

for every 6 > 0; letting 6 go to zero we obtain the desired condition.

PROPOSI.TION 6. If for p, q fixed, inequality (16) in the statement of
T_heorem 2 is satisfied, and do is as the Lebesgue measure on any compact
piece of I' then necessarily do = +* drd’ where

o =3q/p'—1.

Proof. Note that in case of Theorem 2, o = (2—k)/(k+1).

The proof follows by the fact that the homogeneity of the Fouricr
transform forces inequality (16) to be satisfied by any function with compact
support f(x) and by all its dilations g;(x) = f(6x) for all § > 0.

CoroLLary 1. If X' is a compact piece of I, then

(26) ( Qf N dn(D) < Cpg 11l s,
Jor every function felP(R%), du(f) being the Lebesgue measure on 3,
1<q<pk+1), o >k+1.
Proof. Note that there is a constant depending on X such that
du@) < Cdo(§) Vel

then apply Theorem 2 and Hélder’s inequality.

- CoRroLLARY 2. Given I, the surface of the cone with sections (t, %), we
ave

@7 (17 @)er= ar doys < Coallf o)

T
where o = 3q/p'—1, 1< q < plk+1), Pz2%@>4ifk=2

iom°
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Proof. The reasoning of Theorem 2 is to be repeated step by step
changing the exponents g and o in a suitable way.
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