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Plurisubharmonic functions on quasi-Banach spaces

by
N. J. KALTON* (Columbia, Mo,)

Abstract. We study conditions under which a quasi-Banach space can be equipped with an
equivalent plurisubharmonic quasi-norm. We show this is equivalent to validity of a weak form
of the Maximum Modulus Principle for analytic functions valued in the space. We examine the
refationship between the existence of a plurisubharmonic quasi-norm and the existence of
“good” tensor products. We also prove that in a quasi-Banach algebra the spectral radius is
plurisubharmonic, extending a theorem of Vesentini, and give some applications to the study of
holomorphic functions on non-locally convex spaces,

1. Introduction. In [8] Etter observed that in the spaces L, the natural
quasi-norm

A1 = {f1f @lede} e

is plurisubharmonic, ie. for f, geL,
2n
I <@m=* [llf+eglla0.
0

Recently several authors have considered this notion. Aleksandrov [1] calls a
complex quasi-Banach space locally holomorphic if it has an equivalent
plurisubharmonic quasi-norm. Peetre [17] calls such a space locally pseudo-
convex and Davis, Garling and Tomczak-Jaegermann [5] call a space
equipped with a plurisubharmonic quasi-norm PL-convex. See also Edgar
[71.

We shall call a space with an equivalent plurisubharmonic quasi-norm
A-convex (for analytically convex). Aleksandrov [1] notes that for p <1,
L,/H, is not A-convex.

st
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An A-convex space satisfies the Maximum Modulus Principle. Let 4
denote the open unit disc in € and let T be the unit circle so that A =4 U T
Suppose X is A-convex and f: 4 — X is a continuous map which is analytic
on 4 (cf. [14], [21] or Section 2 for the definition of analytic functions in a
non-locally convex setting). Then we have

7Ol < Cma:illf(W)ll

where C is a constant independent of f. Peetre [17] asks essentially whether
the converse is true, and one of our first results (Theorem 4.1) shows that this
is the case, ie. if X satisfies the Maximum Modulus Principle then X is
A-convex. We refer to [14] for a general discussion.

We relate A-convex spaces to the so-called natural spaces introduced by
the author in [12]. A quasi-Banach space is natural if and only if it embeds
into an 1,-product of L,-spaces for some fixed p, 0 < p <1 (cf. Theorem 4.2
below). Natural spaces are A-convex and the converse is true for lattices
(Theorem 44; compare the earlier results of Peetre [17]). We give an
example to show that the converse is not true in general.

In Section 5, we first prove an annular version of the Maximum
Modulus Principle which holds for every quasi-Banach space. Using this we
study first quasi-Banach algebras and show that a theorem of Vesentini [23]
can be generalized to this setting, so that the spectral radius is always a
plurisubharmonic function. Thus quasi-Banach algebras have a special struc-
ture amongst general quasi-Banach spaces.

In Section 6, we study conditions on a p-normable space X so that
whenever Y is a p-normable space there exists a p-normed spiace Z and a
bilinear form B: X x Y— Z so that

klixlHiyll < [1B (e, pIF < DX, x, ye X.

This is related to the existence of a p-normed tensor product. We show that
if X satisfies these conditions for some fixed 2, 0<p<1, then X is A4~
convex; conversely, if X is natural then it will satisly these conditions for
small enough p.

In Section 7, we sketch the foundations of a theory of holomorphic
functions on a complex quasi-Banach space. A sample result is that, essen-
tially, every holomorphic function on an A-trivial spage is entire. Here an A4-
trivial space is a space such as L,/H,(0 <p < 1) which admits no conti-
nuous operators into an A-convex space,

I would like to thank Jean Bourgain for suggesting the example in
Section 4 and Stephen Dilworth for many helpful comments. [

2. Basic definitions. Throughout this paper all vector spaces are assumed '

to be complex. If X is a vector space then a map x — ||x|| (X - R..) is called
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a quasi-seminorm if
(@) llexl] = |l ]Ixll, aeC, xeX,
(i) Xy +xll < Clllxll+ 11X, xq, x,e X,

where C is a constant independent of x;, x,.
We call [|]| a p-seminorm where 0 < p<1 if in addition

(i) [y +Xall" < IxIPH gl X, x5 X,

If further |x|| = 0 implies x = 0 then ||| is called a quasi-norm (if (i) and (ii)
are satisfied) or a p-norm (if (i), (i) and (iii) are satisfied). Since every quasi-
norm is equivalent to a p-norm for some p, 0 < p< 1, we shall always
assume that quasi-norms are p-norms for some p and are, in particular,
continuous. .

If ||l is a quasi-norm on X defining a complete metrizable topology
then X is called a quasi-Banach space.

An upper-semicontinuous function ¢: X — [ — oo, 00) is called plurisub-
harmonic if for every x, x,e X

P x;) < pr(xl +w Xz)dA (w)
where A denotes the normalized Haar measure on T, ie. di = (27)~ ' d0.

If the quasi-norm ||| on a quasi-Banach space X is plurisubharmonic
then X is called PL-convex by Davis, Garling and Tomezak-Jaegermann [5].
If X can be equivalently normed with a plurisubharmonic quasi-norm then
we shall suy that X is A-convex (the term locally pseudo-convex and locally
holomorphic have been used by Peetre [17] and Aleksandrov [17). We also
say that X is A-~trivial if there are no nonzero continuous plurisubharmonic
quasi-seminorms on X. Thus L, (0 < p<1) is A-convex (Etter [8]) and
L,/H, is A-trivial (Aleksandrov [1]). Clearly if X is A-trivial and Y is 4-
convex then Z(X,Y) = [0} as noted by Aleksandrov [1].

If © is an open subset of C then a map f; Q- X is called analytic if for
every zoe £ there exists & > 0 so that f can be expanded in a power series for
z—zo| < O, L&,

o
/‘(Z) = Zo Xn(z"‘fo)",» 12"‘Zo| <d.
e
Clearly x, = (1/n1) f™ (z,) (see [14] and [217). 4o (X) will denote the space of
all functions f: 4 - X which are continuous on 4 and analytic on 4 where
A=z |z| < L),

lX is said} to satisfy the Maximum Modulus Principle (MMP) if there

exists a constant M > 0 so that for all feAy(X) we have

(%) ILf Ol < errfgitllf(Z)ll-

6 = Studin Mathematica 1. LXXXIV 2. 3
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Clearly if this is the case we can show also
1S (zolll < M max ax{lf ( @l

for any zg, |zl <1. We also noted that it suffices to establish (%) for
polynomials, since these are dense in A, (X) with the topology of uniform
convergence on A. [Then if f.(z) =f(rz) for 0 <r <1 then f, can be ex-

panded uniformly in a power series and ‘rrlmxllf . (z)—f(2)]| - 0.] Spaces

satisfying (MMP) are considered by Peetre [17].
The following lemma will be useful later on.

LEmMMA 2.1. Let X be a quasi-Banach space and let F: X - R, G: X —+ R,
be two functions. Suppose that F is upper-semicontinuous, and sutisfies F(ax)
= |a| F (x) for xeC, xe X. Then the following conditions on G are equivalent;

(i) For every polynomial f: C— X
G(f(0) < max F(f(2).
(ii) For every feAy(X)

G(f )<
(itiy For every fedq(X)
G(f(0) < exp | [log F(f (w)da(w))}.
T

max F(f (z)).

Jz|=1

Proof. (i) =(ii). This is a simple density argument.

(i) = (ii). Suppose that feAy(X) and that K =) (7). Let H be any
continuous function on K so that H(x) > F(x) for all xeK. Note in
particular H(x) >0 for xeX and hence logH is continuous on K. Thus

log H(f (w)) is continuous on T if we define

u(z) = —-jRe (..,._" )]ogH(f(w))dA(w)

for |z| < 1 and set u(z) = —log H(f (z)) for |z} = 1, then  is continuous on 4.
Now define he H® by

h(z) = exp{—lj. %Elog H(f(w))dzl(w)}.

Then |h(z)| = exp(u(z)) for ze 4.
For r <1 set h(z) = h(rz). Then h(0)" ! h.(2) f(z)e Ao(X) and hence

G(f(0) < mﬂx}h O~k @I F(f (2)).

icm
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Letting r — 1 we obtain

G(/(®) <Ih(O)™* = [log H(f (w)dA(w).
T

As H > F is arbitrary and F is us.c, the lemma follows.

Lemma 2.2. Let X be a quasi-Banach space and suppose F: X — R, is
upper-semicontinuous and satisfies F(ax) = |o| F (x) for aC, xeX. Then the
following conditions on F are equivalent:

(i) F is plurisubharmonic.
(ii) For every fe Aq(X)

F(fO0)<

(iii) Log F is plurisubharmonic.
This is immediate from Lemma 2.1.

max F( (2).

3. Plurisubbarmonic functions on a quasi-Banach space.

LemMma 3.1, Let X be a quasi-Banach space and suppose F: X - C is a
continuous function. Suppose f, g: C -+ X are polynomials. Then

lim [ F(f (w)+ w"g (W) di(w) !j'F(f(w)+zg(w))d).(z)d,1(w)
T

n-ro T

Proof. We suppose

N N
f(Z) = Z xkzkﬁ = Z ykzka
k=0 k=0
and let X, be a finite-dimensional subspace of X containing f(T) Ug(T). Let
K =f(T)+g(T). Then we define linear functionals pu,: C(K)—C and

C(K)~ C by
ta(F) = ! F(f W)+ w"g(w))dA (w),

w(F)= gF(f(w)+zg (W) dA () dA(w).

Note that u,(1) = u(1) =1 and ||@,)| = ||gll = 1. In order to show that
Uy > & weak* as required, we need only check on a dense subset of F’s. We
therefore congider F of the form

! mo_
F(x)%jf[! 0% [T ¢;0

J=t+1

where ¢, ..., @& X¥. By the Stone-Weierstrass theorem the linear span of
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such F’s, and 1, is dense in C(K). Let

1 mo__

q)(éls vees fm) 2}]:11 (Pj(éj)jj-]‘:. (Pj(ﬁj)

for &, ..., &ye X,. @ is then linear in the first [ coordinates and conjugate-
linear in the remaining m—I. Note F(x) = ®(x, ..., ).

For A<{l1,2,....,1} and B {I4+1,14+2,...,m} set hy(w)=f(w) if
jéAUB and hj(w)=g(w) if jeA U B. Then

F(f(W+w'g(w) = Zw"""' BO @ (hy (W), ..., B(W)).

By the Riemann-Lebesgue lemma,
Hm [F(fW)+w"gw)diw) = 3. [®(hy, ..., hy)di(w).
n—oT |Af=18lT
Similarly
F(fw)+zgw) = Y, 211~ & (h) (w), ..., hy(w))
AB
and so
JE(fW)+zgw)diz) = 3, @(h W), ..., hy(w)
T 14]= B
and the lemma follows.
Lemma 3.2. Let X be a p-normed quasi-Banach spuce. Let ¢: T— X be a

bounded Borel function. Suppose & >0 and 0 <r < 1. Then there exists a
polynomial g: C — X so that

(a) g(0) =
) g2l <z for |z <
(c) There exists a Borel map v: T— T so that

illg(W)-v(W) @ WP di(w) < e

Proof. It clearly suffices to consider the case when ¢ is simple, ie.
) N

w(W)=jZ X; 1,
=1

where x;e X (1 <j< N) and E,, ..., Ey are disjoint Borel sets in T so that
Eu...UEy=T
For each j, there exists a polynomial #;: C— C so that u;(0) = 0 and

[l 0= L 9 dA ) < N~ g
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We let
N
g(z) = 2" Z u;(z) X;
j=1

where m is chosen so large that {|g(z)| <& for |z <r
Let v: T— T be a Borel map satisfying

oWy (w) = lu;(wll, wek;.
If weE, then
llg (W)~ (w) Xl < [0 (W) =1, (WP (117 + 3 [t (W) 1117
J#k
N
< loll% jzx ||uJ(W)| - 1EJ(W)IP'
Hence

! llg (W) —v(W) @ (WII” dA(w) < &”.

Clearly g satisfies the lemma.

We now suppose X is p-normed and set F(x) =||x||”. For each ne N
define

F,(x) = yi:m)siF,,_ 1 (x+wy) di(w), G,(x)= irwxf_T[F,,_l((p(w)) di(w)
where the infimum is taken over all polynomials ¢ such that ¢(0) = x.
Note that if x,, x,e X then
[Fo(xy)=Fo(xa)l < [lxy —x[P.
Lemma 3.3. For all neN and x;, x,;
[Fy(x)=Fp(x2)l < X1 =017 1Gy (x0)= G (x2)} < [l = %5I".

This is an easy induction proof which we omit. In particular each F,, G,
is continuous. Note also that F, is monotone decreasing and so lim F, =F

L had-:]

exists and further

[F o () =F o (x2)] & lixy ~ 5|7

for x;, x,e X,
LemMa 34 (Edgar [7]). F is plurisubharmonic.
We remark that this follows from the fact that

Fo(x) € Fpyy(¥) < IF x+wy) dA(w)

for all neN, x, ye X.
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LeMMA 3.5. For every neN, G, = G,4,.
Proof. Suppose xeX and & > 0. Then there is a polynomial /: C— X
so that

J'F,,(f(w)) dl(w) < Gy (X)+e.
H

Now we can partition Tinto N disjoint Borel sets Ey, ..., Ey and find w)e E,
so that

Lf W —f WP <&, wek.
Pick y,e X (1 <j< N) so that
!F,,_l(f(w,)+wy,) dA(w) < F,(f (w))+e.
Thus
Ej} [Fa-1 (fO0) +2y) die) diw) < (Fu(f (W) +2¢) A(E))

< jF,,(f(w)) dA(w)+ 3ed(E).
Ej

Thus if we let @: T— X be defined by ¢(w) = y;, we E;, we have
”F,._, (f W) +2ze W) dA(2) dA(w) < [F,(f (W) dA(w)+3e.
T

Now use Lemma 3.2 to find a polynomial g: C— X so that g(0) =0
and

!llg(w)—v(w)lp(w)ll” di(w) <&

where v: T- T is a Borel function.
Let f,.(z) =f(z2)+2z™g(z). Then

Jim [Fuey(fn () d2W) = [ [ Fa 1 (£ ()+20 () dA(2) dA ()
(by Lemma 3.1). Now "
l ) Foe (f W) +2g (W) dA(2) dA(w)
< G+£ ;[ Foey (S (W)+20(w) (W) dA(2) dA(w)
=B+HF.-—1(I(W)+2¢(W)) di(2) di(w)

<£F,,(f(w)) di(w)+4s.
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Hence for large enough m

;Fn-l (fn(w)) dA(w) < jF (f (W) dA(W)+4c < Gy 1 (%) +5¢.

As ¢ > 0 is arbitrary, G,(x) < G,.((x). As G, > G, trivially the lemma is
proved.

LemMa 3.6. Gy (x) = F(x) for xeX.

Proof. Clearly G, < F, so that by Lemma 3.5, G, < F,,. Conversely, if
¢ is a polynomial then F o¢ is subharmonic and so

" (0(0) < 1Jr F (o w)) dAW) < Jllo WIIF dA(w).
T

Hence F, < G,.
Tueorem 3.7. Let X be a p-normed quasi-Banuch space. For xe X define

JI%fl 4 == inf ;“t'i’i lle W)l

where the irgﬁnium is taken over all peAq(X) so that ¢(0) = x. Then
@) Ill4 is a p-seminorm on X.
(ii) llp ()4 < exp [loglipw)ll dA(w) for all polynomials ¢: C— X.
T

i) ||'l4 is plurisubharmonic.

(iv) log|l|l4 is plurisubharmonic.

Proof. (i) is trivial. (ii) follows from Lemma 2.1.
(iii) From (ii) it follows that

llo(O)lF < !IIfP(W)II" dA(w)

and hence |[x||§ < G,(x), but G, (x) <|/x||§ by definition so that |||, is
plurisubharmonic.

(iv) This follows from Lemma 2.2.

We remark that ||-||,, is a PL-convex quasi-seminorm in the sense of [4].

We note also that |||, is the largest plurisubharmonic function domina-
ted by |I||. X is A-trivial if and only if |jxl, =0 for every xeX. X is A~
convex if and only if ||*|| and ||*]|4, are equivalent.

For a general space X, we may form a space X, by quotxentmg by N
= {x!]|x||4 = 0} and then completing X/N with respect to |[]l,. X, is 4-
convex and it is easy to se¢ that every opcrator T X — Y where Yis A-
convex factors through X,. In particular, X is A-trivial if and only if every
operator from X into an A-convex space is zero.

4. Natural spaces and A-convex spaces. Our first result is a very simple
application of Theorem 3.7, which partially answers a question of Peetre

[17].
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TueorREM 4.1. In order that a quasi-Banach space X is A-convex it is
necessary and sufficient that X satisfies the Maximum Modulus Principle
(MMP).

Proof. X satisfies (MMP) if and only if ||{l4 is equivalent to ||-|.

Next we turn to quasi-Banach lattices motivated by the results of Peetre
[17]. Here a complex quasi-Banach lattice X is simply the complexification
of a real lattice which we denote ReX. If x,, ..., x, = 0 then it is possible to
define unambiguously (x, ... x,)'" as an element of X using the Krivine
calculus (see [16]).

We recall that a quasi-Banach lattice is L-convex [12] il there exists
§ >0 so that if ueX ., |jul =1 and 0 < x; S u are such that (I/n)(x,+ ...
+x,) = (1—3d)u then

max ||x;|| = 6.
1€isn

A quasi-Banach space is called natural [13] if it is isomorphic to a
subspace of an L-convex quasi-Banach lattice. In [12] it is shown, essentially,
that a natural quasi-Banach lattice is automatically L-convex so that this
definition is consistent. The following theorem [13] characterizes natural
spaces and can be thought of as supplying an alternative definition.

Tarorem 4.2. Let X be a quasi-Banach space. Then X is natural if and
only if there is a constant M >0 and g > 0 so that if xe X is nonzero, there
exists a probability space (Q, X, P) and an operator T: X — L, (Q, X, P) with
1T < M|lx||™* and Tx = 1,. If X is p-normable, any q < p suffices.

Before our main theorem we prove a simple lemma.

Lemma 4.3. Let (2, P) be a probability space and suppose f: Q— R is a
random variable, 6 < f< 1 a.e. Then

é(log f) = —]-—1-{%& log 6.

Proof. Let W L,(Q) be the set of g so that 6§ g <1 and 4(g)
= 4(f). Note that for any x, ae R, we have

logx < logw}-%(x«a).
For all geW,
d(logg) < &log )+ 8 (f* (g~/))
and so there is an extreme point g so that

&(logg) < A(log f).

icm
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¥ _ 1-48(f)
At an extreme point, g = 0 on a set of measure ~iTo and g =1 on a set
E(f)—0
of measure -~ (1 —}5"“ Hence
1-&
&(log f) = ~1—~%Q log6.

Tueorem 4.4, Let X be a complex quasi-Banach lattice. Then the
following conditions are equivalent:
() X is A-convex.

(ii) There exists a constant C so that if x|, ..., X, =0 in X then

11 +ov %' < € max |Ixl)
1€i<n

(iil) X is L-convex.

Proof. We begin with a well-known remark. Suppose ue X and u > 0.
Then the order interval [—u, u] in ReX generates in a natural way an
abstract M-space in the sense of Kakutani and so we can produce a compact
Hausdor(f space Q2 = £2, and a lattice embedding ¢: Cx(22) —» ReX so that ¢l
=uy. ¢ extends naturally to a map ¢: C(Q)— X. We refer to ¢ as the
Kakutani map associated to u.

(i) =>(ii). We suppose X satisfies (MMP) with constant M. Suppose
Xy Xy = 0and u=x, v ... vx, Let ¢: C(Q)~— X be the Kakutani map

associated to u. Suppose & > 0.
Let ¢: T C(Q) be a C*-map so that 61,< ¢(w) < lgfor all we T We
write @ (w, s) for @(w)(s) when we T, seQ. For zed, se set

Sz, 8) = exp{fﬁizlogcp(w, s) d/l(w)}.
W=z
Then z -+f(z) is analytic into C(Q) and extends continuously to 4,0n T,

1f(z, 9) = o(z, 5). Now

S0, 5) = exp {[log @(w, 5) dA(W)} = @0 ()
T

say. By the Maximum Modulus Principle in X,
lo(oll < M max lle(@ ).

Now npick &,...,5eC(@ so. that o(§)=x v du Clearly
8, <& < 1, We may pick C*-functions vy, ..., v,: T—[0, 1] so that

(@) 2"2 pywy=1," wel
J=1


GUEST


308 N. J. Kalton

{(b) For each we T at most two of v;(w) are nonzero.

© Ao, =1} %(14).

Set p(w) = 3. v;(w)¢&;. Then

i=1

@o(5) = exp (lié Y log¢; (s)+‘<5 blog 6)
i=1

=8 (€, (s) ... & ()P,

Hence ¢(@o) = ub((xy v 8u) ... (x, v Su))' =952,
Note if |w] =1

lle(@ W) < 2/7=* mjaxllx, v bul|

and thus
& [l ((x1 v Su) ... (xy v Su))E= | < 24P Mmax||x; v Sull.
JEn
Letting  — 0 we obtain the result with C =247~ M.
(ii) = (iii). Choose & > 0 so that 6% < 1/2 and
824 6P < P §4ed,

Suppose x;eX, 0 < x; < u, are such that
o
;(xl+ vee +x) 2 (1-0)u.

We again use a Kakutani map associated to u, say g: C() — X. Suppose x;
= ¢(f;). Then by Lemma 4.3 for each seQ

L5 ot 995 288 115 ) 20

(it may be useful to note that logé < 0). Hence

(ﬁ (f, v ézlﬂ))l/n > 52¢/<1~a2) = G4
j=1

provided §° < 1/2. Thus

"

(l"[ (xj v 52 H))‘l/" > 64-114

=1
and so by (i)

0* < Cmax||x; v 8%yl
Jj€n
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Thus there exists k < n 50 that CP(|x|"+6%%) = 67, ie.
flxlP = C=P§*22— 570 > §v.

Thus X is L-convex.

(iii) = (i). If X is L-convex then there exists ¢ > 0 and a constant M > 0
so that if xe X, with ||x|| = 1, there exists 'a probability space (2, Z, P) and
an operator T, X — L (2, X, P) so that T,x= 1, and ||T}|| < M.

Note that y— M~ Jl||’I;y|| is a g-seminorm on X dominated by |||
which is plurisubharmonic. Hence

M7UTH < IVlles  yeX.

In particular, M~ < ||x||, if ||x]l = 1. Thus |||, is equivalent to ||-||.

CoroLLARY 4.5. Every natural quasi-Banach space is A-convex.

We conclude this section by giving an example of an 4-convex quasi-
Banach space which fails to be natural. The example is the Schatten class S,
where 0 < p < 1; that this might provide an cxample was suggested to the
author by Jean Bourgain.

We shall need first a preparatory theorem which is probably of indepen-
dent interest. Let us recall that a quasi-Banach space X is of type p (0
< p<2) if there is a constant C so that

[éf’(”z;1 e x|)]¥r < C(éjx llx7) e

where ¢, ..., &, is any sequence of independent Bernoulli random variables
with P(g; =1) = P(; = —1) =4, For 0 <p <1, X is of type p if (and only
if) X is p-normable; if p > 1 and X is of type p then X is a Banach space (cf.
[15], p. 99 and p. 107).

THEOREM 4.6. Suppose X and Y are quasi-Banach spaces; suppose X is of
type p and Y is of type q where 0 < p, g < 2. Suppose 0 <r < 1. Then there is
a constant C = C(p, q,r, X, Y) so that if (R, Z, ) is a probability measure
space and B: X xY—~L(R,Z, 1) is a bilinear form then for
Xis ovis X0 € X, iy oos Yu€ Y

”Z B(x;, vl < CIIBIl Z Il ey

where 1/s = 1/p+1/y.

Proof. (In the ensuing argument, C will represent a constant depending
on X, Yand r, which may vary from line to line.) Let &, ..., &y, 1y, ..., 1y bE
any sequence of 2n independent Bernoulli random variables defined on some
probability space (@, ', P'). Then for o'eQ’

n L] n "
B (le & (@) X, JZI ny(@)y)l- < 1Bl ||J§1 &() x| ”j?.;l (@) -
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Let f;, = B(x;, y;). Then
A%, 5 e ll) <18 813, i) 3, movl)
=181 (1 £ el 6015, mol)
<CIBIr(E, bl 3, Iy

Similarly

S1%, 3 me ol <11 801 S 6l vl

<18 (1 PP 61 2 sl

S CIBIF( X lxgiryre (121 Iy iy,
i=1 =
Now

IE 3 amsli= (1L 3 &)@ f@) du).
J=1K=1 2 j=1k=1

By a generalization of Khintchine’s mequallty due to Bonami [3] (cf.

also Pisier [19]) we have

IZ Z & (@) (@) fiu(@)) < Zlfjk (@)}

and hence we conclude

I S 153, <
J=1k=1

In particular

cB| (é:. nx,n")“"(lil Iyl

I Zlf]kl )3l < CIiBII( Z i) /e( Z Iy 1)

and hence

Il(jgk e A2V 2L < CUBIE 1x,l17)V/2 (3 1y 14)s.
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Now

J}; Z &8 [ = Z St Z &8 (S +Hiy)-

Again by use of Bonami’s theorem

(ﬂ'(ll}gk eyt (et ) < € ll(j-Zh Wk +Aasl?) 2
Thus

[ Z Jull» <

Now for any o; > 0
n
1 Al <
K=t

Let oy = ||y)|*""|lx;]| 4. The result then follows.

CoroLLARY 4.7. Suppose X is a quasi-Banach space of type p, Yis a quasi-
Banach spuce of type g and Z is a natural quasi-Banach space. Then there is a
constamt C = C(X, Y, Z) so that if B: X xY—Z is a bilinear form then

“ Z B(x, y|| <

where /s = 1/p+1/q.

Proof. This is an immediate consequence of Theorem 4.2 and Theorem
4.6

Now let H be a separable infinite-dimensional Hilbert space and let S,
denote the Schatten p-class where 0 <p <1. Thus TeS, if and only if
Te ¥ (H) is a compact operator whose singular values s,(T) satisfy

1Tl = (2 0(TP)? < c0.
n

CUBI N 17) 2 (3 Iy 1) e,

CUBII G af e 1) /P (3 et 1y ).

CliBII( Z [l lyall)

S, is a p-normable operator-ideal (cf. Pietsch [18], pp. 216, 255).

TueoreM 4.8. Suppose that 0 <p <1 and that Z is a natural quasi-
Banach space. Then there is a constant>C so that if T: S, = Z is a bounded
linear operator then

17N < CNT Al

and hence T factors in the jorm T= ToJ where Ty: S, — Z is bounded and
Ji8,— 8y Is the inclusion map.
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Proof. Consider the bilinear form B: H x H* — Z given by
B(h, b*) = T(H* @ h).
Then ||B}j <||T}|. Hence if AeS, then we can write
A=Y o;ef Q]
where Y |ayl” = ||Allf,, lleX]l.= [/l = 1. Thus -

4]

T(A)= Y, o;B(f; €})

J=1

and hence
TN < CIIBIL Y, lof < CHTIH Allyy.-
J=1

CoroLLARY 49. For 0 <p <1, S, is not natural.

Treorem 4.10. S, is A-convex for 0 < p < 1; in fact ||*||, is plurisubhar-
monic.

Proof. It will suffice to show that if 4, BeS, are of finite rank and
F(z) = A+2zB, then ||F(2)||f,) is subharmonic on C.

For any zoeC there is an isometry U of H so that UF (z,) is a positive
hermitian operator. Let H,= ®(UF{z;) and suppose dimHy=m
= rank F (zo). Let P be the orthogonal projection of H onto H, and define
G: C— Z(H,) by

G(z)(h) = PUF (z)(h), heH,.
G(zo) is invertible on H,, and bas eigenvalues 0, 2 0, > ... > g, > 0. There
exists 6 > 0 so that if |z—z5| <& then the spectrum of G(z) is contained in
some compact subset C of {z: Rez > 0}. The function @(z) = z" can be

defined to be analytic on this half-plane with ¢(x) = x” if x > 0.
Now consider ¢(G(z)) for |z—z,| < 8. Precisely,

?(G@@) = 2m) ™! fp(w)(w—G(2)~ " dw
b

where y is any contour in the right half-plane around C. The map z
- ¢(G(z)) is analytic and hence so is the map z->tr(G(z)). If 0 <r<d
then

tro (G (zo)) = ;tr 0 (G(zo+rw)) dA(w).

Now tr¢(G(zo+rw)) = ¥ af where ay, ..., &w are the cigenvalues of G(zo

i=1
+rw). Now
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Z{a,l” S NG(zo+rw)llfy  (sce Gohberg—Krein [9], p. 41),
S |F(zo+rwif,

and hence
tr ¢ (G (z0) = 1G (o)l = IIF zo)If,) < JIF (zo+ rwlif,y d2.(w)
T

so that ||||f,y is plurisubharmonic.

5. Applications to algebras. We begin with a slight strengthening of a
theorem of Coifman and Rochberg on Bergman spaces. Let us suppose 0
<q<p 6=1/g—1 and v =[o]. B, , is the Bergman space of all analytic
functions ¢ on 4 so that

lollg.p = flo@IP(1 (%42 dm(z) < o0
4

where m denotes the planar measure on 4.
Lemma 5.1 If 0 <r <1 there is a constant C = C(p, q,¥) so that if
@peB,,, then there exist z,, k2 1, with r <z <1 and o, so that

o
000 = T (1=l (1-wz) =042
k=1 '
and (3 lexl”)'"? < Clpllg.p-
Proof. According to Theorem 2 of [4], there exist (&,: k = 1) with 1€
-+1, and C = C(p, q) so that if peB,, then we can write

o0

oW = 3. o (L=|&7)" 17 (1—wg,) =0+
k=1
with (Y lol”)'’” < Clloll,,,- The & are independent of ¢. )
Let I" denote the set of z¢ 4 with r £ |z] < 1. We define a map S: L, (I)
-+ B, , by
Slag) = 3 o (1=]2))* (1 - wz) "0+ 2,

zgl

Let E be the range of S. Let F be the finite-dimensional space spanned by (1
=w &) O for || < r. Then E+F = B,,.

Consider the map S@ I: ,(IN@®F — B, ,. This map is an open mapping.
Let ¢ be any linear functional on B,, so that ¢(E) =0 Then
eS8 @ D({a,}, f) = () so that po(S@ 1) is continuous. Hence ¢ is conti-
nuous on B, ,. Now let

h(z) = g((1 —wz)~"*2),
h is analytic on 4 and vanishes for r <|z] < 1. Then h=0 and so g =0.
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Thus E =B,, and S is onto. The lemma follows by the Open Mapping
Theorem. ‘
Our next theorem is an annular maximum modulus principle valid for
all quasi-Banach spaces. .
We recall first that if ¢ > 0 and v = [¢] then 4,(X) is defined to be the
space of analytic functions [ 4 — X satisfying
sup (A=[z*1| fO D )] < co.
2] €
It is shown in [14], Theorem 5.1, that if fe A,(X) and X is p-normed then
there exists Te.#(B,,,, X) so that T((1-wz)"!) =1 (2).
THeOREM 5.2. Let X be a p-normed quasi-Banach space, and suppose 0
- <r < 1. Then there exists a constant C = C(r, X) so that if fe Ay(X) then
/O < € max [If ().

r<z| €

Proof. As above suppose 0 < g <p, ¢ =1/g—1 and v = [¢]. For any
feAy(X), let
o
=3 %z zed
n=0
(this is permissible, see [21]), and
©0

n!
F - s n+v+1'
@)= % % i’

Then FeA,(X) and so there is a bounded linear operator T B,,— X so
that
T(1-wz)" )= F(z), zed

(Theorem 5.1 of [14]). If pe B, , suppose

W) = § ay W,

na=Q

Note that T(w*) =0, 0< k< v, and hence Top = T'(w** ') where

Yw) = Z ayw" vl

n=y4 1

Note that |yl , < Clloll,,, where C = C(p, q). Now by Lemma 5.1 we can
write

¥(w) = Zak(l D (S
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where r < |z < 1 and

(Z l‘xkl )1/p< C“l/I”q,, C”(P”qp
Hence

O Ayt 1
WY W) = (D) Y w1z T (1~ wz)
e (zH-l

2=z

and so

= v+ Z % (1= ]z 1= FH (g,

= O+ D) g (= ln L )

Hence since v+1-¢g 2 0,
IToll < C (nlwllxlllf( el

where C = C(p, ¢, r). In particular

IO = [T+ Dt < € max 17
rElzi €1

Now let us suppose that B is a quasi-Banach algebra with identity. We
recall that the spectral radius formula

(x) = lim [jx"|j"/"

is valid in B (cf. [24]).
- We now generalize a result of Vesentini [23] (see also [2]).

Theorim 53, If B is a unital quasi-Banach algebra then logg and ¢ are
plurisubharmonic.

Proof. For any r, 0 < r <1, there exists a constant C = C(r) so that if
JSeAq(B) then
1L/ O < C(r) , max llf( IR

Hence
I/ € Cr) max ||(f @V
r&lz €1

since = [ (z)" is also in Ay (B). Thus

7O < Cn max [|(f @)
r€|z| €1 i

T Studin Matbhemation t I XNYIV 2 A


GUEST


316 » N. J. Kalton

Letting n— = we obtain

e(rO) < max (|

<z
for all ne N. Hence

o(f(0) < max||f .

lzl=1

It follows that g(x) <|x|l4 for all xeB by Theorem 3.7.
Now if fis any polynomial then

log o(f (0) < [logllf (W)l dA(w)
T

and hence applying the theorem to f(z)" we obtain
logo(f(0) < [n™ logl|(f )] dA(w).

T

Letting n = 2* and k — oo we use the' Monotone Convergence Theorem to
deduce

logo(f(0) < flogo(f (W) di(w),
T

ie. logg is plurisubharmonic. It follows easily that ¢ is also plurisubharmo-
nic.

The main use we make of Theorem 5.3 is to show that on a quasi-
Banach algebra ||-||, cannot be trivial.

THeOREM 5.4. Let B be a unital quasi-Banach algebra. Then on B
@ Noeylla < lxlldvllas N =1,
(i) If |Ixlla =0 then x is in the Jacobson radical of B.
(iii) If B is semisimple then |||, is an algebra quasi-norm on B.
Proof. (i) For ¢ >0 let f, g: C— B be polynomials so that f(0) = x,
g(0)=y and
weT,

LF Ol < Hllla +e,
< weT.

g NI < [yl g+,
Then f(z)-g(z) is a polynomial with S (0)y(0) = xy. Hence
Ix)lle < (1xllg + &) Ulylla+)

and as ¢ > 0 is arbitrary, the first part follows,

Now as g(x) < ||x||, we have |[1|, = 1.

(ii) Suppose |Ix||, = 0 and I is a maximal right ideal. If x ¢/ then there
exist yy, y,el so that

xyity; =1.
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Hence g(xy1) =1 and |{x]l,|ly,ll4 > 1 so that ||x||, > 0. This contradiction
shows xel.

(iii) is immediate.

Remark. Note in particular that a quasi-Banach algebra with identity
cannot be A-trivial. In fact, if an A-trivial space is embedded in a quasi-
Banach algebra, it embeds into the radical. It is asked in [11] whether a
quasi-Banach algebra with identity can have trivial dual; this question is
related to the question of whether L, is prime for 0 < p < 1.

A quasi-Banach space X is called boundedly transitive ([15], p. 151) if
there exists a constant M so that if x, ye X with ||x]| = ||yl = 1 then there
exists Te ¥ (X) with Tx =y and ||T)| < M. L, is boundedly transitive if 0
<p<1 ([15], p. 126 or [20], p. 253) and there is a space universal for
separable quasi-Banach spaces which is boundedly transitive ([10], Theorem
4.3). -

TueoreM 5.5. If X is a boundedly transitive quasi-Banach space then
ZL(X) is A-convex.

Proof. If Te £ (X) there exists xe X with ||x]| = 1 and ||T|| > %||T). If
T# 0 we can find Se Z(X) with ||S)| < M and STx =||Tx|| x. Thus o(ST)
2 ||Tx|} and hence

ISIL 1T 2 1S T4 > 41/ T)

1
. - I
so that ||T|, = 2MIITII

6. Applications to tensor products. We shall say that two quasi-Banach
spaces X and Y admit a p-normable weak tensor product if there exists a p-
normable space Z and a bilinear form B: X x Y— Z with |B|| < 1 so that for
some k >0

kvl < 118 (e, I < IxlHIxA

for x¢ X, ye Y. B induces a linear map B: X ® Y- Z. If B can be chosen to
be one-one then X and Y admit a p-normable tensor product.

In [22] it is shown that if 0 < p < 1 and 0 < ¢ < 1, X is p-normable and
Y is g-normable then X and Y always admit an r-normable tensor product
where 1/r = 1/p+1/q.~1. This is best possible (cf. [14]).

Lemma 6.1. In order that X and Y admit a weak p-normable tensor
product it is necessary and sufficient that for some k > 0 and every xe X, yeY
there exists a bilinear form B: X x Y— Z where Z is p-normed with ||B|| = 1
and

1B (x, y)II 2= kil II¥1]-


GUEST


318 N. J. Kalton

Proof. For each xeX, yeY there exists T,,;: X @ Y Z,, With

1T,y (x @ Y = kIl 1]
Ty (€ @Il < N1 il

Quasi-norm X ® Y by

teX,neY.

lll] = sup || T, ull-
%y

Then the natural bilinear form (x,y)—»x®y into X ® Y satisfies our
definition.

We shall say that a quasi-Banach space X is p-tensorial il for every p-
normable space Y, X and Y admit a weak p-normable tensor product. We
remark that L, for 0 < p <1, is p-tensorial (L,(Y) is a p-normable tensor
product if Y is p-normable} and hence every subspace of L, is p-tensorial.

THEOREM 6.2. Let X be a p-normable quasi-Bunach space. Then

() If X is natural then X is g-tensorial for any q, 0 < g < p.

(i) If X is g-tensorial for some q, 0 <¢ < p, then X is A-convex.

Proof. (i) There exists M = M (q) so that if xe X with x s 0 there exists
a probability measure space (2,X,P) and a linear operator T,: X
- L, (2, Z, P) with ||TJl < M|lx||™* and T,x = 1, (Theorem 4.2).

If Y is g-normable define B,:XxY-L,(Y) by B,(¢ n
= M7 Hixl|(T,£ ®n). Then [|BJ| < 1 and [|B,(x, )l = M~ " |Ix|||lyl| so that X
and Y are g-tensorial by Lemma 6.1.

(ii) It clearly suffices to show that every separable subspace of X is A-
convex. To do this suppose that X is separable. Let U be a boundedly
transitive g-normed separable universal space ([10]). Then there exists
a bilinear B: X xU — U so that

KllxiHlull < 1B, Wil < l|xflllull,  xe X, ueU,

where k > 0. Now B induces a lincar map 7' X — .%(U) defined by
(T) (W) = B(x, u)

and k||x|| < ||Bd| < |Ixf|. Thus X is isomorphic to a subspace of % (U) which

is A-convex by Theorem 5.5.

7. Towards a theory of holomorphic functions. Throughout this section X
and Y will denote fixed quasi-Banach spaces both of which are p-normed, We
define a bounded homogeneous polynomial of degree n 1, P: X — ¥, to be a
map of the form :

P()=P(x,...,x)

where P: X" Yis a bounded symmetric n-linear form. The identification P
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- P bfatwe?f:n .bouuded homogeneous polynomials and symmetric n-linear
forms is bijective as shown by the polarization formula ([6], p- 4). We set

1Pl = sup [P
el <1

For convenience a polynomial of degree zero is a constant map.

Lemma 7.1. Let P, be a sequence of homogeneous polynomials and suppose
Jor some open set U we have

sup||P, (x)| < oo
neN

whenever x&U. Then there exists n >0 so that

sup sup ||P,(x)]| < co.
neN [|x|| €y

Proof (cf. [6], p. 9). By the Baire Category Theorem there exists M
<o and xoeU, and v >0 so that if |Jx—xg|| < v then

IPa(x)l < M, neN.

Let n=2""7y and choose ry, 0 <ro <1, so that (1—rg)||Xoll < 1.
By Theorem 5.2 there exists a constant C = C(ro, Y) so that if fe 4, (Y)
then

I/ (O < C max ||f @)
roSzsL
If £e X with ||&]| < n then for ne N
IPAQIl < C max {[Py(&+2xo)|
roS|z{€1

since f(z) = P,(¢+2zx,) is analytic. Now if z =re'® with ro,<r<1 and
0< 0 < 2n, then

P2 (€ +2xo)l| = lIPy(e™ & +rxo)ll = ||Py (e & —(1—r) Xo+Xo)]| < M.
Hence [|P, (&l < CM for ¢l <.

Now if (P)% is a sequence of polynomials where deg P, = n, we say
that Y P, is a power series if for every xeX

sup||P, (x)I*" < co.
neN

Lemma 7.2, If ZP,, is a power series then there exists n > 0 so that the
series ZI’,,(x) converges uniformly for ||x|| < n.

Proof. It follows from the Baire Category Theorem that there exists an
open set ¥V and M > 0 so that

[I1P,(x)}|* < M, xeV,neN.
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Let U =(1/2M)V. For xeU,
1Pa(o)ll < B)"< 1
By Lemma 7.1 there exists #, >0 and C < oo so that
1P, <C, lixl <uy, neN.
Hence ||P,|| < Cyi". Let n=4%#n,. Then for [|xl| <#
P, ()] < C@"

and so Y P,(x) converges uniformly.

Now if Uc X is an open set we say that a map F U=X is
holomorphic if for every x,e U, there exists a power series Z P,and § >0

n= 0

so that if ||¢]} < 6 then xo+&eU and

F(xg+¢) = Z Py(

In the notation of [€], Po(£) = F(x,) and

d" F (xo)
n!

P,(0) = ().

We now return to the consideration of power series. If ) P, is a power
series we set

o () = sup||P, ()| M

and then let gF be the upper-semicontinuous regularization of g,, i.e.

ox (x) = limsup g, ().
y=rx

Let'g(x) = lim g} (x). Then g is upper-semicontinuous and Y P, converges on

the open set {x: o(x) < 1}. We call this set the domain of convergence of the
series Y P,.
Treorem 7.3. Let F(x) = Y P,(x) for ¢(x) < 1. Then F is holomorphic
n=0
on {x:g(x) <1}.
Proof. Let K be a compact subset of V= {x: o(x) < 1}. Then since
2(x) <1 on K, there exists, by Dini’s theorem, N so that if xeK then

) <a<l.
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Thus

Pl <a¥, k>N,
and ) Py converges uniformly on K.

Now suppose xqe V. Pick 6 > 0 so that if ||£]] < & then xo+&e V. Now
suppose ||¢]| < 8. Then & =af, where ||&]| =5 and a =||¢||/6. We define

f@) = kio‘P.,<xo+zcl)

for zeC. Then f, converges uniformly on |z| <1 to f where f(z) = F(x,
+2&,), Bach f, is a polynomial and hence fedy(Y) ([14], Theorem 6.3)..
Furthermore for each m

lim £,™(0) =£(0)

([12], Theorem 6.1).
Now for fixed m<k, let Q,, be the homogeneous polynomial of
degree m,

k!
- m)'P (X5 ceos Xy 00ny X)

where x, is repeated k—m times and x is repeated m times. Then

PO= Y Q)
msk<n

Qk m (x)

We conclude that
2 Qem(&) =1"(0).
k=m
In particular the sequence of polynomials (each of degree m) Qim is
<k <

msksn

pointwise convergent. By Lemma 7.1

ol 3 Qo <0
n msksn

' %
and hence if we set (&) = Y. Qn(¢) then @, is a (continuous) polynomial
ke
of degree m. Now

m)
F(Xo+8) =1 (o) = gof D - 5 Gl Lo e

m=0 m!
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provided ||£]| < 8. Thus in particular
lim sup [|Q,, (§y/m!IV"™ < 1

if ||| < 8, so that Y (1/m!)Q,, is a power series and F is holomorphic on V.

Now we come to our main results.
TheOREM 7.4.() There exists y > 0 so that

e < yllxlla,  xeX.

(ii) ¢ is plurisubharmonic.
Proof. By Lemma 7.2 we have

IPAl < Cov"

for some constants Cy and 7.
Now let feAq(X), and suppose 0 <r < 1. Then

IP(f @) < €0) max [IP(7 @)
where C = C(r, Y) is determined by Theorem 5.2. Thus
[P )< oy max [P (s

and hence
en(f ()< CHY" sup gu(f(2)).

] r€lz{€1
If y,— 0, there exist z,, r <[z < 1,
2a (/£ (0)+11) < C )" (2n (f(@) + i) +27%).
If lim g,(f (0)+y) = ¢} (f(0)) we may pass to a subsequence so that z, —z
k-
and fioeduce that

a(fO)scen 27?:1 X/ @)
Thus

e(fO) < C(M" max o¥(f(2).
r&z| €1

Using the upper semicontinuity of each g* we deduce
e(/10) < max o(f(2)),
r&lz| €1
and hence letting r — 1

¢(/f(0)) < maxg(f(2)).

Izl =1
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Thus ¢ is plurisubharmonic. Note that g,(x) < C¥"y|x|| and hence
¢(x) < ylix|. Thus

0 (%) < plixll4.

CoroLLARY 7.5. Let X be A-trivial and suppose U is a connected open
subset of X. Let F: U — Y be a holomorphic function. Then there is an entire
holomorphic function G: X — Y so that G(x) = F(x) for xeU.

Proof. Fix xoe U. Let P, = (1/n!)d" F (x,) (n > 0). Then the power series
Y P,(£) converges for all éeX by Theorem 7.4.

Set G(x)= Y P,(x—xp). Then by Theorem 7.3, G is an entire holo-

n=0
morphic function. Let H(x) = F(x)— G (x) for xe U. Let Wbe the set of xg U
so that H(x) = 0 on a neighbourhood of x. Then Wis open in U. Let x, be a
boundary point of W. Pick 6 > 0 so that if j|x~x|| <6 then xeU. Pick
ye W with |lx; —y|| <& and define

J(2) = H(x; +2(y—xy)).

Then f is analytic on a disc (z: |z| < 1+e&). Since f vanishes on an open set,
we conclude f= 0 and hence H(x,) =0. Thus W is open and closed in U.
Since xoeW, W= U.

Remark. If X = L/H, where p<q <1 we can go further. Every
holomorphic function is a polynomial. In fact if 1/p <n/q—n then every
homogeneous polynomial of degree n, P: L,/H,— Y is identically zero (see
[4).

In a similar vein, if T L,/H, — A4 is a bounded linear operator and A is
a quasi-Banach algebra then there exists ne N so that if xy, ..., x,e L,/H,
then :

(Txy) ... (Te,) = 0.
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