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satisfy the condition D,, < M <1 then N

k
(59) 1=ZoE‘ gT:MT[
Proof. We have
Dyiy =Dp+(1~Dp) bps s,
This implies that D,, <1 and
Dy > Dy+(1-M)b,, 4.

m=0,1,...,k~1.

Hence
k
D,>(1-M) ¥ b,
' i=0

which gives (59).
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On metric isomorphism of Morse dynamical systems

by

TADEUSZ ROJEK (Torun)

Abstract. For each continuous Morse sequence x, the class of all continuous Morse
sequences y such that the dynamical systems induced by x and y are metrically isomorphic is
described.

Introduction. J. Kwiatkowski-in [3] gave sufficient and necessary condi-
tions for two Morse dynamical systems 6(x) and 6(y) induced by x == b° x b*
x ...and y=p%x B! x ... to be metrically isomorphic, assuming that the
lengths of the b* and p* are the same for t =0, 1, 2, ... and x and y are
regular sequences. It is also proved in [3] that for a given Morse sequence X

“there exist a continuum of Morse sequences y such that the systems 0(x) and

0(y) are metrically isomorphic but the corresponding shift invariant measures
+ o0
on the space X =[] {0, 1} are pairwise orthogonal. For a given regular

Morse sequence x Kwiatkowski defines a class .#(x) of Morse sequences y
such that the dynamical systems 6(x) and 6(y) are metrically isomorphic.

However, the procedure of obtaining the class .#(x) which is described
there can be applied to a continuous Morse sequence x (without the
assumption of regularity). In this paper we show that .#(x) is the class of all
continuous Morse sequences y such that 6(y) is metrically isomorphic to
0(x). .

To prove this, we use the same technique of coding as in [3], but we
omit the assumption that the lengths of the blocks b and f' are equal and
thus codes have different form. In order to prove the main result, for given
Morse sequences x = b®xb' x ... and y =% xf* x ... such that 8(x) is
metrically isomorphic to 6(y) we construct a Morse sequence z = aq x @, X a;
xad; X ... satisfying :

laol = IbOI s

lao % do| = |8,

3o xay) = [bY|,  |a; xay| = b2,

lay xa@y| =18, laz xa@l =1p%, ...
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such that x, z and also y, z satisfy conditions (A), (B) of [3] (here |E] denotes
the length of the block E). In this construction we use the distance d(-, -)
between blocks; however, we calculate it in a different manner than in [3].

In this paper we also announce two additional results. We present a
generalization of Kwiatkowski's result for two Morse dynamical systems 6(x)
and 6(y) induced by x=h"xb'x ..., y=B"xB x ..., |b| =B, t 20,
without assuming their regularity. This generalization is essential as is shown
by an example. We also give a necessary and sufficient condition for two
Morse dynamical systems to be finitarily isomorphic. It turns out that
finitary isomorphism coincides with topological conjugacy in the class of
Morse shifts (see [1]). We omit the proofs of these results, because laborious
calculations would considerably lengthen the paper.

Since the construction of the sequence z is also laborious, we begin with
a special section with a sketch of it. We use the definitions and notation
listed in [3].

The author wishes to thank J. Kwiatkowski for many helpful conversa-
tions on the results of this paper.

§ 1. Outline of the construction. Consider two continuous Morse sequen-
ces x =b"xb! x ... and y =B x B! x ... We do not assume that b = |8,
t=0,1,..., and we omit the assumption that they are regular. Let .#(x)
denote the class defined in the introduction of [3]. The main result of this
paper is the following theorem. :

TreoreM 1. The Morse dynamical systems 0(x) and 6( y) induced by x and
y are metrically isomorphic iff ye #(x).

To prove the theorem it suffices to show the “if ” part because the
opposite implication is proved in [3].

Assume that 6(x) and 6(y) are metrically isomorphic. We will construct
a Morse sequence z such that x and y can be obtained from z by the
procedure described in [3, Introduction] (i.e. x, ye M*(z)). Now we give the
sketch of the construction of the sequence z. To do this we use a coding
technique the same as in [3, §2]. Let us denote A=V, =B, n
=Ado* .ot dy =2y ...- 2, t = 0. In this paper if B=b, b, ... b, is a block,
then B[j, k], 1 <j <k < n, denotes the block bybjyy ... by, and the symbol
B+i, ie{0, 1}, denotes the block B' (which is equal to B if i =0 and to B
if i=1),

Let h: X(y)—> X(x) be an isomorphism between 0(y) and O(x). By
Keane’s results [2] it follows that the eigenvalue group A of 8(x) consists of
all n-roots of unity and the eigenvalue group A’ of O(y) consists of nj-roots
of unity. So A=A" Hence by grouping the blocks {p% b',...} and
{8°% B, ...} we may assume that

nl)]né)r n;)lnla nlln’la n’l'nb-'-
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So m=pyn, n,.y =0w, m, t > 0. Moreover, we may assume that

| 1
Y —<o and ¥ —<co.
=0kt 1=0 0
The last conditions yield
Yo=todos Asi=po, Miy=ohey, t=0,1,2,...

If Q = h™!(P(x)), where P(x) is the time zero partition of X (x), then we find
a sequence {Q'} of partitions of X(y) such that Q' <¢ and |Q-QY - 0.
Reasoning in the same way as in [3, § 2] we conclude that Q is described by
codes {4,, B} satisfying

Q)] A = (g xL)[1+1, h+un], B,=/T,, Ly =1 (modny),

where ¢, = b® xb' x ... x¥, L, are blocks of 0 and 1 of lengths u,+1 and
Lel0,1,...,m—1}, t=0,1,2,... .

The codes {4,, 4,} satisfy the condition

(2) sup d(At+k: Afk)) 7 Os
k21 )

where A = 4, x'*! x ... x f*** This condition and (1) are the main tools
in the construction of z. It is convenient to modify (2) to the following
condition:

(3 supd(L[1, ulx B x ... xptt
k>1

B x o xbTEx L i) [L4 1, (k) (k) +5,(k)]) - O,
where 5(k) = Ay i .o Avrthey and (k) = (1/n)(hyx—1). We will prove
(3) in Lemma 1.

We are now in a position to present the main steps of the construction
of z. We consider two cases: 4, (k) =0 for ¢.> 0, k > 1, and u,(k) arbitrary.

In the sequel we will often use some formulas for calculating the
distance d between blocks. First for a given block E with length n and an
integer p > 1 such that p|n we define blocks E;, and E¥, as

E,, =E[G—Dn/p+1,in/p],

ErY,=E[]E[i+p)... E[i+(n/p—1)p], i=1,2,...,p.

Thus |E; | = |E¥,| = n/p. In the sequel we will write B x A¥,, B x 4, » instead
of Bx(4},), Bx(4,,).
Let L, B, b, L be blocks with lengths pu, 4’ @, uw, ' respectively. We
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have the following formulas:

uoon
@) d(Lxﬂ,be)=-—!72 ¥ d(B, .+ LL[j, b+ L [1]),
MW i<y j=1
o ALXP, X LY== 3 d(LX By b X ),
© AL xB b+ D = 3 e+ LU, Bt L D),
P

i=1,2,..., 4.

The above formulas are consequences of the definition of the distance d. We
explain them using the following illustrations:

| | ! |
i ! i
i Lx(gt@l) | Lx(BLl-Nwet, 101) | Lx{BllatNwn,prol)|
! [ i 1
i | i i
| | - | |
i | j | !
Lxg J a2 V£ | |
e e e o
Fig. 1
& u [ [

bxl! . . Do e S S— . .
] 1 |

| ' ] !
| ? i |
‘ i o ! §
| | | g
i bel'l1] E beL'Li] D bel'[pn !
! ! v :

Fig. 2

The blocks marked by points in Figures 1 and 2 are Biw+L[j] and b},
+ L[] respectively. Each of the blocks Lxf and b x L is constructed of puy'
of them. Hence formula (4) follows. Similarly we can obtain (5) and (6).
Case L.u,(k)=0forall t >0, k> 1, Throughout this case, by L,, ¢t 0,
we denote the block L [1, 4] (ie. L, without the last place).
L Consider the numbers d(L,., xf, b xL), t=1,2,... Applying for-
mula (4) with ' =L_,,/ =8, b=}, L= L,, we have

d(L-y x B, b x L) = i M'ild.(i,ﬁ,

1
He-1 i1 =1
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where

dl (la .’) =d ((ﬁt)i,u‘""l‘l— 1 D}) (bt)}k,u‘_ 1 + L't [i]):

: i=1,2,...,[11,'j=1,2,---,ﬁ11—1-
Put
X ) . Hy Bp-q
e(, ) =min{d,(i, ), 1-d,(i,j)} and = 2 Y el ).
) B y-1i=1 j=1

In Lemma 2 we will show that ) e, < co.

t=1
. IL In the sequel the matrices M, = (e (i,/)>, i=1,2,..., 4, j
=1,2,..., -y, t >0, are considered. Define

F,= {(i,j); e(i, ) <%}
Take the row of M, (say the i,-th) which contains the largest number of
elements of F, and denote by G, the set of all pairs (i,j)eF, such that.
(io, j)€F,. Let G} be the complement of the set G,. Then the convergence of
the series Y ¢, ensures that Y G/, 1y~ 1) < oo (here |GY| denotes the number

t t
of elements of Gf).Indeed, the property Y ¢ < oo implies Y |Fil/(, th-1) < o0
t t

and

Gl = 1 [{1<j < th-y; e lio, ) 2 3}

Ky
=3 H1<j< 15 alio, ) 23}
i;l

Bt . .
<Y HI<i<m-uel)z8l=|Fl.
i=1

HII. Now we can define blocks a,, t > 0. We set

0 lf dt(iO:j) <%—= :
-~ =1,2, s ey,
% U {1 if 4o ) >4 7 pot
and
0 i L]=Ye [0 |
dp = alil = =1,2,..., ,t?l.
SSUEURE LR I R o

Ko
IV. In order to determine blocks a,, t > 0, we first construct auxiliary
blocks ¥, of lengths u, t = 0. We put
i = 0 if d((B%u+Le [, (Bhiguu+ Le[io]) < 4,
' 1  otherwise,
i=1,2,..., 4.

3 — Studia Mathematica t. LXXXIV z 3
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Using the blocks ¥, we construct blocks ¥ (17 = |#)) and ¢' (@' = [b7) by
puiting
(y')i.n, = (ﬂ‘)i,y,'*' yl [l]9 l = 1: 2: revy /"n
((pl);'.:y,_1=(b‘):u,_l+yl[j]’ ]"_“11 2""5 P-1-
Finally we can define q,:

a,=b° gli]l= {(1) ' d(((p')i’“’t—v L. 1) <

otherwise,
i=1,..,00.,t>=1.
We will show (see Lemma 3) that
o0 0
™ 2 dd,a. xa) <o, Y d(f,axd)<co.
=1 =1

Ifa,[1]=1 (4[1] = 1) then we put q,[1] = 0 (7, [1] = 0) and the conditions
{7) remain true. In this way we obtain a binary sequence z = aq x @, x a, X @
x ... It is easy to verify that the continuity of the sequences x and y and the
conditions (7) imply that z is a continuous Morse sequence.

Case 2. u (k) are arbitrary,

V. We recall that u, (k) = (1/n)(fx—1I). Since L., =1, (modn,), ¢t >0,
there exist ¢,, 0 < ¢, < 4,—1, such that

L=qo+qine+qam+ ... +q,n_,, >0,
and hence
k) = q+gei it oo gaidrr o dirmy), 620,k 1.

We reduce this case to the previous one. To this end we define the blocks
&, ¥', t > 0. The blocks ' are equal to (b'b) [1+4,, q:+4],t =0, and the
blocks &' are determined by the following equalities:

(BN, - if r() =0,
80 = o, 5l*w = -1 . t
o O, {« Yoy DD BV, [, 4= 1)) if () =1,
‘ i=1,2,. ., 00,t>1,
where r,(i) =0 if 1<i<[(4—q)p-,] and r@) =1 if P> (A —q) -]

(here [d] denotes the integer part of a). The sequences of blocks {8, {¥'),
t 2 0, satisfy the condition

supd(Ly x 8 x ... x &K gttt i L XY L) 0,

k=1

where L = L, [1, u] (see Lemma 4).
VL. The above condition is the same as (3) if we take o' instead of f* and
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i instead of b* and u, (k) = 0. Therefore we can repeat the considerations of
Case 1. As a consequence we obtain blocks {K,}, {@}, |K/)=w,_, |3,
=p_1, t 21 Ko = Aos Satisfying -

® Z Ay, g, xK)} <0, Z d(d, K, xa@) < .
=1 t=1

Further we put g, = (K, K))[1+k,, k,+n], where k, = [(}, ~q)/t—1]. As in
Case 1 we may assume that g, and g, start with 0. Therefore z = a, x 3 x4,
xd; x ... is a Morse sequence and it is not difficult to see that z is
continuous. We will show in Lemma 5 that the pairs of sequences x, z and
¥, z satisfy conditions (A) and (B) of [3].. This ends the sketch of the proof of
Theorem 1.

Remark 1. It follows from the construction of the sequence z that x, z
and y, z satisfy conditions (A), (B) although they need not be regular.
However, Kwiatkowski’s Theorem 1 is not valid if the regularity of x and y
is not assumed. In our paper we formulate (without proof) a necessary and
sufficient condition for two Morse dynamical systems 0 (x) and 8(y) induced
by x=bxb'x... and y=pxp'x ... and satisfying |b'| =Y, ¢
=0, 1, ... to be metrically isomorphic (see Theorem 2). In case x and y are
regular, Kwiatkowski’s results are consequences of Theorem 2. Using Theo-
rem 2, we will give an example of two continuous Morse sequences x and y
such that @(x) is isomorphic to 8(y) and such that conditions (A) and (B) of
[3] are not satisfied simultaneously.

The fact that the sequence z satisfies (B) is a consequence of the
conditions Y 1/p, < o0 and Y 1/, < co.

t t

§ 2. Proof of Theorem 1. Now we give the proofs of the lemmas used in
§ 1. We assume that x = b% xb! x ..., y= f°x B! x ... are continuous Mor-
se sequences such that 0(y) and 6(x) are metrically isomorphic. The lengths
A, and A of b* and ' satisfy

Ao =Hoko, A=lh-10-{, h=po._y t21,

and Y 1/u, < 0, ¥ /o, < co. Codes {A4,, B,} describing the partition Q

1 t
= h™1(P(x)) have the form (1).
Lemma 1. The sequence

{supd(L,[1, uI =¥ x . xB*5 (Hix ...
k21 A

- xBTS L ) [ (R), u (k) + s, (KD},
where $,(k) = A4 1 .o Aysx s and u (k) = (1/n)(L+—1), converges to zero.
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Proof. Introduce the following notation:
a=c[L, L], o =¢[1+h, n],
L=LlLu), L=LI2up+1), t=0,1,..
To prove the lemma divide the block A® = 4, x f** x ... x B** (for fixed ¢
>0 and k> 1) into g A, ... 444, consecutive subblocks E; of length n,.

‘Next divide each E; into two consecutive blocks E;(r), r =1, 2, such that
|E; (V)| = |¢| = n,—1, |E;(2)| = |¢| = I,. Denote by E and F the blocks

E,(HE,(1) ... E,“J.;J, 1...1;“(1) and E;(9E,(2) ... En,z;H...z;H,‘(z)
respectively: It is clear that
E=¢'xLxf* ' x ... xp** and F=cxLxBtx... xp*k

Let E/, F' denote the blocks obtained from A4,., in the same way as the
blocks E, F from A®. We have

E = (0 x ... xb""*x L) [1+u k), u (k) +s,(k)]),
F=ox((B x .. xb ¥ x L) 244, (K), 1+, (K)+ s (k)]).
Notice that

n—1 /
d(Ay4y, AM) = ;n:_'lt (k)+E'H: (%),

where’
I (k) =d(L’; xBFx o xBE BT x L xB TR L) [+, k), u, (k)
, +5,(k)J),
H(R)=d(Lxp* x ... xBH B x oo xb T x Ly Y24+, (k), 14, (k)
+5,(0)7).

By (2) it suffices to show that supl|l, (k)—1II, (k)| - 0. This is true by Y 1/u,
< oo and- by the equality = ‘ '
AL XBT X e B2 s o Hd,
(Lex B0 x e x B Ay oo Aa—1]) < 2.

In Lemmas 2 and 3 we assume that u, (k) = 0 for all t > 0, k > 1, and for
convenience we write L, instead of L.

oo
Lemma 2. The series Y. e, is convergent.
t=1
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Proof. Let us define
di(ky=d(L,x B x .. xBTEBIx L xbtox ),
dE()=d(L xp T x ... xptety B e P X o xBTRE L D),

i=1,2,..., 4.
First we show the following formula:
9 db
1 1 Btk Bt
= 5{1 “‘miél ik+}1:=l (1 _2dt+k(ils iz)) (1 _2dx+l (ix ik+1))}
t,k=1.
Because of
Ptk
d,(k} = Y drQ)
Mvk i=1

it is sufficient to show that for all ¢, k>1 and i=1,2,..., s, the

following equalities hold:

1 Hetg—1

(10) 1-24*(@) =
L S R I TES

He

o (124G 1)) (1 =2 Gy 82) <o (1=2dps Gy, 1),

=1

We prove this by induction on k. Fix t > 1. If k = 1 then (10) is truc by (6).
Suppose (10) holds for some k>1 and each 1<i<p., Let
1 <j<thex-1- Applying (6) with L=5b"1x ... xb'** f=pt+r+t
F L= U1, b=Lxf ! x ... xf*k L =(ﬁ'+k—1)j,u,+k+1_ we get

1=2d* () =1-2d(L,x f* 1 x ... xﬁ‘*"x(ﬂ‘*"“),_,,tﬂﬂ,
br+1 X ... Xb'+k+l+L,+,‘+| D])

Hit+k
- 1*;: i=zl d((L, xﬁx-!-l X ... xﬂ‘+k)i,u,+k X(ﬁ'+k+ 1)1"‘”“.1’
b"+1 X oo X TEX(BTRLLL, iy U]):)l,-;-)‘)
2 Mk
=] m— Z d(Lr xBlx .. x gt x(ﬁt+k)i,t‘;+k
Mtk i=1

x(ﬂt+k+1)j’"'+k+1’ bt+1 X ... bu—k X (br+k+ 1):;:,+k+Lr-»l.~-1 D_])
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Applying the formula

(11) d(AxB,CxD)=d(B+1, D)+[1-2d(B+1, D)]d(A+1, C),

(where the blocks A4, B, C, D satisfy |A] =|C}, IBI iD| and le{0, 1}) with
A= Lt Xﬂ”l x Bt‘rk 1 (ﬂtﬂ‘)l.u,“’ = (/3:+k+ l)j-u,+k+1s
C=b""x xbtE = (b, ,,‘,+k+Lu+u+1 1. I=L..[0l,

we get
1 B4k
12481 (j) = Y (1=2d,4ps 1 Gy D) (1~ 24 (D)
vk i=1 '

and by the induction hypothesis it follows that (10) holds.
Now we can show that Ze, < oo. We have 1—2¢,(i,)) = |1 —24,(, j).

Let us deﬁne e k), t = 1 by
1 He+k Bt
1-2¢(k) = —-— Z Z (1"‘2er+k(il5 iz)) (1"29:“ (s iun))-
Besk oo =1 =1

It is clear by (9) that inf (1—2e(k))-» 1. Let t, be an integer such that 1
k=1

—2e,(k) >4 for all t > tlo and k> 1. We have

i< 1-2¢,(2k-1) < { ! Yy (1- 2,54 gk-1 (iy» lz))}

Hrg+2k-1 e+ 2k~ 2 ig5ig

, {__1__, T (1=2e,4 203 (iss 14))}

Hrg+2k-3 Mrg+ 2k~ 4 ig,ly

Z (1 - 29r0+ 1(i2k-1, izu))}

{MOH Heg gy ik

=(1 —2310+2k—-1)(1—2e:0+2k—3) s (1-2e04,) <1

o o0
Hence ) € g+2,—1 < 00. Similarly 3 €4+2, < 0. This means that the series
r=1 r=1

Y. e is convergent.
t

Lemma 3. The sequences of blocks {a}, {@},
satisfy the conditions

t 2 0, defined in 111 and IV

TdE™, a,xa.) <0, Td(F,axa)<w.
t t
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Proof. Notice that for (i, jeG,
A((BYgu, + Le liol, (0fy,_, + Ly [+ ¥ D]) <
A((BYgup, + Liliods (B, + L[]+ Y [i])<

3

1
H
1
2-
The above conditions imply for (i, )e G,

d ((y')i,u,+ l‘l [l]’ ((pt)zp,_ 1 + Lr- 1 D]) =& (‘9 .l)’

Therefore by Lemma 2 and (4) we obtain

(12) Y d(Li-y x7, ¢ xL) < 0.

t=1.

In view of (5) and (11) we get

@ —1

(13) d(Ll—l Xy‘s (p'x'Lt)= Z d(I‘l 1x()})l,m, x’((p)lﬂ)' 1 )

t—~1

LS el @, )

W17

+ [1 —2d(L.— 1ta [’]5 ((p')(,w,- 1)] d((yl):"’tw 1’ L+a [l])}
Zd(Lr—l +a1 [i]: ((pt)i,wt..l) =

r—1 i

d(L,—, xa,, ¢).

Hence in view of (12) we have ) d(L—, xa,, ¢') < c. From (13) we obtain
t .

@p1

d('y's 4 x L) = . Z d((y')i.w, 12 L¢+ar [l])

Sd(l‘t~l XV', ¢ XI‘I)_d(Lc—l Xa, (P')
+2d(Ll—l xa, (Pl) < 2d(Ll—l X'V‘w (Pl Xl,,)

Therefore Y d(y, a,x L) < co. Let us define
!

if L= %[,

. =1,2,...
otherwise, >

0
Ey=00...0, E,[i]={ s M, t 21
—_— 1

Ko
Notice that

d(Lr—l xXa, fP’) = d(b" El“l Xll,), d(yla a; XL,) = d(ﬂt’ a ><El)'
Thus we have Y d(b'*?, & xa41) < 0, Y. d(f, a, xE}) < 0.
t t
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To finish the proof it suffices to show that ) d(a@, E,) < co. We may
t
assume that
(14) d(Li-1, G-1) <%

(otherwise we replace 4, a,, E, by &, &, E, respectively and then (11) remains
true). Let us define

Sitk) = d(Lx X(@ 41 X Eppq) X oo X (Gap X Eqi),
(@ X y) % oo XAyt X)X Lyos),
F)=d((@ 41 xEpsq) X oo X(thar XEy i),
(@41 XBa1) X oo X(Gpaeie X Ty 44))-
It is easy to see that the triangle inequality and (11) imply sup S k) O.
Hence in view of (10) and (14) we obtain sup FAGEI) Smce

1=27,(0) = (1 =20 By 1, By ))(1~ 27101 (K) < Ij(l U(E, 1, 1))

we have Y d(E, @) < c0.
t

Now we prove two lemmas which were needed in’ Case 2.

Lemma 4. The sequences of blocks {6'}, {'}, t > O, defined in V satisfy
the condition

supd (L, x &6 x ... x8TE Yt x L oyt x I, ) - 0.
t

k21
Proof. For convenience introduce the following notation:
E;,(9) = (EE) (g, g+n]),,, where |E| =n, p|n,1<q<n,
M=Lxp* x ... xp*k .
Meklins - i) =L X(ﬁ‘“)ﬁ,w, X . x(ﬂﬁk)ﬂ,w,”_la
Ep(F) = (0" x .o xb M 5 FY[1 4, (k), u (k) +5,(k)],
where [F| = p,..,+1,
Sek(F3ips ooy i) = (0 ) o (L4 Goa 1) X0 )y 0,4 (1 G2+ Fr1 ()
LREPIR ] Ay PR ( B AT (Y
X(F (14744 (), Teak i)+ th 1)
S = & (Leri), Colits oees ) = o (L3 gy - v i)y

1<ip<w,+p—1, p=1,...,k, t?O,k}l.

icm

Metric isomorphism of Morse dynamical systems 259

We will prove this lemma in three steps.
1. First we show that if L, §, b, L are blocks w1th lengths u, p'o, po,
W +1 respectively and 0 < g < uw—1, then

{13) 'II(L xB, (bxL)[1+q, g+ pou’])

1 w
= 2 AL X B, b (140 x(L [+, 1O+ 1) < =
where

(i) = {0 if 1 <i < [((uoo—q)/ul,
1 1fl>[(#w 9)/ul.

To this end divide the block L x g into u' consecutive blocks (L x B);
=Lxp»i=1,..., 4 Next divide each block Lxf;, into @ blocks (L
X Brue = LB [K]), k=1, ..., w. Let E, denote the block

(L X ﬁl.u')k,w (L X Bl,u’)k,w aee (L X ﬁu’,u’)k.m .

It is easy to see that E, = Lxf¥,. Let E; be the block obtained from the
block (b x L)[1+4¢, g+ uwu’] in the same way as E, from L xB. It remains
to observe that

E, = byo(1+q) x(L[1+7r(®), r(®)+1T) for k¢1+[“”ﬂ q]

2. Next we show that for all t, k> 1

1 @y Ok~ 1

2 d(ﬂr,k(lin ey ik), él,k(ila ey lk))

e Ork-14y=1 =1

16 }uk)—w

i 1
<—+ ... + 8
@y O k-1

where _
dk)=d(Lx B+ x .o xBTE BT x L xbYEx L ) (14w (K), u (K)
' 45 (k)
In order to prove this we show that for each block E of length g, +1
the mumber

R,k (E) = d('h,p fr,k (E))
1 ol @rtk—1

— 3 Y Al s W)y En By, ey i)

W eor Wppkm1iy=1 =1
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satisfies

1 1
IR, (E)l S-+ v .
@y Wy pg~1
Fix t > 1. For k =1, (16) is true in view of (15). Suppose that (16) holds for
some k > 1 and an arbitrary block E of length y,,,+ 1. Let F be a block of

length ;4,+k+1+1 Applying (15) to L= L, x f'*' x ... xp*k f= grek+i
=ptlx xB L L = F, q=u,(k+1), we get
. Dy 4k }
d('h.k+n Srr (F ) CO,+“H§~ d(’h,k x(ﬂ”"“)ﬂﬂ.w,“‘s

b*tx ... Xb'+k+‘)ik+1'w:+k(1+“l(k+1)) ><F‘lc'i-l)'*'jw’

where Fy = F[1+7 041 (is1)s Teans s Gewr) + sk ] and M} < 1w,
Notice that putting

E, =@ iy Feakt1 e 1= D thsrs 14 Gy pny +Fige Hi+l

we have
(17) BT x e xBTEY, (L k) = SalEp )
Put d' = ((/?“"‘“,,“L1 arex> Fip 4 o) It follows from (17) and the induction

hypothesis that

d(q,,,,x(ﬁ‘”“);;m,mk,(b'“>< cxb TR, oy (L4 (k+ D) X F,

'k+1)

= A x (B, o Gk By )xFy )
=d'+(1-2d)d(n4, &u(E,,, )

i Op k- |
Wy ... [ ig=1 l,§l (m'k(lh ’ lk)’

fl,lc (E‘k+1; il! Tty ik))+Rl.h(Elk+l)}
1
Z .. ’2[‘1’+(1”‘2‘l’)d(ﬂr,k(iu ey By),
k

Dp ooe Opyg—y ]

=d’+(1~2d’){

bn By i3 s o )] (L= 24) R 4 (B, , )
1 .
et S P TLNY

W oo Wpppy iy ix
fl,k(El,‘+1; iy,

ik+l)a

o b XFy | )+(1-2d) R, (E, , ).

icm
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Because of CealEipy 3 irs e i) xFi ., = &ux+1(Fi iy, ..., By ) we thus have

D+ k 1 1
R F) < M+ R, . (E; e
IR+ 1 (F)] '+k-k+21: . e ( k+1 a),+ .

3. Now we can show that

supd(Ly x0'* x ... x& % Yttt x L xR x L)~ 0.
k=1 t
Put
Et.k(ih rees ik) =(¢‘+l),'l,m, X . x(¢'+k)‘k'“'l+k—1 XL’H.,‘,
Tukits +oer )= L X@F 0 X oo XG0,
ii=1,..., W4s-1,5=1,..., k.
In view of (16) we have
(18) Id(Lr'xél-rlx . X(SH"‘, 'wt+lx . X'/"HXL'.H)
1 oy O +k—1 ( E‘ ( ))
— Adfpliy, oees i)y Epcliny ooy i
Wy o Oppg-1 dlz=:l ikgl e )
1 1
<—+ ... + .
w, Wp+~1

It is not hard to see that
@ Yoy = O i (1 + G 1),
[ Ny g 1O pigg2)

—d (B Vg sy (HFirsm 1 Gam D F s B s
1
Prts-1
4 (L sk Oy y)

—d(L'+k[1+rl+k(‘k): Terk )+ Hesad,s (ﬂ‘+k)ikvw|+k 1)| =

< s=2,...,k,

“H»k.
Therefore, using the formula

[d(A; X ... x Ay, Byx ... xB)—d(C;x ... xC,, Dy x ... xD,)|

< Y ld(4;, B)—d(C;, D)i
i=1
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(where the blocks A;, B;, C;, D; satisfy |4, = |B}, |C;| = |D)}) we obtain
1 Wy Ot k-1 E
d ,(1,...,1), i lins ooy i)
Wy '-a’z+12—1t1=1 1kz=:1 (mk ! Ko Bk k)
1

— Y S dC Gy

Wy oo Optp-1 iy iy

1 1 1 1 1
s——————z...z(;—+...+ )=~-—+...+- .
@ oo Orip-1 4y e \Prt+1 Mk My My g

Thus (18) and (16) imply that

i N (ins -oes ik))

]d,(k)—d(L’t x5t+1 X .. xé“"‘, IPH-I X . x./,rf-k XL’H-k)I
1 1 1 1
S2{—+ .o +— L
D Drip-1/) Me+r Ha vk

Hence
supd (L, x 8! x

k21

x0T Y L xR ) O,

Now we prove the last lemma.

Lemma 5. Let {a}, {a}, {K.}, t > 0, be the blocks defined in VI. There
exist sequences of integers {g,}, {p}, 0< G, <A, 0 p, < X, t 20, such that

;d((b‘b’)[lﬂj,, g+Ad, G4 xa) < o0,
Et:d((ﬁ‘ﬁ‘) [1+p, p+ 4], a4, x&) < oo,
Lmin(l~j/n, j/n) < co
};min(l =i, jilng) < o0,
where
Jo=qo, Ji=To+Tine+ ...

ZI_,' = ijt if ql-—l < Ar~1"‘7¢—1“1: zl-l, = qt—l (mOdAI) otherwise, L= l:
and j; is defined similarly (we replace g, A, G, by p,, Ay D).

+q;n(~1=

Proof. Let us define p, = 4j—(w,_; ~k,) (mod %), t > 1. (recall that k,
= [(4,—4¢,)/it.—1]). First we show that

(19) A&, K, xa)=d((B' BV (L +p, p+ 4], 4 x3), t>1.
Suppose first that 0 <k, <.y Fix t2 1. Put qf =K,[1, k], a/ =K, [1

iom
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+k,, &,—1]. Introduce the following notation:
Bi=Pl+iE~Dao, (~ Doy +k],
=pi-Do_,+k+1,io0,_,], i=1,..., 4,
B=FF. B B =pB... B

We have Bl =k, IBl| =0,y —k, i=1,..., 1, fi=B1 Y ... B, - Because
of

(B'BY[1+py, o+ 4 = B [1+p, AT [L, B,

BLL pl B (1+p, A]=f =B BT ... B, BS.

B 1+p, A4 = X—p, = u,I,
we obtain
(B BY[1+p,, p+24] = By BL BT --. B,
On the other hand,
a x4 = (@ +a (1@ +q[1]) x ... x(&'+&[w])(g+3a 1))

Therefore we have

d((ﬂtﬂt) [(L+p, p+ 4], ax Et)

-2, a,xa.)+(1—w

) (6% &' x(@ @) [2, 1+ m1])-

t—1
Notice that

1 st I
A, K, xa@)=—— Y d(.,_,, K. [(1+3)
€,

t—1 i=1

~5~Zd( BYor- 1> @) [1+1,), 7o) +pd+K, [1])
t—~1

ky
=——3 d((BVo,- > @@ [1+7,0), )+ w]+ K, 1)
t—-1i=1
-y =k
o Z1 (B k1 @B [1+7, G +K), 7o)+ 1]+ K, [E])
't~ 1 i=1
Ky
=LY A, BHKT)

-y kS

+

k 1 wp 1~k _ _ .
_ ke * 2 1) +K, [1]).
(1 w,-l)w,-l—k, 3 A(B oo @12 AT +KLLD)
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It suffices to show that
Ky

£ S Ao, B+ K1) = d(B, | x3),
ti=1
or— 1~k
Y AWk @2, 114 (1] + K, [1])
=1
=d(B", ' x((@ a)[2, 1+ u]).
The first equality is true by the following equalities:
B, = BLUIBLLA .. B, (i1 = B LB Ti+eo] ... B i+ — D, ],
(@ x @)k, = a,+d,[1] = &+ K, [il,
BNy = BLIB i+ @] ... B Li+(~1) 0y 4],

wr—l_kt i

i=1,..,k.
The second is a consequence of the equalities ’
B W1, = BLTBSLED .. AL D
=B li+k]pLi+hk+w,_]... Blitk+(u-1)ow,_,],
(@ x(@ @) [2, p+ o1k = @& [2, p+ 11+ [1]
‘ =@ [2, 113, (1D +a,[i+k,],

- BVekopy = FL+KI B [i+k+ oy, ] ... Bli+k+m-1o,,],
_ i=1,..., 0.4 —k.

If k, =0 or w,_, it is not hard to see that (19) also holds. Therefore

2A(B BY(1+ s P41, 0, xT) < 0.

Put g, = q,+k,p,—, (mod4,). It is easy to see that
d(E'YYU+3, 82, Gy xa) = d(b'B) [1+4,, 4,+4], -y xK,)

and in view of (8) we get

LA(B'B)1+q, g+, G-y xa) < 0.
t

It remains to show that ¥ min(1—j/n,, j/n) < 0, Y min(l —ji/n,, ji/n,)

13 13
< 0. Notice that if p 0 then p, > J—w,_, and if g, #0 then g,> 4
—#h-1. Thus it is obvious that if p, # 0 then 4 —a,_, —1 < P, < A—1 and if
G #0 then 4—p_,~1<g <A1 Since
s / : P
o<k B L o k@1

SHTESR UShTa <%

i::m©
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we have

. Ji i . Ji I
min{l-—-= = )< o, rnm(l—~,, —7)<oo
Zoin(1-% )<, i (1E 2

This completes the proof of Lemma 5 and finishes the proof of Theorem 1.

§ 3. Metric isomorphism in case 4, = 4/, t > 0. Suppose that the lengths
4, 7, of the blocks b, f' of continuous Morse sequences x = b° xb! x ... and
y=PB°xp" x ... are equal for all t > 0. From Theorem 1 one can obtain the
following theorem, which we give here without proof.

THEOREM 2. (x) is metrically isomorphic to 0(y) iff there exist sequences
of integers {r}, {8}, r,s5€{0,1}, t>0, and a sequence of integers {g,},
4,0, 1,..., =1}, t >0, such that .

(20) > [(l —%)D,H +JZ‘D—1+1J < o0,

=0
where

Dy = ((b'H)"“(bHI)x'“ 4Gy e+ 4441, ﬁ'+1+"z),
D,y =d((bﬁhl)q-'-l(blﬂ)s'-H 2+, TGy +d], ﬁ'+1+sr)a

and Jo =4do,Jr =ji-1+4, g, t 21
Remark 2. Put

L if 29, <A1,
& q,+1(mod4) otherwise,
and if g, < 4,1 or 2g,_, < A_,~1,

o fretrmed?) if 2, < Aoy,
e Fey1+S, (mod2)  otherwise,

p ={s,+1+r, (mod2) if 2g,., <4,_,—1,
17 Use1+5 (mod2)  otherwise;
if g =A4—1and 2g,., > 4._,—1 then
f+1=S8+1+8 (mod2), s,y =r.,+s (mod2), t=0,
ro= ro, Sp= Sg.
Then r{y; 454y (mod2) =r,, +5.; (mod2) and it is not hard to see that

(20) is equivalent to the following two conditions:

(21) Z d«bx+1)'i+1(br+1)-‘i+1[1+q:+1’ q:+1+1’+1], ﬁt-f-l)( 0,
1=0

@ fehd)e)ee
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where

fr (01, b)+fr (10, b)
A

(00, b)+fr (11, bY)
A

if r,=s,
=
if r, %5,

and v, =0 if the number &'** [}, ]+r . +ri+5.+5 is odd and v, =1
otherwise, ¢t = 0. )

Condition (A) of [3] is the same as condition (21) and conditions (A), (B)
imply conditions (21) and (22). If x is regular, then obviously condition (22) is
the same as (B). :

ExampLE. We give an example of continuous Morse sequences x = b°
xblx ..., y=B"xB'x ..., [b| =B, t >0, such that O(x) and 0(y) are
metrically isomorphic and condition (B) is not satisfied. ‘

To this end we set

F=00,.011..1, b»=011..100..011.. 1, t=0.

t+1? 2+ 1)2+1 @+n2 @12 12

Then x =b%xb" x ..., y =B°xp* x ... are continuous (but not regular)
Morse sequences. Taking rj =5, =0, g, = 1+(t+1)% t 20, we see that
conditions (21) and (22) are satisfied so 6(x) and 0(y) are metrically isomor-
phic. It is not hard to see that if g, < §(t+1)* or ¢, > A ~4(t+1)? then for
all r, 5,€{0, 1}

Tt (105t 3 t+12
d(@y' )" [1+4,, q,M],ﬂ);a—(-%t—(ﬁ)—zL—la%-

Thus if condition (A) holds, then the series in (B) is divergent.

A note about finitary jsomorphism. We finish this paper by giving
(without proof) the necessary and sufficient conditions for Morse dynamical
systems to be finitarily isomorphic. '

THEOREM 3. Let x = b® xb* x ... and y = g x f* x ... be Morse sequen-
ces. Then 8(x) and 0(y) are finitarily isomorphic iff there exist blocks A, B, |4]
= |B|, and a Morse sequence z such that x = A x z and y = B xz. In particu~
lar, if |b'| = |B| for t 2 O then 6(x) and 0(y) are finitarily isomorphic iff b = p*
Jor all sufficiently large t.

Corovrrary. Each class of finitary equivalence is countable and coincides
with a class of topological conjugacy (see [17]).
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