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Some remarks on Suslin sections
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Abstract. We consider the action of a group of homeomorphisms on a topological space,
and establish conditions for the existence of a Suslin section of the corresponding equivalence
relation. We focus on first category situations; we exhibit for instance a natural class of Banach
spaces —containing e.g. ¢o(N) and' A (H)—which act in a somehow “ergodic” way in their bidual
E** equipped with its w*-topology. The proofs are short and simple; a number of examples,
belonging to various domains of analysis, are given,

I. Introduction. It has been known for a very long time that some very
simple equivalence relations may not admit measurable sections. Actually,
the first examples of nonmeasurable sets have been constructed in this
manner ([13]). This fact has been connected more recently with the “size” of
the quotient space, in the articles [12], [7] and [5]. The present note is an
attempt to develop this natural idea. A general result (Theorem 3),
concerning the action of a group G of homeomorphisms on a Polish space, is
shown; let us notice that no topological assumption on G is needed in order
to obtain this result—in contrast with [12], [7], and [5]. We consider also
“first category” situations (Theorem 7) and this requires the use of some new
techniques.

A general theory can be completed in the setting of equivalence relations
with Suslin graph. For the sake of shortness, we will restrict ourselves to the
action of a group of homeomorphisms on topological spaces; indeed, most of
the interesting examples occur in this setting. For the same reason, we did
not systematically try to give the more general results, but only the useful
ones for natural applications. A number of examples, belonging to various
arcas of analysis, are given.

Notation. A topological space X is Suslin—resp. standard— if it is the
continuous image—resp. continuous injective image —of a Polish space. We
denote by #2(X) the o-field of the Borel scts of X. If G is a group of
homeomorphisms acting on a topological space X, we denote by 1 the o-
field of G-invariant Borel sets; the quotient space will be denoted by X/G,
and will be equipped with the quotient Borel structure. X/G is countably
separated if there exists a countable subfamily (B,),», of 7; which separates
X/G. A section X of X/G is a subset of X which meets every equivalence
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class in exactly one point. A probability v on a measurable space (£, ) is an
atom if v(X)e {0, 1} for every X ev. This atom is nontrivial if v(!?) =1 and
v(A4) = 0 for every atom A of t. The characteristic function of S is denoted
1s.

" A subset M of a topological space X is meager —resp. co-meager —if M
—resp. X\ M —is contained in a countable union of closed sets with empty
interior. M is Baire-measurable if there exists an open set O such that MAO
is meager. The class of Baire-measurable sets is a o-field which contains
#(X) and is stable under the Suslin operation (see [3]).

P(H)—resp. A (H)—is the space of bounded—resp. compact
—operators on a separable Hilbert space H. The weak-star topology on a
dual Banach space is denoted by w*. All the linear operators we consider are
strongly continuous.

Our main reference is [3]; see also the very comprehensive and useful
surveys [15] and [16].

II. The general results. Let us begin with the easy

Prorosimion 1. Let P be a Polish topological group, and H a Suslin
subgroup of P. Then the following are equivalent:

(1) H is closed.

(2) P/H is countably separated.

(3) P/H admits a Suslin section X,

(4) P/H admits a Borel section X.

Proof. (1)=(4) is a consequence of ([3], Th. 4.3) (see [3], p. 84) or of
the theorem of Kuratowski-Ryll-Nardzewski.

(4)=(3) is obvious.

(3)=(2). Let (0,),» be a basis of the topology of P, and B, = 0, X;
we let B, = B,+H. Since H is Suslin, B, is Suslin; moreover, P\ B, = (2\0,)
+H and thus P\ B, is Suslin. Now the separation theorem (see [3], Th. 22
shows that B,e#(P), and it is clear that (B,),», separates P/H.

(2)=(1). Let us assume that H s H. The set H/H is a subset of P/H and
is, therefore, countably separated. The next lemma will be useful.

LemMa 2. Let X be a Baire topological space, and G a group of

homeomorphisms of X such that for every pair (0, 0') of nonempty open sets in
X, there exists ge G such that g(0)n O’ # Q. Then every G-invariant Baire-
measurable subset B of X is meager or co-meager.

Proof. If B and X\B are both nonmeager, there exist O, and 0, two
nonempty open subsets of X such that O,\B and 0,\(X\ B) are meager. By
assumption, there exists geG such that g(0;)n 0, @. The set
(g(0) n0,)\B is contained in g(0)\B =g(0,\B) and, therefore, it is
meager. The set g(0;)n 0, B is contained in 0,\(X\B) and thus it is
meager too. But g(0,) 0, is a nonempty open set and thus is nonmeager;
this is a contradiction. m
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By Lemma 2, the H-saturated Baire-measurable subsets of H are meager
or co-meager in H. We define an atom v on 74 by

v(B)=0 <« B~ H is meager in H,
v(B)=1 < BN H is co-meager in H.

Since P/H is countably separated, the atom v has to be trivial ahd, therefore,
there exists xoe A such that xo+H is co-meager in H; this implies that H is
co-meager in H and Pettis’s lemma (see [3], Th. 5.1) concludes the proof. w

Remarks. (1) The implication (#)=(1) is claimed in ([15], p. 884),
where it is considered as a consequence of ([1], Th. 2) and ([12], Th. 7.2). It
is not clear to me that these results could give (4) = (1) since [1] and [12]
deal with continuous actions of locally compact groups; and we are
clearly not allowed to assume that H is of second category in itself in order
to prove (4)=>(1).

(2) Let us notice that the assumption “H Suslin” —which does not figure
in ([15], p. 884)—is necessary, as shown by the example: P=R, H an
hyperplane of R considered as a Q-vector space.

(3) Proposition 1 is an improvement of ([3], Th. 5.5).

Our next result is essentially an improvement of ([5), Th. 2.6):

THEOREM 3. Let P be a Polish space. Let G be a group of

homeomorphisms of P such that G(x) is F o for every xe P. Then the following
are equivalent:

(1) G(x) is locally closed for every xeP.

(2) P/G is countably separated.

(3) t; has no nontrivial atoms.

If G is Suslin for the topology of simple convergence on P, then (1-2-3)
are implied by:

(4) There exists a Suslin section X of P/G.

If G(B)e #(P) for every Be B(P), then (4) is a consequence of (1-2-3).

Let us notice that no topological assumption on G is needed in order
to obtain the equivalence (1-2-3). ‘ ‘

Proof. (1)=>(2). Let (0,),»,; be a basis of the topology of P. The
sets B, =G(0,) are open and thus B,etg. Let x and y be such that
GX)NG(y) =@,

If G(x)G(y) =, there exists Oy, such that xe0,, and 0, N G(y)
=@ and B,,O = G(O,,o) separates G(x) and G(y). If G(x) ga—(ﬁ, there exists
0,, containing y such that 0, "G(x) = @ since G(y) is open in 6(—y—); and
then B,, = G(0,,) separates G(x) and G ().

Therefore, the countable family (B,),s; of 1s separates P/G.

(2)=>(3) is clear.
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(3)=(1). Let x be a point of P, and P’ = G(x). It is f:l.ear t.hat‘ X = P
satisfies the assumptions of Lemma 2, and thus‘ the G-invariant Bc.llt.'e-
measurable subsets of P’ are meager or co-meager. Since 7 has no gon}rwm]
atoms. there exists x, such that G (x,) is co-meager in P': but G(x,) is F, and

thus G(xo) # @; this implies G(xo) is open in E(—ij But the onl.y class
which can be open in G(x) is G(x) itself, and thus G(xp) = G(x) is open

in G(x). o .
® ((4))=> (2). Let % be a Suslin section of P/G, and assume that G is Suslin

for the topology of simple convergence. The application ¢: (g, ’f) — g (x) from
G x P into P is separately continuous on a product of two Suslin spaces, and
thus ¢(S) is Suslin in P for every Suslin subset S of GxP. We let
X,=G(0,n%) = ¢(Gx(0,n2).

By the above remark, X, is Suslin in P. Moreover, the set P\ X, = G(Z\0,)
is also Suslin and then the separation theorem (see [3], Th. 2.2) shows that
X, is actually Borel in P. It is clear that the countable subset (X,)yz1 of 14
separates P/G.

’ (2)=(4). We suppose now that G (B) is Borel for every Borel set B. Let
(X,)nz1 be a separating subset of 7. We define the distance d; by

+
dy(x, y) =d(x, )+ 3 27" [1x, ()~ 1x, (V)
n=1

where d defines the topology of P. It is easy to see that (P, d,) is sti.ll
separable; since the Borel structures of d and d, coincide, t‘he space (P, dy) is
Suslin (see [3]) and thus there exists a distance d, on P, finer than d,, such
that (P, d;) is Polish. We consider now

ll/: (P= dz)" {0’ 1}N= X = (lx,,(x))n>1

\ is continuous from (P, d,) onto the Suslin set § = i (P). Since G(B?e:%(!’)
for every Be 4 (P), the application y — ™' (y) is measurable from § into the
set P of closed subsets of (P, d;) equipped with the Effros-Borel structure
(see [3], p. 82); indeed the Borel structures of d, and d coincide (see [3;], Th.
24) and thus every d,-open set is d-Borel. By ([3], Th. 4.2) there exists a
measurable choice function o: P— P; we define 2yt PP by X (3{)
=goy (Y (x)). It is clear that £, is Borel and, therefore, X, (P)= X is
Suslin in P; and by construction, the set X is a section of P/G. w

A natural example of the above situation is the continuous action of a
K,~group on a Polish space. Let us point out that if G is countable, then
(1-2-3-4) are equivalent.

If P is now assumed to be compact, we can prove

CorOLLARY 4. Let K be a metrizable compact space, and G a Suslin group
of homeomorphisms of K such that G(x) is F, for every x. If K/G admits a
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Suslin section Z, then for every x in K, the set G(x) contains a closed
equivalence class G (x).

Proof. We define " by
H = {F closed in G(x)| g(F)=F Vge G}

Since G(x)e .#, this is a nonempty family. The compactness of m shows
that #" is inductive for the inclusion. By Zorn’s lemma, ‘there exists K,
minimal in .#". Let x, be a point of Ko; the set G(xy)\G(x,) is closed by
Theorem 3, G-stable and strictly contained in Ky ; since Kq is minimal in o,
this implies G(xo) = G(xg). w

Let us point out an interesting special case:

COROLLARY 5. Let K be a metrizable compact space, and G a Suslin group
of homeomorphisms such that G(x) is countable infinite for every x in K. Then
K/G does not admit a Suslin section I.

Proof. If there exists a Suslin section X, then by Corollary 4 there exists
a closed class G(x,). Since G acts transitively on G(x,), G(xo) is a
homogeneous compact space; and such a compact space cannot be countable
infinite. =

The next situation we will consider arises from Banach space theory. If
E is an infinite-dimensional Banach space, then E is a meager subgroup of
the meager group (E**, w*). We will show that a natural class of Banach
spaces act by translation in a somehow “ergodic” way on their bidual E**,
Moreover, in this case, a nontrivial linear analogue will be available.

LemMa 6. Let X be a norm-closed and w*-analytic proper subspace of
I*(N) containing co(N). Then:

(1) The measurable space (I°(N), w*)/X is not countably separated.

(2) There does not exist a linear injection from 1%/X into I® (N).

Proof (1) The unit ball of I®(N) equipped with the w*-topology
is homeomorphic to the Hilbert cube [—1, 1]¥. By the “0-1” topological
law ([3], Th. 5.6), for every X-saturated w*-Borel set B of I”(N), the set
Bn[—1, 11V is meager or co-meager. If (I, w*)/X is countably separated,
every atom of ty must be trivial; therefore there exists xqe[—1, 13V such
that (xg+X)n[—1, 1]V is co-meager in [—1, 11V, By the Hahn-Banach
theorem, there exists ¢ e X*\{0}; such a ¢ will be constant on the co-meager
set (xg+X)N[—1, 1] and thus will be Baire-measurable; by [14], this
implies pe!'(N), and this is a contradiction with ¢, (N) < X,

(2) Let us assume that there exists a linear injection from I°/X into
[*(N). This means that there exists a countable set (@p)uz1 in 2% such that

=]
X = (| Kerg,. Since X is a proper subspace of I (N), at least one of the
ne

{@n), let us say @;, must be nonzero. We consider the finitely additive


GUEST


164 G. Godefroy
measures u and p, defined on N by
o0
A =3 27"el(Ly); (4 =y (10).
n=1

Since X 2c¢y(N), p and u; are zero on finite sets. We let
A={BSN| u(B)=0}, A;={BSN u(B=0].

By [8], the subsets A4 and A4; of (N} cannot be Baire-measurable in
#(N). We bhave 4 c X nP(N) < A; and thus X ~n#(N) can be neither
meager nor co-meager in Z(N); but X n #(N) is Suslin in #(N) and does
not depend upon a finite number of coordinates. Thus, by the “0-1"
topological law ([3], Th. 5.6) or by Lemma 2, X n #(N) must be meager or
co-meager; this is a contradiction. m

Let us recall that a function f defined on a compact space K is said to
be strictly of the first Baire class if there exists a sequence (x,),s; in % (K)

+

0 o0
with f = 3 x, pointwise and Y |x,(x)| < oc for every xeK.
n=1 n=1

With' this terminology, one has:

TueoreM 7. Let E be a Banach space with separable dual such that every
e E**, considered as a function on (E¥, w*), is strictly of the first Baire class.
Let X be a w*-Suslin and norm-closed proper subspace of E** containing E.
Then

(1) (E**, w*)/X does not admit a w*-Suslin section .

(2) X is not complemented in E**.

Proof. (1) We consider fe E**¥\ X. Since [ is strictly of the first Baire
class, there exists a subspace Y of E isomorphic to ¢q(/V) such that feytt
([11], vol. I, p. 98). By Lemma 6 (1), the set (Y*4 w*)/Y'* A X is not
countably separated; but Y**/Y**~ X is a subset of (E**, w¥)/X and thus
(E**, w¥)/X is not countably separated.

If there exists a w*-Suslin section X, then for every w*-Borel set B in
E** the set (BN Z)+X is w*-Suslin since X is w*-Suslin: we have

E**\(BNZ)+X)=(S\B)+ X

and' thus the separation theorem ([3], Th. 2.2) shows that (BrX)+X is
actually w*-Borel for every w*-Borel set B. Now, if (Buzy is & basis of the
Borel structure of the standard space (E** w*), the family (B, 2)+ X
separates E**/X and this is a contradiction.

(2) Let (gy)s>1 be a countable norm-dense subset of E*. If there exists a
linear right-inverse o: E**/X — E** of the quotient map Q: E** — E**/X,
then the operator

Yo EX 12 (N), x> (ga(0 ())as s
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is 4 linear injection from E**/X into I (N). With the notation of (1), there
exists a linear —canonical —injection from Y+4/¥*!~ X into E**/X; and by
Lemma 6 (2) there is no linear injection from Y*¥/Y*LA X into I® (N); this
is a contradiction. m

Remark. The first example of a Banach space E to which Theorem 7
applies is E=c¢,(N). In this case, Theorem 7 (2) is essentially an
improvement of ([3], Th. 58). Theorem 7 applies also to the
noncommutative analogue E = %' (H). Actually, Theorem 7 applies exactly to
the Banach spaces with separable dual which have the property (u) of
Petezynski ([11], vol. II, p. 31). This class contains e.g. every separable o-
complete Banach lattice which does not contain [*(N). Moreover, it is easily
shown that this class is stable under subspaces, quotient maps and c,-direct
sums (see [11], vol. II, p. 31).

III. Examples and remarks.

1. If E is a metrizable complete separable t.v.s, and X a subspace of E
of countable infinite dimension, then Proposition 1 shows that E/X does not
admit a Suslin section.

For instance, if E = #(C) is the space of analytic functions on C,
equipped with the topology of compact convergence, and X = C[z], then ¢
in E/X describes somehow the “behavior at infinity” of g. Therefore, there
does not exist a Suslin subset X of #(C) such that every ge #'(C) has the
same “bebavior at infinity” as exactly one heX. '

2. In the deep article [5], E.G. Effros considers the Polish space %, of
irreducible representations of a given C*-algebra 4 on an infinite-
dimensional Hilbert space H (see [4]). The group U (H) of unitary operators
of H is a Polish group which acts continuously on %, by ¢y (L) = U~ LU.
It is shown in [5] that the equivalence classes are F, and that the conditions
(1-2-3) of Theorem 3 are satisfied if and only if 4 is a C*-algebra of type 1.

3. The Polish group U(H) acts continuously on the unit ball B of
& (H), equipped with the weak operator topology wg, by U(T) = UoT In
this case. the polar decomposition T = US provides us with a wgy-closed
section of B/U (H). The equivalence class U (H) of Id is neither F, nor locally
closed. This example shows that the hypothesis “G(x) is F, for every x”
cannot be removed from Theorem 3.

4. 1f G is a locally compact separable and noncompact topological
group which acts continuously on K compact, and if G, = {ge G| g(x) = x}
is compact for every x in K, then it is easy to deduce from Corollary 4 that
K/G does not admit a Suslin section X.

This shows that if the conditions of ([2], Th. 2 or Th. 3) are satisfied,
then—in the notation of [2]—the group G must be compact if # is
compact.

5. Under the assumptions of Corollary 4, K/G may admit a Suslin
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section even if there exist “very few” closed classes. An example is given by
K =[0,1] and G the group of homeomorphisms generated by f(x) = x2

6. Let K be a metrizable compact space, and T a homeomorphism of K.
We let G = {T"| neZ}. By Corollary 5, if K/G has a Suslin section X, then
T must admit “periodic points” x such that T"(x) = x for some n > 1.

7. Let E be a nonreflexive separable dual space with a separable dual,
e.g. the space J constructed in [10]. Then E** = EQX where X is a w*-
closed subspace of E**. This shows that some assumption on E is needed in
order to obtain Theorem 7. Moreover, this provides us with natural
examples of K, groups G with a proper dense K,, subgroup H such that
G/H has a closed section.

8. It is not clear whether or not “X Suslin” may be replaced by “Z co-
Suslin” in Theorem 3 (4). If one assumes Martin’s axiom and the negation of
the continuum hypothesis, then every PCA-set is Baire-measurable (see [6]),
and the proof of Theorem 3 shows that, under these axioms, we may replace
“Z Suslin” by “X PCA” in (4). On the contrary, if we assume G&del's axiom
of constructibility (G) ([9]), a PCA section always exists, and thus we may
not replace “X Suslin” by “X PCA” in (4).

Let us finally point out that in many situations, it is easy to show
without set-theoretic axioms that (1-2-3) of Theorem 3 are equivalent to:

(4) There exists a section X which belongs to the o-field generated by
the Suslin sets.

This is for instance the case when G is a countable group acling on a
Polish space P.
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