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Quasi-radial Fourier multipliers
by

HENRY DAPPA (Darmstadt)

Abstract. We give sufficient conditions on functions m: [0, 00)— C and g: R"— [0, o) so
that their composition mog(x) =m(e(x)), called a quasi-radial function, will be a Fourier
multiplier on L? = L*(R". The condition on m is stated, as in the radial case, in terms of
localized Bessel potential spaces WBV,, and is for yeN of the type

2r dt\'/e
©.1) |Iml] ¢, + sup (j II"m”’(t)]"T> <ow, Igg<om.
>0\, .

The conditions on g generalize the basic properties of the Euclidean distance’|x| on R" and read:
o(x) >0 if xe Ry = R"\{0} (positive definiteness),
o(A,x)=to(x) if t >0 and xeR" (homogeneity),
0eC(R" (continuity).

Here the dilation matrix A4, is defined by 4, = t* where P is a real n xn-matrix and its eigen-

values have positive real parts. Functions ¢ with the above properties are called A,-
homogeneous distance functions.

1. Quasi-radial Fourier multipliers do not seem to have been
systematically treated yet. There are some single results in the literature
concerning only special instances of quasi-radial Fourier multiplier criteria.
One may encounter them e.g. in the papers of Ashurov [1], Lofstrom [18],
Peetre [20], Sjostrand [25] and Peral and Torchinsky [21]. Among all these
criteria Theorem 1.4 of the last authors has to be emphasized, for it directed
our attention to the problem dealt with in our Theorem 1 which is a
generalization and an improvement of their result.

The paper is organized as follows. In Section 2 the principal notation
and WBYV, ,-spaces are introduced and some properties of homogeneous
distance functions are stated. The exposition of the main results and their
discussion in the following remarks constitute the content of Section 3. In
Section 4 the essential results needed for proving our main results are listed
together with some auxiliary lemmas. In Section 5 Theorem 1 is proved.
Section 6 contains the main technical contribution of this pr of
Theorem 2. In Section 7 auxiliary lemmas are proved. o
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2. The Fourier transformation & is defined on % =
all rapidly decreasing C™-functions on R", by

FFQ =110 =[fe ™ dx

where x-¢ = x¢ = x, & + ... +x,&, and the region of integration is usually
omitted if it is the whole R". % = &"(R"} denotes the space of all tempered
distributions, M, = M,(R") c .%# the space of all Fourier multipliers on L”
endowed with the norm

lImllag, = inf {C: ||~ [me I, <

&'(R™, the space of

Clloll,, oe#};

here #~! denotes the inverse Fourier transformation. The letters ¢ or C
denote constants which may vary from line to line. If £ = R" is (Lebesgue)
measurable then |E| = [yg(x)dx where y; is the characteristic function of E.
The differential operator is denoted by D® = (8/dx)” = dl°/ax{! ... Ox." where
o=(0g,...,00eN", N={0,1,...}, |o|=0,+...+0, and for xeR"
- x7=x{'...x;". If teR then [] is the integer part of t, t, = max {0, t}. If
A1s -oes Ay are the eigenvalues of P, Re 4; > 0, then we set

oy =min Re 4;, oy = max Re A;.

In [28] it is shown that for x # 0 the mapping

0, oo 0, . . .
(2.1) {( z ):(BA,OOX)' A is onto and strongly monotone increasing,

where 4, =%, B= [e™"" ¢ dt and P* is the transpose of P with respect
0

to the usual scalar product on R". From (2.1) it follows that the equations

BA4,x-A;x =1 and tr(x) =1, x # 0, t > 0, uniquely determine an A4,-homo-

geneous distance function re C*(R}). Otherwise the letter ¢ will always be

“used to denote an arbitrary 4,-homogeneous distance function. We need the

following properties of o:

2.2 a(x+y) <cle(x)+e ()

for every 0 < ¢ <a, there are positive constants ¢, and ¢, such that for
all x

for some ¢ and all x, ye R

(23)  crmin{e(x)™ %, @™ ™"} < |x] < ¢ max {o ()™, o(x)™ ™
<

~if-pe C*(R}) then for each |g|
such that for all x# 0

@9 D7) <

Next.we need the notion of the g-polar coordinates defined if o & C* (R3).
Dlﬂ'erentlatmg both sides of the equality g (A, x) = tg(x) with respect to r and

k and 0 <¢ < a, there is a constant ¢

¢ max {Q x)l @y =alal Q(x)l""(llM'l-z)ld}

i gfﬂ%*t}
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setting t'= 1/e(x) gives
(2.5) Px-grad o(x) =1 {y: ey) =1}.

Thus, X is a C'-surface (ie. (n—1)-dimensional manifold) in R". It can be
easily verified that the mapping

R} — (0, 0) x X,
x nd (t’ X’)’

for all xeX =

I={y: o) =1},

2.6 7
@6) t=0(x), X = Ay x

is a diffeomorphism and we use it to define the g-polar coordinates.
Furthermore, it is not hard to check that the Lebesgue measure on R" admits
the representation

2.7 dx = 1"~ dt do> (¥)

where v = trace(P) and if do(x') is the surface Lebesgue measure on 2, N (x')
the unit outer normal vector of X at x/, then

2.8 do(x') = |grad o(x)|” Ydo(x) = Px' - N(x)do (x').

All these results are already stated and proved in the case of a particular
homogeneous distance function e.g. in [28; pp. 1256-57], [23; p. 261] or [3;
pp- 6-7]. The adaptation of the proofs given there to the case of a general g
is a routine matter and therefore omitted.

For the precise formulation of our main results we need the notion of
the fractional derivative. Let 0 < § < 1 and me L, (0, c0), set

16(»;)@)—{ 6)j(s Dy m(s)ds, 0<t<o,
0, otherwise.
The fractional derivative is defined by
1
() = — lim =137 (m)()

and of order y =1 by

k
m (f) = (%) m® @), k=I[y],6=y—k.

Following Gasper and Trebels [12], we define for y> 0, 1 < g < o0,
WBV,, = {meL® nC(0, c0): I} (m)e AC,, if § =y~[y]>0,
m?, ..., mVedC, if y=1
and ||m|l,, < oo}

where for 1< g < oo,
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ok +1 dt 1/q
[lmafly,, = limll o, + SUP( | !me(”(t)l"-t—) ;

€. Zk

1], = Il + (17 m® ()]
and AC,, is the class of all locally absolutely continuous functions in (0, 20).

3. Our main results can now be stated as follows.

Tueorem 1. Let me WBV,, and o< C®(R}) be an A,-homogeneous
distance function satisfying

(3.1) - |fe=doE) < et +)x) 7+
z
for some positive constants ¢ and p. Assume further
vl 11 2(u+1)  2(u+1)
) > e+l <p<——— OF ——— < p < 0.
>>amk 2|+2 yl<p P u P

Then moge M,(R") and HmOQHMp< cllmlly,, with c independent of m.

If o(x) =|x| we recover the result in [7].
CoroLiary 1. Let me WBYV,,, and

2(n+1 2(n+1)

1 1)1
y>n;~—l+— ifl< —— O ———— < 00

202 +3 n—1

Then m(|-|)e M,(R") and }Im(I-I)HMP < climlly,, with ¢ independent of m.
A variant of Theorem 1 reads
COROLLARY 2. We have

2r
limoally, < ¢ {limll,+ sup [~ dmt= (5]}
r>0 ,
with y, p and ¢ as in Theorem 1.

For the proof see e.g. [27; p. 109] and [5; p. 25].

Set £, ={peC[0, )N C*0, x0): ¢ is nonnegative and strictly
monotone increasing, @(0)=0 and @(w0) =00, |V ()< cto'(t) if
J=2,...,k and t >0} (cf. [30; p. 28] or [31; p. 15]). Possible choices
for ¢ are:

EH o+, £ log (1 420+6%),  log™ (14+1)
where 5 > 0 and 3; > 0. It is shown in Sec. 7 that
32 Imoglly, < climil,,,

Combining this with the embedding properties of WBV-spaces one obtains
CorOLLARY 3. Let me WBV,, and @ec %, (y<keN) and otherwise

l<g<oo, y21.
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the hypotheses of Theorem 1 be valid; then mo@ogeM,(R" and
IImquogHMp S cllm|ly,, with ¢ independent of m.

In view of applications simple sufficient criteria for (3.1) are desirable.

Lemma A. Let ge C®(RS) be a homogeneous distance Junction. If there is
an’ integer k such that for all xeX = {z: 0(2) =1}, k of the principal
curvatures do not vanish at x, then (3.1) holds for u= k/2.

This criterion is a particular case of a more general result in [17]. An
example of g falling under the scope of this criterion is

o) =0+ . X
where >0 and the ays are even and ! of them equal 2. It can be
elementarily verified that for this g, k = —1.
Lemma B. Let e C*(R}) be a homogeneous distance function. Suppose
there is an integer N = 2 such that for each xeX = {y: g(y) = 1} there are
some integers 1 <j<k<n and 2<I< N such that

0 oV 0
((“’(x)a_gw"(x)'&:) Q)(x) #0,  a;(x) =éax%s @ (x) = -2

Then (3.1) is valid for u = 1/N.

This condition means that the order of contact of T., the tangent of X
at x which is parallel to the x;, x;-plane, is at most !—1. With this in mind it
is not hard to derive Lemma B from the van der Corput Lemma (cf. [32]; I,
p. 197). Estimates of this kind are known and occur e.g. in [24]. An example
of ¢ falling under the scope of Lemma B is given when ¢ equals a posi-
tive definite (ie. elliptic) polynomial of degree k on R" satisfying
0™ xy, ..., ™ x,) = to(x) for some o; >0 and all x. An easy calculation
shows that one can take N = k. However, if o(x) = (x{'+ ... +x}%, f>0
and the ajs are even, one may choose N =min({xy,...,a,}\{min;a,}).
This result seems to be improvable for that particular p. We conjecture that
= 1fay+ ... +1/a, is best possible if we assume a; <o, <... < a,.

The proof of Theorem 1 follows Stein’s approach [26] via Littlewood—
Paley functions; the most important one in our context is a quasi-radial
generalization of the g,-function of Bonami and Clerc [2], which reads as
follows:

G0N = ([ IO+ Woun WP defZ0(5)ds),  fe 2,
0 s/2

where @, and W, , are defined by
0.0 =0((/).  Wir@ =wile@/) Wil = —t(1-11i,
0eC*(R) with supp(f) =[1/2,1] and 0<6O() <1, 0(t) £0,

-
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v: [0, 00) — [0, oo) is measurable and there exists a constant b > 1 such that
t

(3.3) t< V()= [o(s)ds<bt, t>0.

0

THEOREM 2. Let ¢ satisfy the same assumptions as in Theorem 1 and 1, p
be such that ’

vl 1\ 1 2(u+1)
(3.4 l>——(~—~—)—§ and 1<p< ) = Dy

Then there exists a constant C such that

llga(f)_ll,, <Clfll,, fe%.

Compared with the corresponding result of Bonami and Clerc [2] the
LP-estimate in our Theorem 2 is better since our method of proof is more
subtle than the one in [2] based only on interpolation. Indeed, our method is
a quasi-radial modification of Fefferman’s [10] techniques and consists of
appropriate restriction type theorems for the Fourier transform, a theorem
on fractional integration (cf. [4]), an anisotropic decomposition theorem (cf.
[10], [23]) etc. Finally, let us mention that the approach via Littlewood—
Paley functions also gives Hormander criteria for quasi-radial Fourier
multipliers based on condition (0.1) as is shown in [8].

Remarks. (i) Theorem 1.4 of Peral and Torchinsky [21] may be stated
as follows in our terminology:-

Lemma F. Let meWBV,,, 1<g< o0, 0<p<oo, keN with k>v|1/p—
—1/2|+1/q. Then mog is a Fourier multiplier on H?(R") (0 < p < o0) and its
multiplier norm does not exceed c|\mj|, .. Here g is defined by to(x) = 1 and |4, x|
=1,x # 0,t > 0 and the matrix P with A, = t* satisfies Px-x > |x|*. (Note that
this implies o, > 1.)

It is interesting to note that in our Theorem 1 quite general dilation
matrices are admitted, the class of admissible distance functions o
homogeneous with respect to a diagonal dilation matrix 4, is quite rich.
Moreover, in view of the interpolation and embedding properties of WBY,,
(cf. [5], [12]) the differentiation order y is considerably lower than that in
Lemma F. Indeed, interpolating between our Theorem 1 and the trivial I2-
result yields that for 1<p<o, 1<g< 0,y >Wa,)l/p—1/2+ 1/(29),
meWBY,, and ¢ as in Theorem 1 we have moge M, (R").

(i) In the isotropic case, ie. 4, = diag(t%, ..., #) (x > 0), the condition
on y in Theorem 1: y > nf1/p—1/2|+1/2 provided 1 < p < 2(p+1)/(u+2) or
2(u+1)/u < p < o0, is best possible in the sense that

1 ‘ 1
[ — — — +....,
14

_ AR -1 n
(1—e ()5 ¢ M, (R 513

for A< n
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The latter statement follows from the fact that

1
for A<n

FH(1=eh £ )¢ L7 (R 3

2

1’1

if one chooses f "e C*(R") with a small support in the neighbourhood of a
point xpeZ, where the Gaussian curvature does not vanish. The proof is
essentially the same as in Randol [22] and therefore omitted.

(iif) In the general case the condition posed on y in Theorem 1 is not
satisfactory, which is a consequence of some L'-methods used in the proof of
Theorem 2. The following criterion induces to conjecture that y > n|l/p
—1/2|+1/2 is sufficient.

Lemma C. If ¢ satisfies the same condition as in Theorem 1, 1<p
<2(u+1)Au+2) and y >n(l/p—1/2)+1/2 then there is a constant ¢ such
that for appropriate m we have

0

lmoally, < c{llmll,+ [~ dm* ™D (1)} < oo
0

(iv) A simple consequence of [8] and the embedding properties is

Lemma D. Suppose ge CY(R%) (N = [n/2]+1) is a homogeneous distance
function, 1 < p < oo and y > (n—1)|1/p—1/2|+ 1. Then there exists a constant
¢ such that for any meWBV,, we have mogeM,(R") and
Imoglla, < cllmly .

Here more distance functions ¢ are admitted, (3.1) is not required but in
the isotropic case (see Remark (ii)), the differentiation order y is increased.
We conjecture that the hypotheses of Theorem 1 can be weakened to
g CN(R%) and y > max {n|l/p—1/2|+1/2; 1}.

(v) An application of Theorem 1 gives in particular an improvement of
the following result of Ashurov [1].

Lemma E. Let g be a strictly convex polynomial (i.e. the Gaussian cur-
vature of X = {z: g(z) = 1} never vanishes) with o(tx) = t*o(x) for some ke N
and all t>0, xeR" Then for any 1<p <4n/3n+1) and A >n(l/p—
~1/2)—1/2 we have (1—g(x)}i & M,(R").

4. In the proof of Theorem 2 we make essentially use of the following
theorems.

RestricTION THEOREM. Let @ satisfy the condition of Theorem 1 and
1< p<2(u+V/u+2). Then for every felP, f can be restricted to X and
there is a constant ¢ independent of f such that

(JIF P do @) < clifllp-
z
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This theorem is proved in a more general setting in [15]. For the next
theorem we set N =[n/2+1].

FracTIONAL INTEGRATION THEOREM. Let g CN (RE) be an A,-homogeneous
distance function; define the operator I,, 0 <« <v, by FI, f = 0~% F#f where
JeZ If1<p<coand 1/qg=1/p—ajv then I, extends to all of L? and there
is a constant C such that for all feLP

1 flly < LS,

This theorem is a consequence of [4; Theorem 4.17 and [9; Lemma 4a].

The following Decomposition Theorem is a special instance of a general
result of Riviére [23; Theorem (2.1)] (see also [19; Theorem 1]).

DecomposiTioNn THEOREM. Let 1 < p <o, fel” and y >0 be given.
Then we can write f = f, +f, where

O WAl <Clifl,, j=1,2
(i) 1f2ll < Cy.

(iti) f; = Y b; where
j=1
(a) supp(b)) = I; = {x: r(x-z) <2kj}, kieZ; here r is defined by
BA,x-A;x =1, tr(x) =1 (see (2.1));
() Ibjll; < Cy* U, jeN;
(© [bj(x)dx =0, jeN.

(iv) Z{ Il < Cy?| flp.

Let If = {x: r(x—z) < aZkJ'H}, a defined by r(x+y) < a(r(x)+r(y)). Then
(v) each xeR™ can belong to at most N of the I¥s.
The constants C and N are independent of f and y.
" An easy consequence of Madych [19; Theorem 7 and its Corollary] is
Lemma 1. Let neC"* 1[0, co) have compact support in [0, o), 5 5 0, and

(41) Lm0 OBG) =0 for some § > ay and all k=0, .., n+1,
r—=0
Set K(&) =n(e(&)/r) where eeC™™ Y (RY) is an A~-homogeneous distance

Junction. Then for any 1 < p < oo there are positive constants ¢,, ¢, such that
Jor every felP nL* we have

el < “ (T K, *flzfif)m
0 t

<cllflly.
p

icm°®
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For the next lemma define

h, () (x) = ( Zj? |Is7" T (9) (Aye g g% ) (%) dslzfi—{)llz, fe&,
Ayt = (Ot 0(0(2)1)(1 —o(&)/sh.

Lemma 2. Let ge C®(RY) be an A-homogeneous distance function and
me WBYV,,, be compactly supported away from the origin. Then for any 1 < p
<o and y>1 we have

la, (NI, < Climlly, A1,
where C is independent of m and fe <.
LemMMA 3. (a) The expression ||m]|,+ sup(r~* fle'mP (|2 dt) e is an
r>0 0

equivalent norm on WBYV,,, 1<q< .
(b) If me WBY,, has compact support in (0, o), then

m(r) = 1 [=y mY(s)ds  for almost every r > 0.
Iy,

() Let GeC*™(R) be monotone increasing with G(t) =0 ift<1 and
G@)=1if t>2. Set m(1)=m(t)(G(t/e)~G(te)), &¢>0, me WBY,,. Then
m,e WBV, , and sup|im]l,, < cllmily,, with ¢ independent of m.

. >0

The proof of Lemma 3 (a) is trivial. Lemma 3 (b) and (c) is proved in
[12; pp. 250, 255-258].

5. Proof of Theorem 1. The space of all %-functions whose Fourier
transforms are compactly supported away from the origin is dense in LF,
l<p<oo. If fis such a function, then there is an ¢ > 0 such that

F @ =m(e©)f & =me®)f©®

where m, is defined in Lemma 3 (c). Hence, we may assume in the following
that m is compactly supported away from the origin.

Let K, (&) =£¥20(€—£—Q) with 6 as in Theorem 2. We shall show the

existence of positive constants ¢, and ¢, such that uniformly for f and m,

© dr\?
(g (K, *F)(x)l’—t—)

The first inequality holds on account of Lemma 1, the second one is the aim

IFll, < e

<S¢y ||m||m, A1l
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of the further proof. Introducing the g-polar coordinates we can write

(K P9 = e [0 (%Q)m(e@)f () exp it x) de

=c TZ 0 (;)m(r) @ (r, x)dr,

where @(r, x) ="' [ f (4, &) exp(id, &' x)dw (&),
z

By Lemma 3 (b) and the Fubini theorem,

(K,*F)(x):c?h)(’)(p(r x)j (s—r)% P m? (s)dsdr
= _...st?m(w(g) jg(;>wy 1( )(P(T x)drds

0 p y=-1
+c js“"l m?(s) (-0 (~> (1 ——-—) o(r, x)drds
2 ol S/
=T+T1.
By Minkowski’s inequality,
<)

1/2 1/2
(frr )] < 3 1(Fime%)

Introducing the g-polar coordinates we can write, using the notation of
Theorem 2,

2

(5.1) '

P

® (r
je(;)wy- ( )q)o x)dr = (@, Wy o x ) ()
0
and the one of Lemma 2,
wr i r y—1 N .
j;@(?) (1—~> @, X)dr =(Aymq,1s% [)(x).
0 S /+
Thus, it follows that
¢ 2
1= -7 ISV m" (5)(6, * W,y % ) () ds,
0
T=c |8 mV($)(Ay~ 1% f) () ds.
2t
Since 1 <p <o and y > 1 we deduce from Lemma 2

),

= clthy (N, < climlly, [1£1-

icm
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In view of (5.1) it remains to show that
(52 < cllmily, LA,

® de\1?
T,|*—
(gf | t) p

To this end set v(s) = (|s' m? ()| +[Im]|,,)/llml] , and observe that by Lemma
3(a), r< V() = fu(s)ds

br with b independent of m and r. Hence,

be||lml|, ;%
T < Ilrllu

JUO W,y o* (W) v(s)ds
and we obtain by Hélder’s inequality

lle<‘“m””f (5)ds j'l(@ *«Wo_y % N)(X)?v(s)ds

221

WL 10, 1 (37015 .

t

<

Changing the integration order gives

1/2
<f|T1|2dt> CHmIIw(I fl@x Wy % () MU(S)dS)

0 5/2

= cllmlly, g,-: (N

where g, (f) is the same as in Theorem 2. On account of this theorem we -

1

1
obtain (5.2) if y > ——-(E—%>+ 1<p<p,.

The duality, M,=M, if 1/p+1/p’=1, and the Riesz-Thorin
interpolation theorem yield the whole assertion of Theorem 1.

6. Proof of Theorem 2. By the Marcinkiewicz interpolation theorem it is
enough to prove

6.1 lgi(f) >y >0l < Cy?IfIE

Write f = f; +f, with .f; and f, as in the Decomposition Theorem where we
let r be A*-homogeneous. The subadditivity of g, gives

C is independent of y and fe &.

Hoa () > 7} < Hga (o) > v/2H+{g2 (f2) > /2.
Hence, the inequalities
(62) Hga(f) > < Cy?lIfllg,  i=1,2,
will imply (6.1). By the Chebyshev inequality,
l{g1(f2) > }'}I Y 2 llga (LI < Cy2IIfIE,


GUEST


12 H. Dappa

provided we can show that
{63) : g, (I3 < CY* P f115.

Changing the order of integration and applying Plancherel’'s theorem we
obtain

® d
llgs ()3 = | Ill@z*%,s*/élliﬁv(ﬂds
0 s/2 -

L (29)
s
Using (3.3) we derive

o\ s L

S

- 2 u(s) d:
<2062 [1fs (é)lZ{ i fﬁLf}dg.

@
0

Thué, Plancherel’s theorem and the Decomposition Theorem imply

llgs (F)3 < Clify 113 = C fIf2 ()P dx < Cy* =21 f112,

which proves (6.3). The proof of (6.2) for i =1 is based on a decomposition
of fi and ©,xW, . To this end take an even @eC=(R) with supp(¢) =
c[-4, 4] and o) =1 if |f| <% and set

el =02 %n, 85O = (1 _28)

/

where 0 <6 <1 and x» >0 will be determined later. Observe that ¢, ;e &
and

(64) Supp (B,) = [&: [1—o(&)/s| <§271 2,
The decomposition of @, * W, , reads:
(6.5) (@%Wy,0) €)= (O, % Upps % D) (E)+ ¥ 1 (6)

e 13,00 =0 (% o, (42 11— 0 ) ana

¥ 5) if [s—1) g g2 Kok
Usios (8 = uz e (gg‘)‘), Uk (8) = {W;_(s) if |s—1] <4

0 otherwise.

By the Decomposition Theorem, f; = )" b;. We collect the by’s according to
eN

j "
the size of their supports I, I,, ..., which are r-balls with radius rad (/ ) =2k
for some k = k(j)e Z depending on the ball. Set

O ={jeN: rad(I) =24, fi=Y by
JeQy

icm
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clearly f; = 3" B, and we obtain with the aid of (6.5)

keZ

O *xWirfi=73 0,% Uikgs * Brs # B+ Y Vikgsa * Brs
keZ keZ

where we have used the abbreviations:
ky=(k—[lg1/s])+, Ig=log,,
Note that there are ¢, ¢, > 0 such that

keZ, s> 0.

e s <2< ey i k> [lglys], keZ, s> 0.

Using this decomposition and Minkowski’s integral inequality we obtain

@ oo 1/2
G (f1)(x) < ( I le.x«(x Ui * By ﬁk))(x)'zé;v(s) ds)
0 s/2 keZ t

@0 1/2
+(j f IZ (‘l’z.ks,s.z * B (x){zf_zfv(s) dS)
0 s/2 keZ
=g5,1(X)+9,,,(x).

The further proof is divided into- three parts. In Part 1 we are concerned
with the estimate of g, , and in Part I with that of gi,2. It turns out that
Part I is essential and in particular requires the assumption (3.4) on p and A.

.Part II seems to be only technical and needs the assumptions 1 < p < co,

420, ge C*(RY).
I. The assertion reads:

(6.6) llgsallz < CY*=2If113.
This gives by the Chebyshev inequality
[{x: 91,00 > 9}l < Cy~7|i 112,

which is the desired estimate, Now change the order of integration and apply
Plancherel’s theorem to obtain

18 = T 10 (SL) IS, Urnn 1o ) 0P 01,
0 s/2 keZ

Since ||0ll, <1 it follows by performing the t-integration and using
Plancherel’s theorem again that ||g, /12 < C||g*||? where

T 1/2
g* (’C) = (I IZ (Ul,ks,s * ®ks,s * ﬂk) (-’C)‘2 U(S-“‘) ds) .
0 keZ s

Assertion (6.6) is now a consequence of [lg*{1Z < Cy>~?||f|I2.


GUEST


14 H. Dappa

An application of Minkowski’s inequality yields

- d 1/2
g*(x)é(f | 2 (Unsx(Z (d’kx-s*”f)xfﬁ))(")zz’("ssz'i )
JeQx

0 k>[ig1/s]

m

, \(5) ds
+ (Uegs ¥ ( 2 (Prgys #53) X g 1) (%) 21’_(11__ q)
JeQy J s

0k >[1g1/s]

iz
+<1Ums DN ¢0s*b,)x1))(x)2ﬂ(i_£’£)
{Jee

k<[lgl/s) jeQy

1(s)d
Z (¢0s*b})xnn\1 ( )lzi’:s')'”tb>

k <[131/S] JeQy

Hence, it is sufficient to show that ||g¥||3 < Cy* 72| fII5, i=1, ..., 4.

g¥ is estimated with the aid of the Restriction Theorem dl’ld reqmres the
assumptions A > (v/x)(1/p—1/2)—1/2, 1 <p <p,, x> 0.

g% is estimated by L!-arguments. Here we essentially utilize the
geometrical facts stated in the Decomposition Theorem and have to choose
% =a, where «, is any fixed positive number with o, <a,.

g% is estimated by the Fractional Integration Theorem for which 1 < p
< o0 is necessary.

g¥ is estimated by arguments analogous to the ones used for g%, which
imply the restriction 1 <p<oo. In what follows we estimate the gi's
separately.

1(a). Estimate of g¥. Holder’s inequality gives for any ¢ >0
Y Uike*WEP<C 3 2(Upp s WP, hel?.

k>Tlgl/s] k>[ig1/s]

By the definition of U, . and Plancherel’s theorem

N — (L ~ kg
“chs *hlly=C Wik (d )) < Cll”/’l,ksl{m”h ll.<C2 * (Al
Hence,
(6.7) | T Up xhfsc ¥ 22672070y
k>[lg1/s) ' k>at/s] |

Set

= Z (¢ks,s*bj)xl*s

ek Y

icm

Quasi-radial multipliers 15

use the Decomposition Theorem and Hélder’s inequality to obtain
B <N 3 [(Prs #b) 13) O
JeQy

Invoking the definition of g% and applying the above inequalities we obtain

© )d
68  lgtlB=[] ¥ U, *;”2”(5 s
0 k>[igljs]
2ekg— 2 A1~ kg ,0(s)ds
<CY ¥ I 2 (@5 % b3 .
keZ jeQp 2~k S

By Plancherel’s theorem we obtain introducing the g-polar coordinates

®eys % bil13 = C [lp (1 ~r/5) {[1b5(A, £)]*dew (&)}~ dr.
4] z

Since [r™"b;(A%, Y1) = bj(4,£), we derive by the Restriction Theorem

o = (b (AP do @) < Clr b4l Z. 1<p <p,
z

and by the Decomposition Theorem,
{ . } S Cr— 2v+2v_/p||bj”§ < Cy?.r—2v+2v/p 22k.v/p.

Collecting the estimates gives '

Dy, 5 % bylI3 < Cy* 22 f[tpks(l-—r/s)|2r_“"”"v/"dr

< C’)’Z 22kv/p—-x(1 = 8)kg s v+ 2v/p

where we have used (6.4) for the last inequality. Putting this estimate into
(6.8) gives
SCVZZ Z okv ﬂf (Szk)u—zxz(l~a)—x(1-a)+zv/p~vv(3)d5:_

keZ jeQy 5k s
By (3.3), the integral on the right hand side of (6.9) exists if 1 > (v/x) x
x(1/p—1/2)—1/2 and ¢, 6 >0 are sufficiently small. This integral is then

bounded uniformly for keZ and using the Decomposition Theorem we
arrive at

69) llgtl3

llgtll3 < Cy* Z Z I < Cy 2 lIf1lp

I(b). Estimate of g%. Changing the order of integration and setting

h = Z ((Pkss*b)x"n\l
jeQy
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gives
b s)ds
lotIE = [ ¥ Ureerhp=2
0 k>[gl/sl
If ¢ =%A(1—4) then by (6.7)
u(s)ds

lfiz<cy ¥ s

0 k>[lg1/s]

In Part II it is shown that
(6.10) Illoo = [ 3 (Prgs * b g oo < €,
JjeQy J

where C is independent of k, s and y. Interchanging the sums and integrals

we obtain
s) ds
llg3li3 < }d)t

<Cr), Z §1b; (y)l{ ] f By (x— )

keZ jeQy R 27k
Suppose that

(6.11) {...

Then by [Ib;(y)dy < Cyll,|, which is a consequence of the Decomposition
Theorem and Hélder’s inequality, we derive

C’V Z Z |Ij|

keZ jeQy

}<C, uniformly for keZ.

llg3113 < Cy eI,

which is the desired inequality. To prove (6.11) we need
(6.12) [Py (X)] < Cpus” (L4 52771 = Dblayp ()}~

where C,, is independent of k, s, x. The above estimate is proved in Part III.
Furthermore we need

R\I¥ < {x: r(x—~y) = 2%}

meN, 0O<a, <o,

for each jeQ, and yel,.

This and (6.12) imply (6.11) as is shown below by taking » =a, and
m = vf(da,):

« - v(s)ds
{} < Cm j’ r(x“y)—ma*dx J' 2%(1 6)mkssv~ma,~L_)'.._.“
Hx—y)2 2% 27k §
< C,, 2 kmat v (1 = ymi ? L= 8m+v—ma v(s)ds <C<o
2>k N

uniformly for ke Z. We have to take » = «, since we have to admit every
6 >.0. Th1s completes the proof of I(b).

v

icm°®
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I(c). Estimate of g3. Let h= Y Y (Do b))y then, by the
k<{lg1/s] jeQy J

- Decomposition Theorem and Hélder’s inequality,

[h(x)? < N DN ( I@o;*bj))(r (x)|2

k<[lgl/s] jeQy
Interchanging the sums and integrals and using Plancherel’s theorem yields

c juhuz”(s’ ds

a~k+1
<CY T [ib) 5)12{ [ 100 ”(S)"S} de.

keZ jeQy

llg3113 <

=0 unless $0(¢) <5 < 2g(§), we deduce that

2e(8)

Since @ (1—g(&)s)
c | aveyvi <
2/308)

2=k+1
2@\ olds _
o110 202
<C(2a@) ™,

[
0

where u=v(1/p—1/2) and C is independent of k and ¢. The Fractional

Integration Theorem and Plancherel's theorem imply

fle(@~*bj(Q)I? d& = C|IL, (b3 < Clib2,
Collecting the estimates and applying the Decomposition Theorem gives
Cy' Y ¥ 2L < Cy? ZIIJI Cy*PIIf1IE.

keZ jeQp

{0 if 2%¢(&) > 3,

otherwise

p>1.

llg3li3 <

1(d). Estimate of g¥. Plancherel’s theorem and an interchange of sums
and integrals imply

2-k+1

Y Y Il(‘Pos*bj)x,...\,*llx

keZ jeQy 0

6.13) g3 < pds,

provided that

2 Z (¢0‘s*bj)xnn\l Hco C'y7
kS[igl/s] jeQy

which is proved in Part IIl. By the Decomposition Theorem,

(Do, * b)) (x) = I(‘po.s (x—y— Do, (x— Zj)) by(y)dy.
Hence, '

(6.14) II(%,s*bJ)xR..\,;Hx<§|bj(y)l [ 1®0,s(x—y)— P, (x—2z)| dxdy.
R"\I

2 — Studia Mathematica LXXXIV/1
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If we show that

(6.15) {j TI(Don W= Po(x—2z))l ( x}<C, yel,
R"‘l 0

uniformly for y and j, then we can conclude from (6.13) and (6.14) that

gt < Cy Y % [Ib;Idy < Cy* " IIS1I5,

keZ jeQy

which is the desired inequality. We prove (6.15). By @4 (x) = 5" @ ; (A} x)

and the mean value theorem,
@o,s(x‘“)’)‘"‘po,s(x“zj)i < 5'|A¥ (ZJ—Y)| |(grad 4’0.1)(/‘1:‘ (x—

where 0 < g < 1. Observe that for x¢I¥ and yel;

—qd¥ (y—z)),

) 1 s
r(A¥ (x—z)+qA¥(z;— ) = ;r(A:(x"Zj))—r(qu*(y""zj)) > EEV(X”ZJ);

@16 gives |(grad @ ,)(x) < C(1+r(x))”%. Hence,
|, (x—3) = Bo, (x—2)| < Cs"|A¥ (z;— | (1+ 57 (x—2)))~ .
Since R"\I} = {¢&: r(€—z)) = 2ar(y—z)} for any fixed yel;, we infer that the
expression {...} in (6.15) satisfies
(6.16)
f

{.1<gcC cTfs"lA;“ (z;— (L +sr(x—2z))” 2”E—(S)ﬁ]d)c

r(x-zj)ZZar(y—:j) [0 s
By (21) and (33),
|A¥ (z;— )

< CBA%) (Zj‘“J") ‘Al*;(s) (Zj“‘y) < C‘IA% (Z,-—y)lz,

This gives that the expression [...] in (6.16) satisfies

(617) [..f]sCE(V(s))"]At(s)(zj—y)[(1+V(s)r(x-—zj))”zv ----- >

I _Ldt
= Cr(x—2z) vif |4z (2= PN (1 +1) 2"7

Since Aipe-nlz—y)el, = {&: r(&) =1} and X, is compact it follows that

lA;‘/‘r(x-—zj)(Zj gl A*”Ar(z} y)/r(x~zj)HA1/r<zj y)(zj b))

<
< C |Ar | IAr(ZJ—y)/r(x—:})J'

icm°®
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Using this and [t7] = |4¥ < Ci*, 0 <t <c¢, we obtain from (6.17)
[ o ] < C [A:Z:j—y)/r(x—:j)l r(x"'zj)—va
and from this and (6.16),

{} <C IA;'EZj-y)/r(x—zj)fr(x"zj)—vdx
r(.r—zi)/r(Zj—y) Z2a

=C | |[Ahulr@™du<<C.’

Hu)Z2a

This completes the proof of I(d) and also of Part I
II. The assertion reads:

CyPIAG

Note that by the Decomposition Theorem we have for Q% = U

Hx: ga2(x) > 9} < C independent of y and f.

1% < }:H*I—(?-a ZUI Cy~?l1f1I5

so that the above assertion can be reduced to
{xeR™NQ*: g;,(x) >y} < Cy~? IS5

But by Chebyshev’s inequality, this is a consequence of

<CYRfIIL,

By the Minkowski inequality

g1,2(%) < (0 v(s) j' l 2 Wk, _”*bj)(x)lz—ds>

s/2 k>[lg1/s] JjeQy

+((J)"v(s) } | )N (Wi, st*bJ)(x)lz——ds)

s/2 ks(lgl/s] jeQy

19,2 2 g oll3 C independent of y and f.

= g3 (x)+44(%).
Hence, we only need to prove that
llge X gm I3 < CY22ISIE, i=3, 4.
But this follows for gz by the techniques of 1(b) and for g, by the methods

of I(d).

This completes Part II.

I1Ka). Proof of | @y (%)  Cp{1 45270~ MWaep (x))"™ me N, By @y ,(x)
=5" P, (A¥x), (6.4) and (2.3) the above assertion reduces to

By (0 < Cp 203", m=0,1, ..., x| > 1
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which for itself follows from (6.4) and

( aaé) B 1 (&) = 0«1 -Maly - yniformly for ¢.

The last estimate is an immediate consequence of the definition of Dy
IIK(b). Proof of “ dik *b; < Cy and

98

Z Z (¢Oa*bj)xnn\, ”w C)'
k<(ig1/s] jeQy

Setting
Pys(x) = Cpps” (145270 p ()70 > |, ()

and observing that

1 .
E;r(x-zj) Sr(x—y) < 2ar(x—z), x¢I¥, yel,

gives

sup Py (x—y) <cinf P (x~y) el Py s(x—y)dy, x¢lI¥.
velj vel I

For a fixed xeR" put Q. = {jeQy: x¢I¥}; it follows that
Zk,x = I Z ((¢ks,s * bj) XRH\I;) (X)l Z I((ﬁk ] * bj)l
JeQx

JeQi,x

< Y sup P (x—y) [1b;(y)] dy.

IRy, x Vel

By the Decomposition Theorem we have, setting U= U I,

CJeQy,x
Zux SCy Y [Ps(x—y)dy < Cy j Pys(x~y) 2, 1, () dy
JeQy,x Tj k,x JeQp,x

SCNy [ B(e-p)dy < G2,

rlx~y) =2k

This. proves the first inequality, The proof of the second one is quite
analogous and therefore omitted.

7. Proof of Lemma 2. Setting
O, x) =r [ (A, {)exp(id, & x)dw (&), fes,
)

Quasi-radial multipliers 21

we can write using the g-polar coordinates

H,(t, x) = js’ 1m”’(s)(/l s * f)(x)ds
= [m?(s) _[£6 (i)(s—r)”' L ®(r, x)drds.
21 (1] t t
It is useful to introduce the following notation:
P\
b(r,s, ) = (?) 0 (;—)(s-r)?f‘, 1> 1 arbitrary,

4
Ylr,1, x) = (;) PS4, E)exp(id, & x)do ).

Observe that supp(b(, s, )< [t/2,¢], and r—b(r,s,t) is infinitely dif-
ferentiable if s > 2t. By our notation

(7.0) Hy(t, %) = [m(9) } bir, s, OV (r, t, x)drds.
2t 12

Integrating N times by parts we obtain

3' bir,s, )y (r, t, x)dr

12 .
D } 6( ) b(r,s, t)j(r —uW o (u, t, x)dudr,
INN' rlZ -1 a
Seting K, (¢) = ((&)1) (1 -(e(&r)); we can write
’ KN+1
[ = b, 1, 5y = (K, ¢ 1)),
0

Putting this into (7.1) gives

+1) El Fi N
H,(t, x)——~!/fz(K x)(x) j‘m(“/)(é) t’ T ;’)F(_r"lar) b(r, s, t)dsdr.

Assume for a moment that

<c”m”1 N4 ?>1,

I(N+1) 6 a N
(72 1= jmm(s) g (—--—) b(r, s, t)ds
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¢ independent of r, t and m. Applying this and Holder’s inequality we derive

1/2

1!
[H,(t, x)| < climl|;,, (? JIK, * ) (x)* dr)
0
and by the definition of h,,
2 , dr\!/?
by (f)(x) <6|Imlh,y(]I(Kr*f)(X)lz—;>
0

This proves Lemma 2 since #(1) = t/(1—t)Y satisfies the hypotheses of
Lemma 1 if I and N are large enough. We shall prove (7.2). It is easily
verified that

ANEL 5 N P\~ 1N+ "
(73) 7—__1‘—‘6_7‘(;@;) b(r, S, t)=<;—) Z Cy r# ( ) (r, S, t).

Setting 9(?) ='"'9(t) and observing that b(r, s, 1) = U(r/t)(s—#)'"! we can
write by the Leibniz rule

rﬂ(f—)”b(r si)=73d r“(i " o M( AERE
or » 2\ (s=1)

Putting this into (7.3) and the result into (7.2) we obtain

IN+1 u ptl- 1
=[5 el e e

where we set M, (r, 1) = d,t* [ (s—r)'" 1" *m" (s)ds. If we show that
3t

(74) IM}. C”m”I RZl J’> 17 0<’1<#’
then (7.2) will follow since @& C*(R) has compact support. To prove (7.4) we
consider two cases.

(a) The case A=0. By Lemma 3(b)
lzj(sf'“)y"liﬂ“”(s)dsl <c|m(r) + f(?~ Py m® (s)] ds.
There must be r/tesupp (@) =

2t

[(s=7~ 1 m" (s)| ds <

r

[4, 1] unless I =0. Thus, since y>1,

< Cljmlly

P2

which yields (7.4) for 2 =0

e ©
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(b) The case A > 0. Choosing teZ with 2°< 2t < 2°*! we obtain

2t+1
My (r, Ol S ct*| [ (s—r)~' =2 m® (5)ds]
2t
@ 2k+1
+2% Y | [ =T A mD (s)ds| = My + M, 5.
k=t+1 9k
As in case (a) we have |M, | < c|Iml|;,,. Furthermore,
o  2k+1
My, <c2* ¥ { ST | (9)) ds
k=t+1 ok
2k+1
< c2sup | ls"m“"(s}l_ Z 27k g ellmlly
keZ gk k=t+1

The proof of Lemma 2 is now complete.

Proof of (3.2). The case ye N is essentially proved in [31; p. 15]. By the
identification of the WBV-spaces with the localized Bessel potential spaces of
Connett and Schwartz [5] in [12] one has

(75) ||m o (p”S(q,vj < C Hm”S(q,‘y): VENa 1< q<0o0.
We consider the linear operator
T: S(q, Y0) = S(4s va)s

which, by (7.5), is continuous on S(g, ), ye N. Then complex interpolation
(see [5]) gives (7.5) for fractional y > 1.

Tn=moy,
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On bounded biorthogonal systems in some
function spaces

by
A, PLICKO (Lvov)

Abstract. In this paper biorthogonal systems in the space of continuous functions C (K)
(K an infinite metric compact) and in the space B,, 1 <p<co, of almost periodic Besi-
covitch functions are considered. It is shown that there is a separable subspace F < C(K)*
for which there is no biorthogonal system x,, £, x,e C(K), f,eC(K)* with Il =17l = 1 and
[£,1¥ = F. It is proved that under the continuum hypothesis there is a decomposition of the real
line R =JR,, neN, for which the system ¢*e B,, AeR,, is equivalent to the standard basis of

n
the Hilbert space I,(R,) for arbitrary n.

Introduction. Let X be a Banach space, X* its dual and I some set of
indices. A system x;, f;, iel, x;e X, fie X*, is called biorthogonal if filx)=0
for i+ j and 1 for i =j. A biorthogonal system is called fundamental if the
closed linear span [x;: ieI] is equal to X, and total if for any element xe X,
x 5% 0, there is an index i such that f(x)# 0. A fundamental and total
biorthogonal system is said to be a Markushevich basis (an M-basis).
A biorthogonal system is bounded by a number ¢ if sup;||x;|||lfill <ec. It is
known (cf. [10]) that for any separable Banach space X, any separable
subspace F < X* and any & > 0 there exists an M-basis x,, f, bounded by
1+¢ with [f,]{ = F. Although the question whether every separable Banach
space has an M-basis bounded by 1 is still open, we show that in: the result
of [10] quoted above ¢ > 0 is essential in some sense. Let us formulate the
exact statement. Let K be a metric compact and let C(K) be the space of real
continuous functions on K, Its dual is the space M (K) of Borel measures on
the set K with bounded variation. Let §,, teK, be the atomic measur
defined by 8, {t} =1, 6,{K\t} =0. '

TueoreM 1. Let (t,)7° be a dense set in a nice metric-.compact K. The
space C(K) fails to have a biorthogonal system x,, f, bounded by 1 for which
[417 = (3,)%.

This answers in the negative a question from [16, problem 8.2b)], where
it is written that the question was raised by A. Pelczynski. Not every Banach
space has an M-basis [16, p.-691], but if it has an M-basis then it has a
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