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Egorov’s type convergence in the Dedekind completion
of a C*-algebra

by

KAZUYUKI SAITO (Sendai)

Abstract. The conmcept of comvergence in Egorov's semse for nets in an abelian
AW*-algebra is introduced. We say that an abelian AW*-algebra A has property E if every
order convergent net in 4 also converges in Egorov’s sense to the same limit. It is shown that
the Dedekind completion of the hermitian part B, of a given separable unital C*-algebra B
(regarded as an order unit vector space) satisfies property E if and only if B is abelian and its
spectrum contains a dense subset of isolated points.

C*-algebras have very nice properties as ordered vector spaces, they
have not, however, the order completeness property in general. Since the
hermitian part of a C*-algebra is an Archimedean partially ordered vector
space, it can be embedded, with preservation of suprema and infima, in a
bounded complete vector lattice (the hermitian part of an abelian
AW*-algebra) called the Dedekind completion (of the C*-algebra) (see, for
example, [7] and [13]).

Our claim in this note is that this completion is very badly behaved for
almost all separable C*-algebras as far as the order convergence is
concerned, in the following sense:

TueoreM. Let A be a separable C*-algebra and let & be the Dedekind
completion of the hermitian part of the C*-algebra A, obtained from adjunction
of a unit to A, regarded as an order unit vector space. Then any bounded net
{a;) in @ which converges to a in the order sense also converges in Egorov’s
sense (see below) to the same limit a if and only if A is an abelian C*-algebra
whose spectrum contains a dense set of isolated points.

This is, however, an easy consequence of the following

PRrOPOSITION. Keeping the above notations and definitions in mind, @ is
atomic (in the sense that it has sufficiently many minimal projections) if and
only if A is abelian and its spectrum has a dense set of isolated points.

Let Z be an abelian AW*-algebra and @ the spectrum of Z. If we
denote by Z, the set of all hermitian elements in Z, then Z, is *-isomorphic
to the set C.(Q) of all continuous real-valued functions on Q. In its natural
ordering, C,(®) is a boundedly complete vector lattice ([2]).
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In C.(2) (= 2Z,), the concept of order convergence for bounded nets

may be introduced ([8], [9]). A bounded net {4,} in C,(Q) order converges
to a (written a; — a (0)) if

a=limsupa, = liminfq,.

The following algebraic criterion for order convergence in Z, was given
by H. Widom ([9]).
. LemMa 1. A bounded net (a;} of Z, order converges to a if and only if
given a nonzero projection e in Z and an ¢ > 0 there exist a nonzero projection
f<eand aldy such that A = Ly implies ||f (a,—a)l| < e.

‘ We say that a bounded net {a;} in Z, converges in Egorov’s sense
(E-converges) to a (written a, —a (E)) if there is an orthogonal family of
projections {e,} in Z such that Y e, =1 and ||(a;—a) e,|| - O (1) for each a.

o
Clearly, “E-convergence” implies “O-convergence”.
(*). Does the converse implication hold?

Unfortunately, as the following example shows, the answer to the
question (x) is negative in general.

Let R be the real line and let B(R) be the algebra of all bounded
complex-valued Borel functions on R. Let 9 be the elements of B(R)
yanishing outside meagre sets of R. Then Z = B(R)/9M (the quotient algebra)
is an abelian AW*-algebra whose spectrum has a dense meagre subset ([2]).
Let g be the canonical quotient map from B(R) onto Z. We know that a
category analogue of Egorov’s theorem is false by the following example in
B(R) ([4], P. 38).

Let ¢(x) be the piecewise linear continuous function defined by

@(x) = 2x on [0, 1/2],
@(x)=2-2x on [1/2,1],
@(x)=0 on R-[0, 1].

Let {r;} be a dense sequence in R (for example the set of all rational
numbers) and let

769 = 3 270 (2 (xn)).

Define a, = q(f,). Then {a,} < Z, is a bounded (jja,|| < 1) sequence such
that a, 0 (O) and a,-» 0 (E). In fact, since, for each n, |f, ()| < f 27i=1
i=1

for all xeR, |la,) <1 for all n.
Next we spall show that a, — 0 (O). Take any nonzero projection e in
Z. Then there is an open interval (g, b) in R such that e > q(Ya,py) # 0. For

icm

Egorov's type convergence 27

o0
any given & > 0, there exists an i, such that 3, 27° <& Let 1y, Tiys oons T,

i=i
"be {ry, I3, ..., Fig} (@, b) (possibly = @). The%, if we take a sufficiently

large no, {[x; r,cj.+2—"°]}§’=1 are mutually disjoint subsets of (a, b). So there
. P -
is an open interval (a,, b;) < (a, b) which is disjoint from (J [rkj, rkj+2 "oq,
j=1

Let xe(ay, by). Then for all n>n,,

ig-1
L)< Y 272" x—1))+e< ¢,
i=1

( ip—1
because Y, 27 @(2"(x—ry)) =0 for all n>no. So ||f, Xy bpll <& for all n

=1

> n,y. By applying g, there is a nonzero subprojection f of e and a positive
integer n, such that ||a,f]| <e for all n>n,. By applying Lemma 1, a,
-0 (0).

To prove that a,- 0 (E), we argue as follows. If it were true that a,
-0 (E), then it would imply that for any nonzero projection e in Z there is
a norzero subprojection f in Z of e such that ||a, f]| = 0 (n—> o). So, if we
take a subsequence if necessary, we would get

lla, fll < 27"

One can choose an open interval (a, b) in R such that g(x,,») < £, and so
lanq(rawll €277 n=1,2,...

Since f; ¥y is lower semi-continuous on R, this would imply that
{x| fuXep(*) > 27" is not only meagre in R but also open in R for each n.
Since R is a Baire space, {X| f,¥un(x)>2""} =@ for each n, and so
o Xamll < 27" for all n, that is, || fulanll = 0 (n— o). Since {r;} is dense in
R, there is an r;e(a, b), and hence

sup f,(x)>27

a<x<hb

for n=1,2,...

for sufficiently large n. Thus {f,} does not converge uniformly to 0 on (a, b)
and this contradicts the claim that f,y,s <27" for each n. Hence
a, -0 (E).

The next lemma gives, however, a partial positive answer to the
question ().

LEMMA 2. Suppose that either Z = L®(I', p) for a measure space (I, W or,
more generally, the spectrum Q of Z has the property that every meagre set is
rare ([2]). (Note that, under the o-chain condition on £, each meagre subset of
Q is rare if and only if Z is weakly (o, oo)-distributive; see [7], p. 131.) Then
“Q-convergence” implies “E-convergence”.


GUEST


28 K. Saité

Proof. If Z = (I, p), the proof is given by H. Widom ([8]). Nextvlet
Q be a stonean space with the property that every meagre set is rare. Let
{a,} be any bounded net in C,(€) which converges to a in the order sense. If
we consider a;—a, we may assume that a = 0, without loss of generality.
This means, however, that

sup inf @, = infsupa, = 0.

A uza A opEd
Let b, = supa, (resp. ¢; = i1>1f a,)- Then b, [0 (O) (resp. ¢; 10 (O)). To prove
nZ=A n2a

our assertion, we may assume that «; | 0 (O) (consider b, and —¢;). Let
b(w) =infa,;(w) for each weQ. Then b is an upper semi-continuous
i

function on Q.
Let, for each n,

Q, ={o| bw)=n"}.

Then @, is a closed subset of @ for each n. Suppose that Q0 = () for some n.
Then, if e is the projection in C,(Q) corresponding to Q°, it follows that

>
for all A.

This contradicts the fact that 4, |0 (O) in C,(£2), so 22 = for each n and

Qo = {o| b(w) >0} = "Q Q, is a meagre subset of Q, which implies, by our

assumption on £, that Q, is a rare set. It follows that ((,)° = ¢, and hence
(£2¢f contains a nonempty open and closed subset E, which is also contained
in {w| b(w)=0}. This means that a, |0 pointwise on E. So, by Dini’s
theorem, [la,xgl|— 0 (1). If we take a nonzero projection e in C.(Q
corresponding to E, |la; e[| - 0 (4) and the proof is complete.

. The rest of this note is devoted to the proof of our main theorem. To do
this, we need a sequence of lemmas.

Let A be a separable C*-algebra and let A, be the C*-algebra obtained
from adjunction of a unit to A if 4 is nonunital (if 4 is unital, we denote 4
by A;). Then the hermitian part of A,, (4,),, is an order unit vector space.
Let V be the Dedekind (cut) completion of (A4,), as an order unit vector
space. Then V' is the hermitian part of an abelian 4W*-algebra % (see, for
example, [13]). In fact, let X be the state space of 4, and let B(X) be the
C*-algebra of all bounded complex-valued Borel functions on X. Let m,
= {feB(X)| {xedX| f(x) 0} is a meagre subset of 4X (the set of pure
states of A4;), in the relative topology of X I3

Then U = B(X)/IM, satisfies all the requirements (see [137).

Lemma 3.°% is a Kaplansky—Rickart (KR-) algebra in the sense that U
has a countable order dense subset of W, (= V).

Proof. Since 4, is norm separable, ‘we can find a countable (norm)

agzb=nte
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dense subset A4y of (A4,), such that for any ae(A4,), there is an increasing
subsequence {a,} in A, such that |la,—all -0 (n— o) (see Theorem 4.3 in
[10]). Thus (4,), has a countable order dense subset. Since (4,), is order
dense in V, V has also a countable order dense subset A,. Thus U is a
KR-algebra.

Lemma 4 ([12]). Let € be an abelian KR-algebra. If € is not isomorphic
to B(RY/M or I® or I (for any natural number n), then there is a projection
ec®, with 0 <e<l, such that e€= B(R/M and (1~-e)€=I1* or ¥
for some n.

Proof This is a direct consequence of the fact that every atomless
abelian KR-algebra is *-isomorphic to B(RY/M (see [7], p. 155 and [12]).

LemMa 5. Let A be the regular completion of A ([6], [10]). Then A, is a
o-closed subspace of V regarded as an 0[der unit vector space, that is, we have
the following o-normal injection from A, into V:

(A o "ih o V.

Proof. Let W be the Dedekind completion of 4, as an order u_nit
vector space. Since (4,), is order dense in A,, the ur}icity of Dedekind
completion tells us that W is also the Dedekind completion of (4,), and so
W=V .

Next we shall show that the injection of 4, into V is o-normal. We hz}ve
V = B(X,)/M;, where X ; is the state space of A. Let {a,} be any»increasu?g
sequence in A, which tends to a in 4, (in the order sense). Thep a,Ta in
B; (the Borel envelope of A, which is canonically embedded in B(Xz))
almost everywhere, that is, {xe8X 4| a,(x)}a(x)} is a meagre subset of 8X 3
and so gz(a,)1qa(a) in V ([5], [14]). _

Next we shall show that the Proposition implies the Theorem. Since the
“if* part of the Theorem is clear, we have only to check the converse.
Suppose that 9, = V has the property that every bounded O-convergent net
is also E-convergent to the same limit. Then, by Lemn.la 4 abovg and Fhe
counterexample cited before Lemma 2, it follows that A is an atomic abelian
W*.algebra and so the Proposition implies the Theorem.

Proof of the Proposition. Suppose that V is atomic. The fact that
A, is a a-subspace of V tells us that 4 has a faithful normal state and so A
has a faithful representation as a vonANeumann a].gebra t[5]). Since BX 11
o(A*, A)-separable, this means that.-4 is an atomic von Neumann algebra
([11]), so there is a sequence of Hilbert spaces {s#,} such that

i=3 20t

Hence there is an essential ideal I of A which is a dual C*-algebra ([6]).
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Since (I,), is order dense in (4;),, V is also the Dedekind completion of (I,),.
To prove our assertion, we may assume that A = 1. Let
A=Y (A
n=1
where Z' is the restricted direct sum of % (%' and {.¢,) is a sequence of
Hilbert spaces.

Next we shall show that each nonzero %(.¢",) is one-dimensional. Since
A is separable, 0X, is a Baire subset of X, and {0} is a rare subset of X if 4
is nonunital, it follows that B(dX,)/M, is a direct summand of B(X)/M,
and so B(4X,)/M, is also atomic (see [6], Proposition 2.1).

Let C,(0X ) be the C*-algebra of all bounded continuous functions on
the completely regular space 9X,. Then (C,(0X,)), is order dense in
B(0X ,)/M,, because B(0X 4)/M, is the regular completion of C, (8X ) (see
[2], p. 25).

Thus the Stone-Cech compactification f(0X,) has a dense set of
isolated points and so dX, also has a dense set of isolated points.

Let J, =% (Ay) and J, = Z' %(A ). Then J; and J, are closed two-
n=2

sided ideals of 4 such that J,@J, = 4. Let (0X,)’* = {pe X[ o(J;) # 0}
This is a2 nonempty open subset of §X, which is homeomorphic to 8X J, Via
the natural mapping ¢ — ¢|J,. Thus it follows that X 7, also has a dense
set of isolated points,

. Note that 0X;, ={w,l |fll =1, £ A#;}. Let ¢ be the mapping from
U={¢eA]| ||&|| = 1} onto 0X,, which is defined by ¢ (£)= w,. Then ¢ is
a continuous mapping from U (with norm topology) onto X 5, (With weak*-

topology). Take any isolated point w; of 6X,, and O = ¢~ ! ({w,}). Then O is

a nonempty open subset of U.
Suppose that dim ., > 2. Then there is a unit vector 5, which is

orthogonal to & Let
& =(1+107")"12(107"2 o+ &),
Then ||&,j| =1 for each n and
=410 5] (o o)

so  ||&—=¢&|—0 (n— o), that is, wg,—w; in  0X; . Moreover,
&¢0 (n=1,2,..). Since O° is norm-closed and [|&,—&|| 0 (n— c0), this
implies that ¢e O°. This is a contradiction, that is, dim %" 1 < 1. It follows
that dim %", < 1 for all n, and so I is abelian. Since T = A (because [ is an
essential ideal of A4), this shows that A is abelian and its spectrum contains a
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dense set of isolated points. The converse assertion is clear. This completes
the proof.

Remark. Let 4 = M,(C) (the algebra of all 2 by 2 matrices over C). .
Then it is classical that X, is affinely. topologically isomorphic to the
3-dimensional Euclidean ball §: o?+ f%+9* < 1/4 ([1]). This implies that the
Dedekind completion of A, is B(8S)/M, which is isomorphic to B (R)/M by
Lemma 4.

COROLLARY.. Any separable simple C*-algebra whose dimension is greater
than one has the Dedekind completion which is isomorphic to (B(R)/M),.

Proof. Let A be any separable simple C*-algebra whose dimension is
greater than one and let ¥ be the Dedekind completion of A, as an order
unit vector space. If ¥ has a nontrivial atomic direct summand Ve (for some
projection e in V), then, if we take @(x) =1 (xe) (xe ), where  is any
normal state on Ve, ¢ is a normal state on A. By [12], if A were infinite-
dimensional, 4 would not have a normat state; this implies that A4 is finite-
dimensional and so A= M,(C) (n>2). If V has an atom, then X,
(= {we] £eC", ||¢]| = 1) has an isolated point and V is the hermitian part of
the regular completion of C(0X,), which tells us that the arguments in the
proof of the Proposition can apply to deduce a contradiction. Thus V has no
atoms, This completes the proof.
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A cheaper Swiss cheese
by
T. W. KORNER (Cambridge)

Abstract. We simplify some of the computations required for McKissick’s example of a
normal uniform algebra.

§ 1. Introduction. McKissick [1] has constructed an eclegant “Swiss
cheese” K with the following property.

Tugorem 1.1. There is a compact subset K of C such that R(K) is normal
but is not equal to C(K).

His proof depends on the following preliminary lemma.

Lemma 1.2, Given any & > 0 we can find a sequence of open discs {4} and
a sequence of rational functions {fo} such that:

(a) If ry is the radius of 4, then Y <s
k=1

(b) The poles of the f, lie in | 4.
k=1 B
oo
(c) The sequence f, tends uniformly to. zero on {z: 2] 2 13\ U 4y and
: k=1

. o0
uniformly to some nowhere zero function on ‘{z:’ 2] < 1}\’}_)1 Ay,

The standard proof of McKissick’s lemma relies on a construction of
Beurling and in the, textbook detail of [3] fills 7 pages. The object of this
note is to give a computationally  simpler derivation of the lemma. Our,
method will have the further minor. advantage of fulfilling two - further
conditions, . .

Lemma 1.2'. In addition to-conditions (a), (b), and (c) of Lemma 1.2 we can
demand:

@ U dsle 1-e<ld <1}

(&) 4y, A4z, ... are disjoint. )
(Condition (d) is required for [2] but can also be obtained by modifying the
original construction.)
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