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Almost everywhere convergence of some summability
‘ methods for Laguerre series

by

JOLANTA DLUGOSZ (Wroctaw)

Abstract. We consider various types of convergence for Laguerre expansions. In the main
theorem we formulate a general sufficient condition on a summability kernel K to imply that the
corresponding summability method applied to the Laguerre expansion of a function f in LP(R,)
gives almost everywhere convergence if 1 < p < co and the L” norm convergence if 1 < p < 0.
The theorem works for the classical Abel summability method, and for Riesz and Riemann
methods with large exponents.

Introduction. Let £%(x) = (n!/I' (n+a+1))"2e™*2x*2 [%(x), where L%,
n=0,1,..., are the Laguerre polynomials on R,. For a function f in
LP(R.), 1 < p< o0, write its formal Laguerre expansion

(0.1) ' f~Ycnns
where

=1, £ = ;ff(x).sﬂ:(x)dx.

The aim of this paper is to prove theorems on the mean convergence of
(0.1) almost everywhere and in the I* norm. For integral values of the
parameter o we obtain a general sufficient condition on a summability kernel
K to imply that for a function f in L”(R.)

0.2) f(x)=1lim Y K(tn)c, Li(x)
140

almost everywhere if 1 <p< o, and in the I norm if I<p<oco. In
particular, this condition is satisfied by K() =e™% K1) =(1-A)Y, N>9,
K (A) = (sin A/A)f, B large. Thus, our theorem includes the cases of the
classical Abel, Riesz and Riemann means.

The problem of the mean convergence of Laguerrre expansions has been
considered by a number of authors. In 1965 Askey and Wainger [1] proved
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that if 4/3 <p<4 and o >0 then the partial sums of the Laguerre
expansion of a function fe L”(R.) converge to f in the L? norm. They also
showed that this is not true if 1< p<4/3 or p=4. In [10] and [11]
Muckenhoupt extended their results to all « > —1 and weighted L.

Abel summability (i.e. for K (1) = e™*) has been treated by Muckenhoupt
in [9] where instead of #% he considered L% and feLP(R., e *x%. In
particular, he obtained the almost everywhere convergence of Abel means for
all > —1 and 1<p< . This is the only result concerning almost
everywhere convergence for Laguerre expansions known to the author.

The norm convergence of the first Cesdro means (i.e. K(4) =(1-1),)
has been proved by Poiani [12] for weighted L? spaces. Her results include
the case of the ordinary L? norm convergence. General Riesz means (i.e.
K(})=(1—A)%, 6> 0) for Laguerre expansions with the parameter o> 0
have been considered by Markett [7]. He has proved the L? norm
convergence of (0.2) for 6§ >4 and 1 < p < co.

The above-mentioned authors have used classical methods. Recently
Hulanicki and Jenkins [5], [6] have developed a technique which enables
one to obtain mean convergence theorems for eigenfunction expansions of
some differential operators on R" from theorems concerning homogeneous
groups and spectral expansions of Rockland operators. In particular, using
this technique they obtained results parallel to ours for Hermite expansions.
Their results do not give theorems for Laguerre expansions, nevertheless
considering this case we follow their ideas.

Our approach is based on the observation that thé Laguerre functions
with integral parameter a appear in eigenexpansions of the sublaplacian
acting on the spaces of functions on the Heisenberg group considered by
Geller [4]. We pass to a quotient group to obtain a discrete spectrum.
A theorem of Hulanicki and Jenkins (quoted in Section 2) enables us to
formulate problems concerning the mean summability of Laguerre
expansions in terms of the convergence of an appropriate family of operators
on this quotient group. As usual to prove theorems on almost everywhere
convergence we investigate the corresponding maximal operator, Results
obtained for the Heisenberg group are interpreted for Laguerre expansions.

The author is grateful to Pawel Glowacki, Andrzej Hulanicki and
Tadeusz Pytlik for helpful remarks concerning this paper.

1. Let H, be the (2m+ 1)-dimensional Heisenberg group. We shall write
elements of H, as pairs (z, u) where z =(z, ..., z,)eC" and ueR, the
multiplication law being

m

(z W), v) =(z+7, u+w'+Im ¥ 7z)).
=1

Let I'={(0,u): ueZ}. We identify H,/I' as a set with R*"x

a.n
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X ?‘(T: [0, 1)), the Lebesgue measure bein,
write X for the element of H,/I' corresponding to x in H,.

In the sequel we present some considerations involving spaces of
homogeneous type. We recommend [2] as a reference.

For t > 0 a dilation on H,, is defined by

g the Haar measure on H,/T. We

(1.2) O, (z, u) = (tz, t* u).

Let || be any symmetric dilation-homo

. €1e0us norm H,. i-
distance d on H,/I by ® o fn Define 2 quasi

d(X, y) = inf]x™ ! yy|.
yvel”
Set

B, (%) = {yeHyI: d(y, %) <s).
Lemma 1. H,/T with the quasi-distance d is a space of homogeneous type.
Proof. According to [2] it is sufficient to show that there exists a
constant C such that for any XeH,/I' and s> 0

(13) 1B, (%) < C|By2 (%)),

where [B,(%)| is the Lebesgue measure of B, (X). Since the quasi-distance d
and the Lebesgue measure on H,/T are left-invariant, we have only to verify
(13) for % =0 (0 being the neutral element of H,). Since all dilation-
homogeneous norms on H,, are equivalent, we may assume that

llz, Wl = max {[Re z,|, [Im zy[, .., Re z,, [Im z,, \/ja]}.
If the quasi-distance d on H,/T is defined by means of this norm we have
2 2m252 3 < s
8,0 = {0, 2" <12
(2 if s> 1//2.

Now (1.3) follows easily. Thus the lemma is proved.
By [2], Chapter III we obtain

CoroLiary 1. The Hardy-Littlewood maximal Junction on H, /T,

(1.4)

(m* ) (%) = sup ——_

P B j IS dy,

By(%

is of weak type (1,1).

Now define a symmetric dilation-homogeneous norm on H, by

b = |z, u)| = |Re z,|+[Im z|+ ... +[Re z,,|+[Im Zal + /]
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Let |%. be the corresponding quotient norm on H,/, ie.

[%] ~ = inf|xy].
vel'

For a function k on H,, let

(.5) k() =172k(5,- 1 x) = = k. (),
where Q = 2m+2 is the homogeneous dimension of H,,. Set
(1.6) k(%) = Z kq (x).

yel

Define a function w on H, by

1.7n w(x) = 1+]x].
LemMA 2. Let k be a function on H, such that
(1.8) sup |k (x) ! (x)] < oo
xeHy

where | > Q+2 =2m+4. Let k, be defined by (1.3) and (1.6). Then there is a
constant C such that for all te(0,1] and all f in L' (H,/T) we have
1.9) I(f k) (%) < Cm*f)(x)  for all XeH,/T.

Proof. By (1.8) we have [k (%)< Coh (%), where h(x)= "’(x),
= Q+2+¢, &> 0. Thus it is sufficient to proye the lemma for the function
h,. To do this we use the following estimate:

)

yel

(1.10)

1 (1 1
TERSEIA Cit ((r+|x|~)’+(z+|>e|~)‘“2 '

where the constant C,; is independent of te(0, 1) and xe H,,.

The first summand on the right-hand side of (1.10) appears because we
have |xy| = |%]. for every yeI. Now to see (1.10) write x = (z, u), y = (0, n),
neZ. We may assume that ue[0, 1). We have |x)| =a+./ju+n|, wh.ere
a =|Re z;|+|Im z;|+ .. +|Re z,+|Im z,|. Using this notation we obtain

el

1
T < | e
nsl\(o,gl,—z>(1+t’1(a+ ju+nl)) ) 1+t~ 1(a+ u+v))
. 4 ¢ 4 t’
SI=2 rar a2 GRS

Thus the estimate (1.10) is established. As an immediate consequence of
it we have

icm '

Summability methods for Laguerre series 203
. C,t7¢ if X, <,
(L1 h'(x)\%cz(zfz)-ez-ﬁ if 27X <Y j=1,2,...,

where the constant C, is independent of j.

Now we prove the lemma for 4 by a well-known technique. We include
the proof here for completeness sake. Denote B, = B,(0). We have

Feh)@DI< |

~ St

SO &Y |

i=1 2i-Ligyy| .. <20t

Lf Gy~ DI R () dy

< Cy[1me f Lf(xy~H) dY+Z @nme27 [ |f(p~Y) dy]
BZJx
m*f(x).

The second inequality holds by (1.11), and the third by the estimate IB| < ct?
(cf. (1.4)).

Prorosrrion 1. Let k be a function as in Lemma 2 and let

(1.12) [ k(x)dx=1.

H"l

For a function f in L"(H,,,/D we have

(1.13) ling(f*k,)(x) =f(x)

PN

almost everywhere on H, /T if 1 < p< o0, and in the L? norm if 1<p<oo.
Proof. Since k, is an approx1mate identity, convergence (1.13) is proved

for f continuous w1th compact support as usual. These functions form a

dense subset of L?(H,,/I') if 1 < p < co. Hence to complete the proof for the

case of norm convergence it is sufficient to observe that the operators of

convolution with &, acting on LP(H,/I'), 1 € p < co, have norms commonly
bounded by ”k”Ll(H,,,)

As regards the almost everywhere convergence of (1.13), it is sufficient to

prove it for p=1 and p = co. To do this for p =1 consider the operator

Mf(x) = sup |(f %k)(%). Since the operator f — m*f on H,/I" is of weak
te(0,1]

type (1,1) (Corollary 1) by Lemma 2 the same is true for M. Now the almost
everywhere convergence of (1.13) for any felI!(H,/I') follows if we use a
well-known theorem ([14], p. 60, Theorem 3.12).

For fin L®(H,/T") we show that llm(j xk) (%) = f (%) for almost all % in
every ball B, and so for almost all xe H,,,/F To do this we write f as a sum

f= f1+f2, Where Si=fon By, (A is a constant such that [px]|. < A(yl~
+1x|..) for all x, ye H,/TI'), and f; = 0 elsewhere. Since f, e L' (H,,/I') we have
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lim (f; % k) (%) = f1 (%) = (X) almost everywhere on B. For f, and xe B, we
t—0

have

I(f2 % k) ()] = IHI/I‘fz kM | < kOGN dyllfalle— 0

W~ Zs

as t— 0. Thus Proposition 1 is proved.

2. Let L% denote the Laguerre polynomial of type o« and degree n on R..:
"t \(—wy
Li(w) = T
") jgo ("—/') J!
and let %5 be the corresponding Laguerre function:

“n! 12 =WIZ of2 ] (1)
yﬁ(w) = (I_‘—(nm) e W n(W).

o By A= (o, ..., 0, )eN™ (where N=1{0,1,...}), and w
., W)e RT we use the notation %%(w) = f::(wl) o L (W)

For n=(n,, ..
=(wy, ..

On H,, we use coordinates (X, ..., Xy, Y1, +-.» ¥, 4) Where z; = x;+iy;,
j=1,...,m Let X; Y, denote the element of the Lie algebra of H,
corresponding to the one-parameter subgroup (0, ...;0,¢,0, ..., 0), ¢ in the

X; or y; position respectively. Let L be the homogeneous sublaplacian on H,,,
ie. L=—3 (X2+ YD)
j=1
On' H,,/I" consider the functions of the form

(2.1) S @1y ooy 2y 1) = exp2ri)exp(—i Y. a;0,) fo(Fys -.es P,
=1

where z; = rjewf, J=1,...,m a; j=1, ..., m are nonnegative integers, and
Jo is a function defined on R%. We denote L2, (H,,/I') the space of functions
in IF(H,/T') of the form (2.1).

Prorosition 2. The operator L maps functions of the form (2.1) into
Junctions of the same form, has discrete spectrum on L2, (H,/T), and the
normalized eigenfunctions of L on this space are

o;8;) L2 (2mr?),

M=

@5 (z.u) = 2" exp (2riv) exp(—~1i
i

where 1? = (r{, ..., r3), the corresponding eigenvalues of L being 8m(jn| +m/2),
where In| = n; + ... +n,,. '

Proof. It is routine to verify this writing Lin polar coordinates

neN",
1

[l

X; =r;cos 0,

y; =1, sin 0,
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J=1,..., m, and utilizing the second order differential equation satisfied by
L5 (w) (see [3]):
2

d o d a a
WWL,,(W)-F(DH-I —W)EL,,(W)—FHL,,(W) =0.

Let {p,},», be the convolution semigroup on H,, whose infinitesimal
generator is L and let .« be the Banach *-subalgebra of L' (H,,) generated by
{P}e>0. For a function ke let k be its Gelfand transform. The following
theorem enables us to use results of Section 1 to obtain theorems on mean
summability for Laguerre expansions.

Tueorem (Hulanicki and Jenkins [57). Consider the condition: KeCY (R+Y
and

(K -a) sup [KP()(1+4)*MS+1 < o, j=0,1,..., N,
120

where S is the smallest integer such that
1Pl gy < CUT+L 0l 2
Then:
D f N>Q/2+1 and a =0, there is a ke o such that k = K,
(i) if N> Q/2+1+1, where | >0, and a = 4, there is a ke <7 such that
=K and sup |k(x)w'(x)| < co.

xeHy,
Now we are ready to prove our main theorem.
Tueorem. Let o =(0y, ..., 0,)e N™. Let Ke CY(R,), K(0) = 1.

@ If N>m+2 and K satisfies (K-0) then for a function ge L?(R?Y),
1< p<oo, ‘

(22) tim flg— 3 K(t(l+m/2)(g, £3) L], =0
[ind neN™

() If N >3m+6 and K satisfies (K-4) then for a function ge LP(R%),
I<p<oo,

(2.3) gwy=1im ¥ K(t(ol+m2)(g, £ 25w

10 neN™

Jor almost all we R .

In particular, if the function K is of the form (A), (B) or (C) below (cf.
[5]) then it satisfies the assumptions of the theorem.

(A) K@A)=e?%

=Y ffos<i<i,
®) K“)‘{o if2>1,

(©) K@) = (e, where peCN(R,), ¢'(0) =1, sup|pP (D) < oo for j
iz0
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=Q,1,..., N, B> NS+1 for the case (a), B > (4+N)S+1 for the
case (b).

Thus we obtain almost everywhere convergence and appropriate L7
norm convergence of Abel, Riesz and Riemann means of Laguerre
expansions respectively.

Proof of the Theorem. To simplify the notation we present the
proof for the case m = 1, the changes for m> 1 being obvious.

We first prove part (b). If K satisfies the assumptions of part (b) of the
theorem then the function k corresponding to it by the theorem of Hulanicki
and Jenkins satisfies the assumptions of Proposition 1. We also have

frki=3 K@nt(n+1/2)(f, o7 oh
neN
for felZ,(HT), 1 <p< o, (cf. Proposition 2). So by Proposition 1
feo=lim 3 K(8nt(n+1/2)) (f, 0§ 93
t=0 peN

for almost all xe H,/I'. Thus, since f and ¢ are of the form (2.1), we obtain

24 fo)=lm ¥ K(t(n+1/2)) (f, ¢7) 2" Z5(2m%)

t=0 peN

for almost all re R, where the function f, corresponds to f by the formula
(2.1). But

(F, ) = 22 [ folle) L3 anlzP) dz = 2711 [ fo (Jwf2m) 30w) dw.
c o
Set )

(2.5

g(0) =15 (/w/2m).

Putting in (2.4) r = ./w/2n we obtain

(2.6) gw)=1lim ¥ K(t(n+1/2)(g, L3 L5(w)

=0 neN
for almost all weR, .
As MMz myn = Cpi]g||L,,(R+), 1< p< oo, the correspondence f — f;
- g defined by (2.1) and (2.5) maps the space IZ,(H,/I') onto the space
LP(R,). Thus part (b) follows.
Now observe that to prove norm convergence in Proposition 1 it is
sufficient to assume that ke L' (H,) and k satisfies (1.12). So to prove (a) we
use part (i) of the theorem of Hulanicki and Jenkins, and repeat previous

considerations where almost everywhere convergence is replaced by L? norm
convergence.

icm°
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3. It would be nice to replace K (t(In|+m/2)) by K (¢[nl) in (2.2) and (2.3).
We can obviously do this in the case of Abel means. To do this for Riesz
means denote 7, = |nl+m/2, g =lnl, go(W) = (g, L) L5W)—g(W), g,(W)
=(g, &%) ¥2(w) for ns 0, ne N". Let x = 1/t. With this notation we can
write the formula (2.3) for Riesz means as follows:

(3.1 lim x™7 ¥ (x—4)g,(w) =0.

X =00 Ay Sx
Changing the variable y = x—m/2 we see that (3.1) is equivalent to

(3.2) lim y~% ¥ (y— )" g.(w) = 0.

Yo Sy

Thus we obtain the following
CoROLLARY 2. Let oy,
have

(33)

..., t,, be nonnegative integers. For ge L7 (R%) we

im Y (1-m/y)"(g, £3) L2 (W) =gW)

y=ow [a| <y

almost everywhere if 1 < p< o0 and N > 3m+6, and in the LP norm if 1 <p
< oo and N >m+2.

Remark. It seems that if in the proof of almost everywhere and
appropriate L? norm convergence of Riesz means for Laguerre expansions we
use the results of Mauceri [8] in place of those of Hulanicki and Jenkins [5]
then the exponent in (3.3) can be taken smaller.

To replace K (t(n+m/2)) by K(tn) in the one-dimensional case we need
the following lemma.

LemMaA 3. Let K be a function as in the Theorem, part (a), and for an a
<1let|s)| =|by+...+bf =0 as n— co. We have

lim i K(t(n+m/2)b, =s

t=0 n=1

(34)
if and only if

(3.5) lim Z K(tn)b, = s.

t=0 p=1

Proof. To prove the lemma it is sufficient to show that

lim i [K(t(n+m/2))—K (tm] b, = 0.

t—=0 p=1

(3.6)
Using Abel transformation we deduce that (3.6) is equivalent to

(3.7) lim i [K (t(n+m/2)—K (t (n+1+m/2))—K (tm)+ K (t (n+ 1)]s,=0.

=0 p=1
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The series in (3.7) can be estimated by

(3.8) 2 Y K (t(n+6Y) s,
n=1

where @7,6(0,4m+1). Using (K-0) and denoting M = NS+1 we can
estimate (3.8) by

o0 o0
i nt x*dx z4dz
Py e S Gy P | e < Gyt | S0
ct "; (1+t(n+0yM < (Lo = J(1+2)M“’
1 0

as t—0 and Lemma 3 follows.

Using the form of the ath partial sum for Laguerre expansion given in
[1], p. 703, we can estimate it pointwise by C(w)n** for almost all weR.
for geLP(R,), 1 < p< 0. If 1 < p < o0 its LP norms are estimated by Cn'/?
(see [7]). So the assumptions of Lemma 3 are satisBed and we obtain the
following

CoroLLAry 3. Let Ke CY¥(R,), K(0) =1 and let acN.

(@) If N >3 and K satisfies (K -0) then for gel?(R;), 1 < p < w0,

' 0
(B9 lirr;”g— > K(n)(g, &9 'Cﬂ;t“u:m” =0.
g n=0

© (b)) If N >9 and K satisfies (K +4) then for geLl?(R,), 1 <p< oo,

(3.10) gw) =lim y K(tn)(g, ¥ L2(w)
1-0 n=0
Jor almost all weR,.
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