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Weighted inequalities for the two-dimensional
Hardy operator*
by
E. SAWYER (Hamilton, Ont.)

Abstract. A characterization is obtained for those pairs of weight functions w, v on (0, o0)?
x ¥y
for which the two-dimensional Hardy operator I, f'(x, y) = [ [ f(s, t)dsdt is bounded from L#(v)

00
to Lf(w), 1 <p<g<co. Related results and some applications are discussed.

§ 1. Introduction. For n > 1, the n-dimensional Hardy operator I, and
its adjoint I* are given by

x1 *n
Lf Gets vos X = [ v [ fltrs oor )y .. dty,
0 0

I,Tf(xl,...,x,,)=of. jf(tl,... W dty ... dt,
*1

for x;, ..., x, > 0 and suitable functlons f. These operators often arise in n-
dimensional weighted norm inequalities for classical operators (such as
Fourier and double Hilbert transforms) in much the same way that I, and I*
arise in one-dimensional inequalities (see the survey article by B.
Muckenhoupt in [8] and the applications discussed below).

In the one-dimensional case, much is already known concerning
weighted inequalities for the Hardy operator. For example, if 1 < p < g < oo,
then ([2], [3], [7], [17] and [18])

(1.1 (j(lf(x)) w(x)dx)" < (j FPo()dx)"  for all >0
(1]

if and only if the nonnegative weight functions w(x), v(x) satisfy
(1.2 sup Fw(@ I, o(a)!" =4 < 0
a>0

where ¢(y) = v(y)! “* and by convention 0- oo = 0. Moreover, if 4 and C are
the least such constants, then 4 < C < p'(p)'/"" 4. We remark that by
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2 E. Sawyer

Theorem 1 of [1] condition (1.2) is also necessary and sufficient for the weak
type inequality (we write |E|, for [w(x)dx)
E

(1.3) KT f> A, < CA“”(_ff".v)q“' for all /20 and 4> 0.

More general weak type variants of (1.1) are also considered by K. Andersen
and B. Muckenhoupt in [1] and a Lorentz norm analogue is considered by
the author in [15].

Unfortunately, weighted inequalities for the higher-dimensional Hardy
operators [, seem more complicated and the difficulties increase with larger
n. As a result we concentrate on the two-dimensional Hardy operator I,,
obtaining characterizations of both the strong and weak type inequalities
(answering a question of B. Muckenhoupt in [8]) along with applications to
some classical operators. We now describe our results. Proofs are given in § 2
and § 3.

I§n ([81; p. 72), B. Muckenhoupt observed that the analogue of condition
(1.2),

(14) sup IZw(a, b)) I,0(a, )" = A4 < o0

ab>0

(where ¢ = ' ") is necessary for the weighted inequality

(1.5) (of
0

Ot 8

Lo f1Tw) ™ < C(f [1f1P0)""  for all f 20

00
but pointed out that (1.4) is no longer sufficient for (1.5) (see B.
Muckenhoupt [9] and also example 1 in § 4 below).

In order to derive additional necessary conditions for (1.5), we replace f
by fo in (1.5) and rewrite this inequality in the natural form

13y (:f :f [L(fo)1'w)" < C(Z ;f 170)'"  for all f>0,

which by duality is equivalent to

S ([ [P )" <C(f [ g* W) for all g>0.
0 0 00

If we now set f=yoax@n 804 g =Yg wxpo 0 (15) and (1.5)"
respectively and then restrict integration to the corresponding rectangle on
the left, we obtain the following necessary conditions for (1.5) with 4 = C:

b
(1.6) fy0)'w < A%[I,0(a, H)]¥"  for all a, b >0,
0

Oty B

(17 [ 3w o < AP [I3w(a, b)JP'Y  for all a, b> 0.
b

ne— §
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Our main result is

THEOREM 1. Suppose 1 <p<q< oo and that w and v are nonnegative
weights on (0, o).

(A) The strong type inequality (1.5) holds if and only if (1.4), (1.6) and (1.7)
hold.

(B) The weak type inequality

(18 HLf>A, <Ci9(f [ 7o) for all f>0 and A >0
00

holds if and only if (1.4) and (1.7) hold.

Examples are given in § 4 to show that (1.4) is not sufficient even for
(1.8) and that no two of the conditions (1.4), (1.6) and (1.7) are by themselves
sufficient for (1.5). In particular, we see that, unlike the case for | 1, the weak
and strong type inequalities for I, are not equivalent.

Remark 1. The analogue of this theorem for the adjoint operator I%
can easily be obtained as follows. Define f*(x, y) = x~ 2y~ 2f(x" 1, y~1) for
%,y>0, f20. Then I f(x,y) = I, (f*)(x™%, y™1) and it is easily verified
that the weight pair (wy, v;) satisfies (1.5), respectively (1.8), with I% in place
of I,, if and only if the pair (w,, v,) satisfies (1.5), respectively (1.8), where Wy
=w{ and o, = of. A similar comment applies to each of the mixed Hardy

operators T; f(x,y) = [ [ f and T,£(x. )= | |
0y x 0

We now indicate applications of Theorem 1 to the Fourier transform,
double Hilbert transform and the strong maximal function. The following
result of R. Kerman and the author relates a weighted inequality for the
Fourier transform to a weighted inequality for I, (cf. W. B. Jurkat and G.
Sampson [6], H. Heinig [4] and B. Muckenhoupt [10]). Let f denote the

‘Fourier transform of f in L.

Prorosrrion 1 (R. Kerman and E. Sawyer). Suppose w(x, y) and v(x, y)
are symmetric about the coordinate axes, w is decreasing and v increasing in
each variable separately on (0, 00)?, and #*w/6x 8y = 0 on (0, w)?. Then

(1.9) [IfPw<C [IfI?v  for all fin L}
Rr2

R2
if and only if

(sz)zw*<CT ngfo for allf;,o‘

0

(1.10)

o 8
o+ 8

=]

where w*(x, y) =x" 2y 2w(x~ 1, y~1).
A proof is sketched in § 3. Combining this Proposition with Theorem 1
(A) yields a set of necessary and sufficient conditions. for the weighted
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Fourier transform inequality, (1.9), in the case of “sectionally monotone”
weights. In particular, this recovers results of [12] for weights of the form
w(x, ¥) =|x"*|y|"%. As observed by R. Kerman, such results cannot be
obtained from [4], [6] or [10] since the nonincreasing rearrangement of such
w(x, y) may be infinite everywhere on (0, o).

In [11], B. Muckenhoupt and R. L. Wheeden showed how to obtain
two-weight inequalities for the Hilbert transform and the maximal function
on R from the weighted inequalities for the 1-dimensional Hardy operators
I, and I}. In particular, necessary and sufficient conditions were obtained for
weights satisfying suitable monotonicity or growth restrictions. Their
techniques work just as well for the double Hilbert transform and the strong
maximal function on R? with the 2-dimensional Hardy operators I,, I¥, T;
and T, (see Remark 1 for definitions) in place of Iy and I}¥. Theorem 1 and
Remark 1 then yield lists of sufficient conditions for the weighted double
Hilbert transform and strong maximal function inequalities. The theorems
are too long to state here (note that Remark 1 yields 3 conditions
corresponding to each of the 4 Hardy operators).

Our final application of Theorem 1 is to the g-averaging operator

xy xy

A, fx, ¥ =(f ja)—l { {fo, defined for f, ¢>0. An immediate corollary
00 00

of Theorem 1(A) is that A, is bounded on L*(s) (1 <p < o0) if and only if

(.11 { fUz0)7 P < ALyo(a, b)'"F for all a, b >0,
. a b '

Note that (1.11) is simply (1.4) with p =g and w = (I, 6) "7 ¢. Inequality (1.6)
is vacuous in this case and (1.7) is a consequence of (1.4). Of course, if ¢
is a product weight, ¢(x, y) = 0,(x)g,(y), then (1.11) is seen to hold by
performing the integrations on the left.

We close this introduction with an interesting property of the weight
pairs satisfying (1.5) that is not obvious from the characterization in Theorem
1 — namely that (1.5) depends only on the size of I¥w and I, 0.

PROPOSITION 2. Suppose 1 < p, ¢ < co and that the pair of weights (w,, v,) “

satisfies (15). If 3wy < 3w, and 1,0, < I,0, (0= v}~P), then (wy, vy) also
satisfies (1.5).

§ 2. Proof of Theorem 1. We have already shown that (1.6) and (1.7) are
necessary for (1.5). If I 0 (a, b) < oo, then (1.4) follows from (L.5) by setting
= X001 x(0.1» Testricting integration on the left to (a, o0) x(b, ), and then
dividing both sides by I, ¢ (a, b)!/?. If I,0(a, b) = oo, then there exists f=0

0
such that I, (fo)(a, b) = o0 and | JfPo < oo, and so (1.5) implies T ?w =0
00 a b

icm
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which yields (1.4). This argument also shows that (1.4) is necessary for the
weak type inequality (1.8). Finally, (1.8) is equivalent, by duality, to the
inequality in (1.5)" holding for all g =yx;, E a measurable subset of
(0, c0) ([16]; Ch. V, § 3). Thus (1.7) is necessary for (1.8) and this completes
the proof of the necessity results.

Conversely, suppose that (1.4), (1.6) and (1.7) hold. We show (1.5) by
establishing the following inequality: )

@10 [0 Nrw < CA[[170) " (FfUa Sy w) ™+ CAs ([ 170"
for all f satisfying

(22) f =0, f bounded, f has compact support contained in {I,o > 0},
{]fPv < oc0.

With this done, we obtain (1.5) as follows. If K =supp f is compact and
contained in {I,0 >0}, then we can find finitely many points
(& m), 1 <k <m, such that I,6(&,n) >0 for 1<k<m and KcH

= U [, ) x (1 00)]. Then {I;f> 0} is also contained in H and (1.4)
k=1
yields

m AP q/p
[{I, f> O}, <IHl, < X (m) =

=X
k=1

Thus we see that the left side of (2.1) is finite for f satisfying (2.2). For
convenience let a = ([ [(I; f)*W)"* and b = A(”fpv)l“’_ Then a? < C(a"™ b
+b% which implies either a <b or a?< 2Ca?" 'b, and so a < max {1, 2C} b.
This establishes (1.5) for f satisfying (2.2) and a limiting argument yields (1.5)
for all f>0.

It remains to show (2.1) for f satisfying (2.2). Fix such an f and let @,
= {I,f > 3*} (the base 3 plays a significant role in (2.11) below). We begin
with

(23) ff(lzf)“w <C, Z 3kq|9k+2"gk+31w-
k

To estimate |2, , — @3]y, we introduce rectangles as follows. Fix k for the
moment with Q,,, # @. Choose points (x¥, y¥), 1 <j< N =N, lying on
N

8Q, such that (x}, yj‘_ ,) lies on 8Q,., for 2<j< N and @, < 'U1 Sk
=

where S§% is the rectangle (x§, 0) x(Jf, ). We also define rectanglgs
Szf = (X?, xf+ 1) x(yf, yj"—l) fOI‘ 1 SJ < N and R"; = (0’ X;+ 1) X(Os yj)»
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R_’;=(x_‘;1 xf+1J><(J{’;4~1’ ,Vf) and T}‘=(x}c+1: OO)X(Y,’;s o) for 1j<N-1

Define y§ = x%.; = cv. See the diagram.

N

yk P —
3 a9,

k
X! x§ xk

kNow choose sets Ef = T* such that Ef ~ Ef = @ for j s i and such that
(j) Ej =(~Qk+z‘9k+3)ﬂ(u 7). Since Qer2= D3 €y = (U Tf)U
(U §%), 23) gives !
J
24) [fU2f¥w < C Y 3ME,+C Y 348 A (s y — Qs 3y = T+11.
ki ki
To estimate I, Jet D¥ = S%—Q, . 5. If (x, y) is in 8% M (Quy2— 244 3). then
3 L f(x, Y S I (b, W +15 f(xh, y:f—l)'i’Iz(XDkf)(x: )
]

which implies I, (xp f)(x, y) > 3% Thus
J

IS N (Rurz— Qera)ly <37 §§ L0 fjw =374 [{f 15w
D%

SIS o) <3 A ) s
A o

by hypothesis (1.7). Thus

@.5) 1< CA Y 340D ([ [ fr0)/7 sy
k,j Dk

<CAZ(f ! Vi u)""’)“"(kzj 3k| 5 )
D] ¥,

< CA(] 770" (1] [F 2]

since p < g and kzjx,,}‘ s% Xop-o4 43 S 3. We wish to show that the sum in

icm
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square brackets on the right side of (2.5) is dominated by C(I, f). We first
note that

(2.6) }; Lst <37*yg L2 f  for allk,

which is an immediate consequence of the following computation for 1> 1:

-1

Lif (x5, y}‘) = IZf(xj"a .V;f)'*‘ Z [sz(xj$+i+ 1» yf)—sz(fo, J’f)]
i=0
-1

= IZ.f(x_’i‘a y}‘)+ Z [sz(x}c-é-ii- 15 J’}c+i)'"]2f(xjf+i, y}°+a)]
i=0

= 3k+:g; (351 3% = (21+1) 3 > 3+ }: Tk, V)
Thus
§j3"“Xs} <§k: 3Dy g f by (260 < C(I ) L f=CULf),
and using this in (2.5) we obtain

@7 < CA([[£70) " (] fU friw) ™.

To estimate term I of (2.4), we will need the following consequence of
(1.4) and (1.6):

(2.8) [12 on) x (0. 01w < CAI, 0 (a, b)P for a, b >0/

o8
ot—; 8

To see (2.8), consider the integral on the left over the rectangles (0, a) x(0, b),
(a, ) x (b, ), (0, a)x(b, ) and (a, ) x(0, b) separately. The integrals
over the first two rectangles are dominated by A%I,a(a, b)¥? by (1.6) and
(1.4), respectively. The integrals over the last two rectangles are dominated by
CA%I,0(a, b)Y upon using (1.4) and appealing to the well-known
characterization of the weighted norm inequality for the one-dimensional
Hardy operator (see (1.1) and (1.2)). The straightforward details are left to the
reader. We write

2.9) . I=Y 34EY,=C Y |E§|w(JJf>q
k,j L)
rE

g [
C T B IR (g || 00

- k
Ry
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where go = f or g = fv?/". Unfortunately, since no two of the R¥ are disjoint,
the map h—(|RY; ! [ [ ho)y,), is not of weak type (1, ¢/p) with respect to the
k
R

measure assigning mass |EX,, [R}4 to the index pair (k, j). Thus we cannot use
the argument of ([14]; p. 6 and 7). Instead, we follow the proof of the
Marcinkiewicz interpolation theorem and exploit the special geometry of
the rectangles R¥ and their relationship to the function f.

For [ an integer, denote by I'; the set of pairs of indices (k, j) such that

|E¥,, >0 and

1 ‘
(2.10) 2t < ”ga, (k, j)eT,.
ok

J

Note that if |E¥, > 0, then |RY, is finite by (1.4) and positive since [[/ >0
"ok
R
. j
and [{fPv < oo. Fix I for the moment and let {U}}; be the maximal
rectangles in the collection {R¥}, perye Since I, f is bounded, every Rk with
(k,))e I' is contained in some Uj. While the rectangles {U!}; are not of
course disjoint, it is the case that the rectangles {U, are disjoint (for fixed ).

Here U! = R if Ul = R}, Indeed, if Xfe1 < X4y and ¥ < y¥ and if, say, k > 1,
then R% lies entirely above Rg. (If t > k, then R lies entirely to the right of
R%). To exploit this geometry we will need

_ 1
(2.11) 23 <TIT!|_ ‘[f go, for all I, i,

U!n{g>21“3)

icm
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Inequality (2.11) follows from the fact that if U!= R¥, then

(2.12) H.go' = fgf? Ilf(x;"+la yjf)—sz(XL‘, Y_,]E)_sz(x;‘+1= )’5S+1)
[ij R
i J

=313 3k =3k =1 (15> 22 |UY, by (210)
Rk

J

(this accounts for our use of the base 3 rather than 2 in the definition of Q).
We now compute that for a fixed I,

213) Y IEJRNE<Y. Y |EY. IR
th.jyely i, j);R}‘cvl!
< J] Ua ey o)

(since the Ef are disjoint and I, Oty 0) > |R¥, on E} if R¥ < U}
<cATy Ui by (2.8)

<cary (@[] g0 by 211)

i Tlng>2l-3)
< CA? (2—1 jj go_)q/p
g>213

since ¢ > p and the U! are disjoint. Combining (2.9) and (2.13) we have

(2.14) I<CY 2" ¥ |EfWIRf3 by (29)
1 (k.j)ely
<CAry 29270 ff go)” by (2.13)
! (ﬂ>21—3)
S CALY 2070 [ ggmai-3, go)'”  since g = p

1

< Ca'([[ g0 = Car(fsro)"

since y, 27"V y . 51~3, < C,g7"" for p > 1 and since g7 o = f7v. Inequalities
]

(2.4), (2.7) and (2.14) yield (2.1) for f satisfying (2.2), and the proof of part (A)
of Theorem 1 is complete. .
We now prove that (1.4) and (1.7) imply the weak type inequality (1.8).
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Suppose f satisfies (2.2). With - notation as above and

911 4,00
=supi|{lgl > A}[/% the weak L* “norm” of g, we have
A>0

I, f”iq,w(w) <C, S‘ip 3#Q s~ Qeisly
< Csup 3 3M|TH,+C sup 3. 34|85 A (s~ Qv )l
LI L]
=III+1V.

Since 3**' = [[f <3 [{f by (2.12), we have
&k 43
i j
m<Csupy ({17
k i ﬂ;‘

< Csup g (f | frof"\RY9P | TY,, . by Holder’s inequality
R%

< cA4( ”f"i'»)‘”” : by (1.4)

since g > p and since, for fixed k, the R are disjoint. Arguing as for (2.5)
above, we obtain
IV < CA([[£70)" (sup 34 3 |8¥,)"".
: k i
However, inequality (2.6) yields

34 Y Ik, < 34eD J Jm(Iz fw

&
-]

— 3 J (L f > tHdi+3410,),

3k
o

SISl g ) e +34 (24,
3k

__4

= qh_l'”Iz f”:q,oo(w)

and thus IV < CA([[f70)""|IL, flI"-1 . Altogether then

LY Ow) "

2 flg 0y < CA(f 170} N, £33 L, +CAR( [ £20)2

L9 ()

and (1.8) is now obtained using the argument following (2.2) above. This
completes the proof of Theorem 1.

icm® |
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§ 3. Proofs of Propositions. The key to Proposition 1 is a two-
dimensional partial analogue of an inequality of M. Jodeit and A.
Torchinsky ([5]; Theorem 4.6). Given f(x, y) measurable on R2, denote by
F(s, 1) the equimeasurable rearrangement of f on (0, 0)?> obtained by

PRt

rearranging first in the “x” variable and then the “y” variable, ie.
Js, )= (FJ*(@) where F,(y)=(f")*(s) and f”(x) =f(x, y).

Here g* denotes the usual nonincreasing rearrangement of g on (0, o) (see
e.g. [16]; Ch. V, § 3). Set Ug(x, y) =I,g(x~ ',y for x, y > 0.
Lemma (R. Kerman and E. Sawyer).

sT sT
3.1 JIIf € niPdédn < C [ [[Uf(x,y)]%dxdy, S, T>0,

00 00
Jor f in L(R®. Conversely, inequality (3.1) can be reversed (with a smaller
constant C) for f that are symmetric about the coordinate axes and decreasing
in each variable separately on (0, o).

Proof. The proof of this lemma is a reasonably straightforward
adaptation of arguments of W. B. Jurkat and G. Sampson in [6]. We sketch

1
only the main points. Let Dgy(x, y)=m X-5.8 () X-r.7y(¥). There are

positive constants a, ¢ such that I(Dus,urﬂ =Zc on (—al, aS) x(—aT, aT)
and so Plancherel’s theorem yields

aS al

(3.2 &1; t‘; firsc le(Dus‘u'rﬂzmz =C RIZIDI/S,I/T ik
S C [f{Dys,yr(x—u, y=v}Dyss,1yr(x—s, y—1)dxdy x
X1, 01 (5, )| dudv dsdt
=C [| Lyr(s—u, t—=0)| f (u, v) |f (s, 1)] dudv dsdt.

A result of F. Riesz ([13]), applied one variable at a time, shows that the
final integral in (3.2) is dominated by

C [ Lgr(s—u, t=v) f* (u, v} f* (s, t)dudvdsdt = C | (Dys,r*f)

R2

where f* is the symmetric (with respect to the coordinate axes)
rearrangement of |f| on R? taken first in the “x” variable and then in the “y”
variable. This in turn is dominated by

1S YT o o 1S w o 1T
[+ [ [ =T+I+1I+1V.
yr 18 O

¢
0

Ot 8
—_
)
-
=
2
=
*
o)
%
i
——
ey
+
Ey
—
+
[T
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Flementary estimates, using the fact that f decreases in each variable
separately, show that each of I, II, IIl and IV is dominated by a constant
ST

multiple of | {|UJ|*. For example
00

1/S yr = ST
1stLlsr b < (Uf?

ST

[ : 00
and
w0 2 ST
ns f j(’—’f-ﬁ-"—!ﬁ> dxdy:fj((]f)?.
1ys yr Y 00

Inequality (3.1) now follows easily. Conversely, the above inequalities can be
reversed for f symmetric about the axes and decreasing in each variable
separately on (0, o0)®. (For (3.2), use a product of Fejér kernels, Kgr(x, y)

S
(sm(x/ )> (sm(y/T)) in place of Dsy.) This completes our sketch of

x
the proof of the lemma.

Te obtain the implication (1.10)=>(1.9) of Proposition 1, we use
integration by parts and the lemma. Suppose w(x, y) is as in Proposition 1.
By a limiting argument, we may assume w(x, y) is compactly supported. (If
0e CP(R) satisfies 8(0)=1, 0<B(x)<1 and 0'(x) <0 for x>0, then
We(x, ¥) = 0(ex) 8 (ey) w(x, y) has compact support, satisfies the hypotheses of
Proposition 1 and increases monotonically to w(x, y) as ¢ — 0) By symmetry,

we may assume supp f < [0, ©0)? and estimate the integral

f j FPw = w]

(S, TYdSdT

(—}8
| ——
Ot

o, o

/]
0 o0 T
Sij[ J( f)zJ (S, TYdSdT
o 0 0
=CJJ(Uf)zw=Cj f(!zf')zw*
0 0 0 0
o] Jrce] fur
0o 0 0 0

icm
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The last line follows by (1.10) and because v is increasing in each variable
separately.

Conversely, the lemma and (1.9) yield (1.10) for all f(x, y) that decrease
in each variable separately on (0, c0)? in particular for f of the form f
=p " I¥(gw*), g = 0. But this in turn yields the dual of (1.10) as follows. Let
f—v’ll (gw*), g = 0. Then :

T T Usew o = [ gw* LI~ I (gw)]
00 )

Ot 8

<(

[orw) (] Juapiwe)”
o 00

o— 8

< Cliglizgm (| £20)"

= Cllgll 20, (] { [ @wHIP0™ )",

|
00
o0 a0
|
00
o0 oo
which implies [ [[I¥(gw*]*v™'<C
o0
equivalent by duality to (1.10).
We now turn to the proof of Proposition 2. If 1 <g <o, f20 is

bounded with compact support in (0, )%, and I$w; <Ifw,, then
integration by parts yields

Ot— 8

{ g*w* for all g=>0, which is
0

J‘ J-(sz)qwl =J J [ (sz)q:lfz“ﬁ
[ 0 0
<[ [[szr|rw= | [ @orw
0 0 [ O]

since (8%/@xdy)(I,f)? =0 for 1Sg<o and f20. A limiting argument

then yields
for all f> 0.

(33) U fYw, < j ? o fYws

o8
Ot 8

Similarly, I,0; < I, 0, implies

4

a0
U39y o1 < (j;g(ljg)”/az for ail g >0

(34

Ot 8
o= 8
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Combining (3.3) and the hypothesis that (w,, v,) satisfies (1.5) we obtain
”sz”m(wl) < C“f“muz) for all />0 and so by duality

(3.9) ||13‘9H,_p'(,,é_,,l) SClgllgppr-gy, for all g=0.

1
Here we have used the fact that L”(u'™") is the dual of L’'(u) under the
pairing <{f, g> = [[fg. From (34) and (3.5) we conclude that

13 gll < Cllgllyarys gy for all g >0
1

and duality now yields (1.5) for the pair (w,, v,). This completes the proof
of Proposition 2.

§ 4. Counterexamples. We give three examples here. The first is a pair of
weights (w, v) that satisfies Muckenhoupt’s condition (1.4) with p = g = 2 but
not the corresponding weak type inequality (1.8). The second example shows
that (1.4) and (1.7) are not sufficient for the strong type inequality (1.5).
Duality then shows that (1.4) and (1.6) are not sufficient for (1.5), and the
third example shows that (1.6) and (1.7) are insufficient.

ExampLe 1. Let N be a large positive integer and set

— —_— 3 i
o, y)z%(N-f-l x—}) ff x+y <N,
o if x+y>N,
w(x,y)=%1 1fN~<\.x+y<N+1,
0  otherwise.
Then with p =2 so that ¢ = v, we have
1 1 1 1
2 0(x, y) = - -
2 N+l-x—y N+l-x N+i<y N1
5 ‘

€—"
S N+l-x—y’
Iw(x, y) < \/§(N+1~—x-y)

for x+y < N and it follows easily that (1.4) holds with p =g = 2. Let f = (N

+1~x~y)o. Then for x+y = N and N/4 < x, y < 3N/4 we have I, f(x, y)

2> alogN where o is a positive constant independent of N 1argé. Thus

[{I; f > alogN}|, > N/2 while J{f?v=NlogN and so (1.8) with p = q=2

fails for sufficiently large N. :
ExAMPLE 2. Let 5

o(x, ) = 1. for xy<1,
Y=o for xp>1.
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Then with ¢ =v~! we have
fi <1,
@) Lo(x, ) ={" SN
1+logxy for xy=>1.
Now let w be such that I¥wl,oc =1, ie.
“2ym2 for xy <1,

(42) W(X, .V) = {2x—1y—1 (1 +10g xy)—S

for xy.> 1.
For N large set fy = oxjo,m2. Then
[{f}v=1+2logN,
[fU2f)?w > 2(logN)log (1 +1logN)

and so (1.5) fails (for p=g=2) for large N. However, (1.4) holds by
construction and (1.7) is easily verified using (4.1) and (4.2). Indeed,

T farwre =1 Taor®o
x ¥ x y
= T T(sr)’lo = T ? wo by (4.1) and (4.2)
x ¥y x y
< Tw=Iwx ».
x y

0 o0
ExampLe 3. Let w, o be such that [ {w= o =00 and suppw <

00
<(1,2)x(1,2) while suppo =(0,1)x(0,1). Then (1.6) and (1.7) hold
trivially but (1.4) fails with a=b = L.

o8
o 8
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Generalizations of Calderén-Zygmund operators
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Abstract. Calderén~Zygmund operatofs are introduced by R. Coifman and Y. Meyer to
treat systematically the classical Calderén-Zygmund singular integrals, commutators of
Calderén, and some classes of psendo-differential operators. In this note we generalize the
notion of Calderén-Zygmund operators and apply it to the study of, for example, weighted
norm inequalities for certain classes of pseudo-differential operators, treated by Coifman and
Meyer, and recently G. Bourdaud. We also refer to a recent work of David and Journé on the
L*-boundedness criterion for operators of the Calderén-Zygmund type.

1. Introduction. Calderén—Zygmund operators are introduced by
R. Coifman and Y. Meyer [5] to treat systematically the classical Calderén—
Zygmund singular integrals, the commutators of Calderén and some classes
of pseudo-dlfferentlal operators, etc., and are-further developed by Journé
[10]. They are used in many places, [3], [6], [7], [16], [17], etc. In this note
we introduce two classes of operators which are generalizations of Calderén—
Zygmund operators, and apply them to some classes of pseudo-differential
operators considered in [1], [5] and [13].

A Calderén-Zygmund operator defined by Coifman and Meyer, is as
follows: Let T be a bounded operator from the class #(R") of Schwartz
functions to its dual & (R"), satisfying the following two conditions.

(A-1) There exists C >0 such that for any fe C§(R")

1T Y2 <
(A-2) There exist a continuous function K(x, y) defined on Q= R"x
x R\{(x, y); x =y} and Cx > 0 such that
(L.1) for all (x, y)ef

IlfIILZ(.n)’

IK(x, Y| < Cxlx—=y"";
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