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the last inequality is thanks to (4.8), (4.9) and (1.2). Hence B. Levi’s theorem
yields (8.9).
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Fourier series and Hilbert transforms with
values in UMD Banach spaces

by

JOSE L. RUBIO DE FRANCIA (Madrid)

Abstract. Let B be a Banach space with the unconditional martingale differences property
and let T be the circle group. It is shown that if in addition B has an unconditional basis then
the Fourier series of fe I(T), p> 1, converges to f a.e.

§ 1. Introduction. The Banach spaces B for which the Hilbert transform
H: I - I? admits a bounded B-valued extension to L%, 1 <p < oo, were
recently characterized by a condition called {-convexity (see [4] and [2]). The
class of all such spaces is also denoted as UMD, due to the fact that the
unconditionality of martingale differences holds for B-valued random vari-
ables if and only if B is {-convex. .

It is natural to ask to which extent the most important estimates of
harmonic analysis carry over to the B-valued setting, Be UMD. Since the
rotation method still applies, the singular integral operators falling under the
scope of this method have B-valued extensions which are bounded in I5. A
different class of singular integral operators is considered in [3] but the proof
requires that the space Be UMD has an unconditional basis. With the same
restriction, we aim to extend here the pointwise convergence theorems for
Fourier series ([5] and [10]) to the B-valued setting. Thus, it is shown in
Section 3 that the Fourier series of felf(T), p > 1, converges to f(x) a.e,
and in Section 4, that the lacunar sequences of partial sum operators
converge to f(x) a.e. if fe H(T). These are exactly the same results which
hold for the scalar case. Finally, Section 5 contains an interesting stability
property of UMD spaces.

§ 2. Notation and basic lemmas. Throughout the paper, B will denote a
Banach space in the class UMD. The UMD-constant for B will be the least
C such that the inequality

FIAS ()5 dx < C* fIIf (il dx
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holds for every fel2(R), where H is the B-valued extension of the Hilbert
transform. We shall also assume that B has an unconditional basis, so that
the elements of B can be identified with sequences (b;);.y; then, a B-valued
function is a sequence of functions: f(x)=(f;j(x)en, and Hf(x)
= (B (3))sen-

We shall denote by Mf the Hardy-Littlewood maximal function of
felLl.(R") and, more generally, for 1 <r < oo, we shall write

M, (x) —Sup{lQl Jlf I'dy}w.

For all 1 < p < x, and for f = (f});ey € L (R"), the following inequality holds:

@1 JI75 (Yl x < C 10 el 4

where C, depends only on p and on the UMD-constant for B. When B = K,
1 < g < x, this was proved by Fefferman and Stein {8]; the more general B-
valued case is due to Bourgain [3]. It follows from the results for vector
valued singular integrals (see [1], [13]) that a weak type inequality holds in
the limiting case p =1 of (2.1). However, we are rather interested in the
following slight improvement of (2.1):

2.2. LeEMMA. Given p with 1 < p < ¢, there exists r > 1 depending only on p
and on the UMD-constant for B such that the operator

(.f} (x))_ieN g (Mrfj (x))jeN

is bounded in If(R").
Proof. Given f=(f);velf, we define
x) = (F;(x))en = Zo [2C, 17" (M™f; (x))sen
k=
where C, is the constant in (2.1) and M* denotes the kth iteration of the

operator M (with M° = Identity). It is obvious that the series in the right-hand
side converges in L, and

JIF ()1 dx < 27 {11 (x)l1§ dx.

On the other hand, Mf;(x) < 2C, F,(x) for every j, which means that each F;
is an 4, weight and therefore satisfies a reverse Holder inequality of order
r > 1 depending only on C, (see [7]). Thus, M, F;(x) < C} F;(x) for all je N,
and this completes the proof. '

The next tool that we shall need is the sharp maximal function of

icm°®
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Fefferman-Stein, which can also be defined for B-valued functions
fe Ik, s(RY in the obvious way:

1
S* () =sup— fl}f () —follgdx
xe0 |0 J :

where f, stands for the mean value of f over the cube Q. The basic result for
our purposes is only concerned with scalar valued functions f(x). It is the
following inequality which reflects in a very nice way the duality between H*
and BMO:

23. LeMMa. There exists an absolute constant C > 0 such that
[f f(x)g(x)dx|-< C[f*(x) P*g(x)dx

for all Schwartz functions g such that §(0) =0, and all feI?, p > 1, where
Prg(x)=sup{|P.xg(y): t >0, yeR" |x—y| <t} is the nontangential maxi-
mal Poisson integral of g.

See [15], Theorem 4.5, for a proof of this result.

On the other hand, for Banach space valued functions, the usual
estimates for the sharp maximal operator of a (smooth enough) singular
integral hold, namely:

24. LemMmA. Given a Banach space Ye UMD, and denoting by H the Hilbert
transform on Y-valued functions, for every r, 1 <r < oo, we have the estimate
HN* )< CM,(IfIlNx) ey (R)

where C, depends only on r and on the UMD-constant for Y.

The proof is exactly as in the scalar case (see [9]). We remark that it is
not necessary for Y to have an unconditional basis.

Finally, the space Hj(R) = Ly(R), which will appear in § 4, is defined in
terms of B-atoms in the usual way, where a B-atom is a function aeLj
supported in a bounded interval I = R and satisfying

laGalls <JI7% fa(ddx=0

Actually, this definition makes sense for arbitrary Banach spaces, but for the
class UMD we get something more:

2.5. LeMMA. fe HY(R) if and only if feLs(R) and Hfe Ly(R). Moreover:
A llakem ~ l|f”L,,(x)+||Hf||LB(n)

This was first pointed out by J. Garcia-Cuerva (oral communication).
The proof follows [6] with some minor modifications. An analogous result
holds for R", with the Hilbert transform replaced by the Riesz transforms.

7 ~ Studia Mathematica 81.1
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§ 3. Pointwise convergence of B-valued Fourier series. Let B be as
indicated in § 2. We denote by S,, the mth pgrtial sum operator of Fourier
series for complex valued functions, and by §,, its extension to functions f
= (f)e Ls(T) (where T~ [0, 1) is the 1-dimensional torus), which is given by

Suf () = T T (k) = (S ()jen-
We shall also consider the maximal partial sum operator:
= sup|S,, @ (x)| for complex valued functions ¢. Our main result is

$*¢(x)

3.1. TueoreM. For all f=(f)jnelp(T), 1 <p < o0, we have

(32 §8* 15 (el 42 < € FIIy Cyenl A
and
liin [I8nf ) =f Xz =0 (ae xeT).
Observe that sup IS, f (%)lls < |[(S*f;(x))jen][s so that (3.2) implies the

boundedness in L (T) of the maximal partial sum operator for B-valued
functions, and from this, the a.e. pointwise convergence follows by a standard
argument. The inequalities (3.2) were obtained for the special case B = I in
[12].

Proof of (3.2). It turns out to be formally easier to deal with partial
sum operators for the Fourier transform in R (though the problem of ae.
convergence is equivalent in both settings). Thus, for scalar functions
eel’(R), we define

R
Sro(x) = _IR P e*™dl = Tro(x)—T_r¢(x)

where
’I;((p(x) — erIRxH( =~ 2niR. )(x)

Thus, instead of S* we may as well consider

1
T* ¢ (x) = sup|Tz ¢ (x)| = sup~
R R T

dy
= 2niRy
pv. je PO ;

which is (the continuous analogue of) Carleson’s maximal operator. Now,
our first step consists in stablishing the inequality

(33) (T*9)* () < C, M, 0(x)

This was already stated in [13], but, for the sake of completeness, we shall
give a detailed proof, which is really an adaptation of the Fefferman-Stein

(1 <r <o)

icm
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argument in [9]. Since both sides of (3.3) are translation invariant, it suffices
to consider the point x=0. For every t>0, let ¢, = @y-2,2q, and
¢' = ¢—¢,. Then

t

1
(T*@)*(0) < 481113— JIT*¢(X) T* ¢ (0) dx

<d4sup=- ! { le* 0,00 dx-+ f IT* ¢ (9)— T* ¢ (O) dx}

-t -t

= 4sup(l,+1I".
>0
Now, if |x] <t, we have

: 1
[T* ¢ (x)— T* ¢' (0)] < sup—|p
R>0T

v. _[ e 2R g (y)( +—1—>dy’
y

l X

1
<z J lpI2/xy™*dy < —— — Me(0)

| >2t

»

so that

1
sup || < Mo (0)t™? [ |x|dx = nMo(0).
>0 2

Thus, we have correctly estimated the second term. For the first term, we
must use the Carleson-Hunt theorém ([5] and [10]) which asserts that

I1T* oll, < C,llell,
Then, for arbitrary r > 1,

(peL; 1 <r < o0).

1 .
I <5 1T ol (28)* 1
2t

1
sc,{—;; J |¢(x)rdx} <C M, 00

-2t

and the proof of (3.3) is complete.

To conclude the theorem, we shall use Lemmas 2.2 and 2.3. First of all,
we point out that every UMD-space is reflexive, and therefore, the dual B*
of B has an unconditional basis dual of the one fixed in B. Thus, we can also
view the elements of B* as sequences, and if b = (b))e B and b* = (b})e B*,
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the duality is given by
(b, b*) =3 b; b}
i

The duality between I and L., 1 < p < 0, can be expressed in the same
way. Now, we shall prove (3.2) for f= (f})jeve L(R) and with T* instead of
S*. Let g = (g)jen be an arbitrary element of the unit ball of L. (R) such that
ge ¥ (R) and §(0)=0 (such g are dense in the unit ball of L), so that

||(T*fj)je1v“L§ = S‘;P;I T*f;(x) g;(x)dx
< Csup ) [(T*f)* (x) P*g;(x)dx
g Jj

< C,sup [ M, f;(x) P*g; (x) dx
9 "7

where r > 1 can be chosen arbitrarily. We take it so that Lemma 2.2 holds
for our given p, and observe that P*g;(x) < CMg;(x) and that we are
allowed to use (2.1) for B*-valued functions, because the dual of a UMD-
space is again UMD. This gives us finally

IKT* Fsenlleg, < €M f)jenllg sup (Mg Drenlzg
Crop I )senll-

§ 4. Lacunary convergence in Hi We denote by Sy the partial sum
operators for the Fourier transform defined in § 3, and by § their B-valued
extensions:

-]
jsenanyf(x-y)dy
ny

Sef ()= J F@em=ds =

|¢|<R ~

(the last expression makes sense for every felIj(R), 1< p < ).

4.1. TueoreMm. For every feH}(R), we have

“4.2) {x: Skugllgzkf(X)lla > A} < CIIf G)lp+IAS (x)]5) dx

and as a consequence,

lim I18,f X)~f ()lls =0 (ae. xeR).

As before, only the maximal inequality needs to be proved, and for this,
we shall use two auxiliary results. First of all, we recall that every

icm
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UMD-space is B-convex, so that, in partlcular B has (Rademacher) cotype g
< oc. For this g,.we have

43. LemMma. Let \y be a Schwartz function in R such that §f (0) = 0, and write
(%) = 2*¢ (2t x) for each ke Z. Then, for every B-atom a(x) we have

0

(Y Wssa()g)dx < C.

k=—w

Proof. Let {r(f)}®, be Rademacher functions, te[0, 1], and set

L(x)= Zrk (¥ (x#0).

By the definition of cotype, the left-hand side of the inequality to be proved
is majorized by the cotype constant times

1 1
[ JIZre@ ¥ *a)||adedx = | [IIL *a()lpdxdt
RO &k o R

and the lemma will be proved if we show that

iLerdlp<C  O<

(C being also independent of the B-atom a(x)). But the kernel L, satisfies the
standard conditions for singular integrals:

ILEl<C (eD,
L <ClX™*  (xeR x#0),
L, (x—y) = Lx)| < ClylIx™2 (x| > 2[y])

(see [147), and therefore, the main theorem in [3] shows that convolution
with L, defines a bounded operator in I%(R), 1 < p < co. (This can also be
seen by the method used in Theorem 3.1, since (L, * ¢)* (x) < C, M, ¢ (x) for
all » > 1.) Thus, if I is the supporting interval of a(x) and its center is ¢, we
get

t< 1)

L% allof < Cllallgllxadl+ IZ | I (Le(x—y)—L(x~c))a(y) dy| dx
xé2l

<C/2+C™ | ly—cllx—c~2dxdy < Const
yel x¢21 )

and this ends the proof.

44. LemMA. For arbitrary numbers R; > 0, and functions fj€ Ly (R), we have
the inequality

”(ZHSij“B s < G I,
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where 1 <s< oo and ||'||,,, stands for the weak-L' “norm” of a scalar
function.

Proof. By the formula expressing Sy in terms of the Hilbert transform

(see .the proof of (3.2)), it is equivalent to prove the same inequality with

Af; instead of g f;. But (Hf)ey is the Hilbert transform of the function

5‘ f)ieNeL‘mB), and the lemma is therefore a consequence of two well-known
cts:

1*. The Hilbert transform acting on UMD-valued functions satisfies a
weak type (1, 1) inequality.

2", F(B) is a UMD-space whenever B is, and 1 <5 < 0.
Proof of (4.2). Take Schwartz functions ¢ and ¥ such that

s J1 when [¢ <173,
GRS NN

énd
PEO+PE =1 when |¢<1.

Then, for arbitrary functions feILL(R) we can write

Suf (%) = ‘Pk*f(x)‘f'gzk(‘/’k * f)(x),

where ¢y, Y, are defined as in Lemma 4.3, Therefore,

s‘ip“S(zkf Mz < CM (A1) )+ (18 e W % N (3)15)2.
k

The WL'-norm of the first term is majorized by C||f HL‘%’. For the second
term, we use Lemma 4.4 (with s = g) and then decompose fe H} into B-
atoms: f(x) =§/’Lja,(x), with YA < ClIflluj- Thus

j

[0S, T < C (S » £ () dx
k
<C, ; 144 f(; Wk a; (o)) /2 dx
< (by Lemma 43) < C|/fllu}. =

'It. is ev1:dent that Theorem 4.1 has an analogous formulation in the
periodic setting. We state it as a corollary.

45. CoRroLLARY. Let féL},(T) be a function whose Fouri ies i, {
\ ier series is Iyt
type, ie. f(k)=0 for all k < 0. Then P of analytic

2N
l}x:r; k‘éo "l k) =f(x) (ae xeT).
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The arguments that we have used are very close to those of classical
Littlewood-Paley theory. Without going into the details, let us merely state
what one can obtain in the vector valued setting as a substitute for the
standard results for scalar functions:

A1l ~ lI(IZA S/, (1 <p<oo)

where 4 is the family of dyadic intervals in R and (S;f) =7y;. Since S; can
be easily written in terms of the Hilbert transform, we remark that the
partial sum operators §; make sense and are uniformly bounded in L5(R),
1<p<co.

4.6. THEOREM. Let B be of (Rademacher) type p >1 and cotype q < co.
Then, for every fe Lg(R), 1 <r < co,

I(IZA WSLAIB) ) < 1Ay < C (X 1SLA11R) 7l
€. Ied

Cr

and both inequalities are best possible in the sense that the first one implies that B
has cotype q and the second one implies that B has type p.

A similar result holds for R". .

§5. A stability property of the class UMD. The method of proof of
Theorem 3.1 can be used to find a procedure to-obtain new UMD spaces. We
have already mentioned the fact that, if Be UMD, then also I(B)e UMD for 1
< s < . When B has an unconditional basis (or is a lattice), and Y is an
arbitrary Banach space, one can also define the space .

B(Y) = ‘{(}’j)jeN5 (”yj”l’)]sNeB}

with the natural norm. When Y is a Hilbert space, it follows from
Grothendieck’s fundamental inequality (see [11]) that B(Y)e UMD. The
same turns out to be true for an arbitrary ¥ e UMD and, more generally, we
can state the following

51. Tueorem. Let (Y}, be a sequence of UMD Banach spaces with
uniformly bounded UMD-constants, and let B be, as in § 2, another UMD-
space with an unconditional basis. Define the space

]
Y=B(@Y)
=1
which consists of all sequences y = ()jen, With y;€ Yy, such that ([yjlly )jen € B,
the norm in Y being

. II¥lly = ||(”yj“y3)jswns-
Then Ye UMD.
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Such a statement was conjectured to the author by J. Bourgain during
the Colloque Laurent Schwartz, 1983, and an independent, somewhat differ-
ent, proof has been simultaneously found by Bourgain himself.

Proof. A function FeL}(R) is a sequence F = (F),,y With F; eLzyj(R)
and

I1F122 = {F00F5 Oy sen |} 72

We shall use the same notation, H, to indicate the Yj-valued Hilbert
transform for all je N. We shall also define

HF (%) = (HF;())jen

and try to prove that this is a bounded operator in I2. Let f; be the
nonnegative L* tunctions f;(x) = HHF,(x)HYj, jeN. Then,

”I?F”L,% = [I(f)senllg = sup}. [ £;(x) g;(x)dx
g

where the “sup” is taken over all g =(g;);v€ L%+ of unit morm, such that
gieL(R), 3;(0) =0. We apply Lemma 2.4 to get

[ (9 <2(HF)* () < C, M, (IF Iy ) (%)

for every r > 1, C, being independent of j due to the uniform boundedness of
the UMD-constants for Y,. Then, Lemma 2.3 gives

IHFl2 < C,sup {3 M, (IFlly ) (x) Mg;(x) dx
g J

< CHTIM, Q1F 1y ) (9)sen dix} 112

Finally, we take r close enough to 1 so that Lemma 2.2 applies, and it allows
us to drop the operator M, in the last expression by suitably enlarging the
constant C;. This ends the proof.

As a final remark, let me mention that the results of Sections 3 and 4
are probably true for arbitrary Be UMD. The restriction which consists in
assuming the existence of unconditional basis in B is due to the method of
proof, and a different approach should be found in order to get rid of such a
restriction in our results as well as in those of [3].
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