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On the (C, a >0, § > Oy-summability of
double orthogonal series

by

F. MORICZ (Bloomington)

Abstract. The classical coefficient test for the (C, « > 0)-summability of single orthogonal
series is due to Men’shov (1926) and Kaczmarz (1927) for « = 1, and to Zygmund (1927) for every
o> 0. The present author has already extended the Men’shov—Kaczmarz theorem for double
orthogonal series in {6] giving a coefficient test for the (C, 1, 1)-summability. The main purpose of
this paper is to supply the corresponding extension of the Zygmund theorem for double orthogonal
series. This yields a coefficient test for the (C, « > 0, § > 0)-summability. In addition, the problem of
(C, 2> 0, B = 0)summability of double orthogonal series is also dealt with.

1. Introduction. Let (X, &, p) be an arbitrary positive measure space and
{(pig(x): Ii, k=0, 1,...} an orthonormal system on X. We consider the double

orthogonal series
2] L]
(1.1) Z Z Ay P (%),
i=0 k=0
where {a,: i, k=0,1,...} is a sequence of real numbers for which
) o
(1.2) S Y oaf<oo.
i=0 k=0

By the well-known Riesz—Fischer theorem, there exists a function f (x)e I?
= I}(X, &, p) such that the rectangular partial sums

Sypn (X) = i i g op(x) (mn=0,1,..)

i=0 k=0

of series (1.1) converge to f(x) in the I?-metric:
[[smn()=f ()]*dp(x)—0 as min(m, n) - co.

Here and in the sequel, the integrals are taken over the entire space X.
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Let o ‘and p be real numbers, « > —1 and f > ~1. We remind that the
(C, «, B)-means of series (1.1) are defined as follows:

1 m n
Tt (%) = A2t AR su (%)
( AanEi;o kgo ,
1 m n
T 2 2 Ani Al anop(x)  (myon=0,1,..),
m*Ini=0 k=0

where

n =(m+a)= %(oc+1)(oc+2)...(o¢+m)/m! for m=1,2,...,

m 1 for m=0

(see, e.g. [10], p. 77).
The casea = f = 0 gives back the rectangular partial sums S (%) = 639(x).
The case « = f = 1 provides the first arithmetic means with respect to m and n:

1 m n
T (X) = ("—"——m+ D(n+1) igo kgosik )

m n i k
= Z k20(1—m+]-)(1~n-+-1)a.-k(m(x)-
i=0 k= :

Furthermore, the case « = 1 and § = 0 provides the first arithmetic means with
respect to m:

1 m m n i
a,t‘}(X)=mi=OS.~n(X) =3 X (lkﬁ-}-—I)aik(pm(x)’

i=0 k=0

while the case « = 0 and 8 = 1 provides the first arithmetic means with respect
to n.

Before stating the preliminary results, we make the following convention.
Given a double sequence { f,,,(x): m, n =0, 1,.. .} of functions in I and a double
sequence {4,,} of positive numbers, we write

Jun(X) = 04 {2} ae.  as  min(m, n) — oo

(or max(m, n) — oo, or m— oo, or n— o)

S s =0 ae.  as  min(m, n) - oo
(or max(m, n) - oo, or m— o0, or n—» 00)
and, in addition, there exists a function F (x)e 2 such that

Su}po men (x)‘/j'mn <F (x) d.e.
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2. Preliminary results. The extension of the famous Rademacher-
Men’shov theorem proved by a number of authors (see, e.g. [1], [5], etc.) reads
as follows.

THEOREM A. If

@) S ¥ ahllog(i+2)1 [logk+2T? < oo,

i=0 k=0
then

Sun(¥)=f(x) = 0,{1} ae. as min(m, n) > oo.

In this paper the logarithms are to the base 2.

This theorem is exact in the sense that log (¢ +2) cannot be replaced in it by
any sequence ¢(t) tending to oo slower as t — oo (cf. [8]).

The convergence behavior improves when considering oLl (x) instead of
Sun(x). The following extension of the Men'shov—Kaczmarz theorem was
proved in [6].

TueOREM B. If
(2.2) > ¥ ah[loglog(i+4)]? [loglog{k+4)]? < oo,

i=0 k=0
then
Oar(X)—f(x) =0,{1} ae as min(m, n) - 0.

It was pointed out by Fedulov [3] that Theorem B is the best possible in the
same sense as Theorem A is. )

The coefficient test that ensures the a.e. convergence of ¢32(x) lies between
(2.1) and (2.2). (See again [6].)

TueoreMm C. If

(2.3) § i af [loglog (i+4)]* [log (k+2)]* < oo,

=0 k=0

then
Omn(X)=f(9) =0, {1} ae as min(m, n) - co.

3. Main results, Our first goal is to prove that condition (2.2) is also sgfﬁcient
for the a.e. (C, a, f)-summability of series (1.1) for all & > Q, 'ﬂ > 0. Besides, we
show that condition (2.3) ensures the a.e. (C, o, 0)-summability for every o > 0.

THEOREM 1. If o >0 and condition (2.3) is satisfied, then

(3.1) 20 (x)—f(x) =0, {1} ae as min(m, n)- 0.

6 ~ Studis Mathematica 81,1
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Tueorem 2. If o >0, >0 and condition (2.2) is satisfied, then

(3.2) oB()—f(x)=0:{1} ae as min(m, n)= 0.

These two theorems can be considered the extension of the well-known
result of Zygmund [9] from single orthogonal series to double ones.

The following two theorems play a key role in the proofs of Theorems 1
and 2.

TueoreM 3. If a > % and the condition

i af [log(k+2)]* < oo

i=0 k=0

s

(33)

i

is satisfied, then

M 1/2
9= {1 5 (0 0-aB @] =oult) ae s Mo
m=0

uniformly in n. ‘ )
TuroreMm 4. If « > 3%, B >3 and the condition

i f a2 [log log (max (i, k)+4)]* < o

i=0 k=0
is satisfied, then
1 M N gt ) o] 12
af =y % VAT (X) — o (X }
ehan (x) {(M+ DD 2o Lo
=0,{1} ae as min(M, N)— 0.

On the other hand, taking Theorems 1, 2, 3 and 4 for granted, we can dedu'ce
two interesting theorems on the so-called strong (C, o, B)-summability of series

(1.1).
THEOREM 5. If « >4 and condition (23) is satisfied, then

1T M 12 .
—— ot 0 (%)~ 2}» =0,{1} aeas min(M,n) 0.
{MHEOE (=) )
Treorem 6. If o >4, B> % and condition (2.2) is satisfied, then

1 M N 1/2 ‘
o L, L 0@l =onl) ae

as  min(M, N) - oo.

@ ©
F. Méricz Im
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For example, Theorem 6 immediately follows from Theorems 2 and 4 if we
take into account that

M N
{2 X Lm0 —f (]2}

m=0 n=0
M N M N
NI R R A PN C- AT R G G
m=0 n= m=0 n=0 '
We note that Theorem 6 in the special case o = f = 1 was proved in [7]
using another method.

4. Auxiliary results. In this section we treat the (C, «, B)-means of the
numerical series

o0 o0
Z Z Uik
i=0 k=0

the u, are real numbers, defined by

1 m n
o =m Eo k;ﬁA‘,’,,_,Aﬁ_,,u,k mn=0,1,...; a>—1, B> —1).
We remind some identities and inequalities well-known in the literature,
For all o and y,

1) AT S AL
i=0

(see, e.g. [10], p. 77, formula (1.10)). Hence the representations

1 & i e
afn:v'o = A ‘Z Arn—t Af 0,?"0
m =0
and
1 m n _ 1 e .
42 O =y Y Y AN AV AT AL 0
Am An i=0 k=0

easily follow (cf. the corresponding formula for single series in [10], p. 78, the first
formula at the top). ‘

We often need the following estimate, as well. There exist two positive
constants C; and C, such that

A

43) <t

<C, m=12,...;a>-1)
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(see, e.g. [2], p. 69, formula (25), or [10], p. 77, formula (1.18)). This helps us to
obtain the following two Tauberian type results.

LemMma 1. If a> —3, >0 and

min{M, n) - oo,

M+1 Z [¢%0]* >0 as
m=0

then

g 2te0 50 as min(M, n)— .

Furthermore, if

Z[ W02 < B (M,n=0,1,..)

M+1

with a positive number B, then there exists a constant C depending only ono and &
such that

%512+ < CB (M, n=0,1,..)).

LemMa 2. If a> —%, B> —%, ¢>0,n>0 and
M N

4.4 — 021> -0 as min(M, N) - co,
4 (M +1)( N+1),,,Z_:o"§:o[ A ( )

then

(4.5) aiHAeRt 2 0 g5 min(M, N) - co.

Furthermore, if

M N
- £12 < B2 =0,1,...
(M+1) (N+1) g ;W"] B M AN=01..)

with a positive number B, then there exists a constant C depending only on
o, B, & and n such that

lo.ai‘+N1/2+z.ﬂ+1/2+u| < CB (M, N =0, 1,’”)_

The corresponding result for single series was established by Zygmund [9],
pp. 360-361. Keeping his proof in mind, the proofs of Lemmas 1 and 2 are
routines. For the sake of completeness, we show here how condition (4.4) implies
statement (4.5). To this end, by (4.2),

1 M

N

—_ “1/248 A~1/2+n Ja AP Lof

—Ai‘+1/2+a'A%+1/2+” ZO ZOAM*m AN-—n AmAnO'fnn.
m=0 n=

at1/2+ef-+1/2+
UMN/ B+1/2+7
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Hence, using the Cauchy inequality,

1

+1/2+e,f+1/2+n
I3 | SWW

M N
(X X [omP}?x
(Z [AM1/2+zAa]2 Z [A IIZ+ﬂAﬁ]2}1/2

Taking into account (4.1), (4.3) and (4.4), it is not hard to deduce that

1
+1/2+e,B+1/2+n __
IUaMN ", - 0{(M+1)a+1/2+a(N+ 1)ﬂ+1l2+n} X

xo {(M+ 12 (N+ 1Y 0 (M + 1P (N + 1P+ =0 {1}
as min(M, N)— o0,
which is (4.5) to be proved.

We will make use of the following representations, too:

m

- 1 d
@6 ot —oih = 52 2 At Al iu @>0,>-1)
Az nz 1 k=0
and
@47 oyt —o“’,‘,,;"”—tr“”’“ +0%
A% AR Lk .

CZﬁAa '”21 kzl klulk (d>0,ﬁ>0}

Both representations follow from the identities
At =—2 4z and Az =2F0T e
a+m

Finally, we present the following two useful inequalities:

oo a—1"72
(4.8) ZA[A;I"] =o{%} (i=1,2,...;a>1/2
and

© a 2
(4.9) Z%P—AA";‘J =0{1} (=1,2,...;a>0).

The first inequality is well-known in the literature (see, e.g. [2], p. 110), while the
second one can be proved in the following way. We start with the identity

A= Ay = Ay
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(see, eg. [10], p. 77, formula (1.12)). This.immediately implies

r o4

j=m—i+1

(i=1,2,....,m).

A=Ay =
By (4.3) there exists a constant C, depending on o, such that

A% <:£ m g Cm"-—(m-—l)

A;\ﬂ. . = m

01—
= m JjEm—it+1

1 we trivially have

iy i
1—(1———) <—,
m m

1, using a convexity argument,

Since for 0 <a <

while for o« >

*—(m—i)  am*”
m*—(m )<

m* = m m
we can infer that
I_Af,:.f =O%L} i=1,2,....m;m=1,2,...;a>0).
A5 m
Now,
° 1 { A%, 2_0{1}§ i2 —om
m};i; A ] Lom? v

proving (4.9).

5. Proof of Theorem 1. The proof is done on the basis of Theorem 3, which
will be proved in Section 7, and of the following consequence of Lemma 1.

CoroLLARY 1. If 2> —4, ¢ >0 and
(5.1) {M1+1 Z [0 (x)—f (x)]? } =0,{1} ae as min(M, n)— oo,
then

(5.2 min(M, n) — co.

i 2400 () f (%) = 0, {1}
In fact, setting
Ugo = Ao Poo(¥)—f(x)  and  uy = ay @y (%)

Corollary 1 immediately follows from Lemma 1.

ae. as

2 +k? > 0),

icm
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After these preliminaries, the proof of (3.1) is quite simple. By Theorem
C, (3.1) holds for « = 1. Hence, by Theorem 3, we obtain (5.1) for o = 0.
Thus, by Corollary 1, we get (5.2) for @ = 0. Applying again Theorem 3, we
find (5.1) for a = —3+¢. Hence, again by Corollary 1, we obtain (5.2) for «
= 2¢. Since & > 0 is arbitrary, this is equivalent to (3.1).

6. Proof of Theorem 2. The proof relies on Theorem 4 which will be
proved in Section 8, and on the following consequence of Lemma 2.

CorOLLARY 2. If ¢ > —3, B> ~%, 6>0, >0 and

: 1
(6.1) {m MEO ’:1: [o%, () —f (%)] } =0,{1} ae

as  min(M, N) - o,
then .
(6.2) offyt2reEr 240 _f(x) =0, {1} ae as min(M, N)> 0.

Now, by Theorem B, relation (3.2) holds for « = f=1. Hence, by
Theorem 4, we get (6.1) for & = § = 0. Thus, by Corollary 2, we obtain (6.2)
for « = § = 0. Using again Theorem 4, we find (6.1) for « = —3+¢ and B
= —3+n. Hence, by Corollary 2, we get (6.2) for « = 2¢ and B = 2n. Since &
and 7 are arbitrary positive numbers, this is equivalent to (3.2) to be proved.

7. Proof of Theorem 3. The proof is made in four steps.

(i) If M is a positive integer, then 2~ < M < 2* with some nonnega-
tive integer p. (For simplicity in notation, we neglect the case M = 0.) Since

\/—62P n(x)a

i (%) <

it is enough to prove that

pa() =0,{1} ae. as p— 0,
uniformly in n.

(i) We can perform one more reduction. It is clear that

p—1 1 ar+1
71 [85,0P= % 2’""”'2,” Y [ ) -1

r=-2 m=2"+1
where we make the following convention: for r = —2 and —1 by 2" we mean
—1 and 0, respectively. Also, if we prove that

apt1 1/2
72 152, (x) = {5,; Y [o% "°(x)—ai;2(x)]‘§
m=2P+1
=0,{1} ae as p- oo,

uniformly in n, then we are done. For convenience, we assume that p > 0
from now on.
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(iti) First, we prove (7.2) for the special case n = 2%

(7.3) 8% o) =0,{1} ae as p-— oo,

uniformly in g, g2 —1.
To this effect, by (4.6) and the Cauchy inequality,

1 2rt+1 m Azt 2
(7‘4) p 2'1 (x)]z 2 Z Z Z — latk (sz (X)J
m=2p+1li=1k=0%
1 2ptl 4y mo2ttl a-y "2
< — (t+3) [ iy @ (x)J X
L %’4-1 ‘“2‘2 ‘21 k= §+1 ady e
q-1 1
X NIV
,Z 2(t+3)?
with the same agreement concerning 2' for t = —2 and —1 as we made after,
(7.1). This inequality motivates the following definition:
@ t+32 2p*1 m  2ft1 zt—l 2
Pe-3 255 3 |53 Enas |
p=01t=-2 m=2P+1 Li=1 p=2t4y An

If the termwise integrated series is finite, then B. Levi’s theorem implies
F(x)eI? and thus relation (7.3) is proved. But this is the case as the
following computation shows:

WL w2 T o p
r By |Eifeg
m

m=2P+1 =1 g=2t4y

JPOam=3 ¥ =5

a—-1

A1 .
——f“:iJ i a? [log 8 (k+1)]?

N
[}
118
118

m Aa-—l"z
¥ [ "‘“‘J iaf [log 8 (k+1)]?

3
=2 k=01i=1 Am

W 0 Arx:l 1R
2y, Z iaf [log8(k+1)1* ¥ | =2 | < oo,
i=1 k=0 m=i Am
the last series being finite due to (4.8) and (3.3).

(iv) Now, let 2% < n < 29*! with some g > 1. Since

1 2p+1 m n Aa-—l 1/2
lézn(x)ﬁ‘é,,_zq(x)ﬂ—z; Y [2 by A= wlk(f)ik(x)J}

m=2P+1 LI=1 k=2q44 *m

icm
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we can estimate as follows:

(7.5) max

28<ns24tl

185 (%) < 167 14 (1) 4 M2, (),
where

) . 1 ettt S ot 11 12
[Mpq (x)] = —2— Z Z Z A lalk Pix ('x)

+1
2P+12q<"<2q =1 k=244

Applying the Rademacher—Men shov inequality (see [2], p. 79 or [4], Theorem
3) separately for each fixed m, we get

1 2p+1 m 2a+1 [ 4z-1 12
@ [IMe P du( <5 L (o2t Y Y | Se J o
S m=2P+1 =1 g=20+1 An
Consequently, again by (4.8) and (3.3),
o 3 X JIM3 (017 du(x)
p=0g=1
o © 1 2p+1 m 29+1 A—I 2
<EE5 T wrrf T [ Teg
p=0g=1 m=2P+1 i=1 go0q4q m
@ © 1 2p+1 A%~ 1
SLY2x% X Z[ o J i* af, [log 2]
P=0 k=3 poapyy i
0 © m Aa«l
<2y ¥ Z[ ;'Tza,k[longjz
m=2 k=3 i=1 Am
0 0 o) Ad—]¢
<2y Y iai[log2k]* Y [—'-";1]1 < .
i=1 k=3 m=i Am
Hence B. Levi’s theorem implies that
(7.6) M, (x) =0,{1} ae as max(p,q)— .
Combining (7.3), (7.5) and (7.6) we find (7.2) to be proved.
8. Proof of Theorem 4. By the triangle inequality,
1
0.:"'10 1 0,4 1,8 X , -1 +
() < { eSS mzo ng [ (=05 (9 - 0%~ (9
. ) 1/2 1 s g , 1/2
——— G
+0%, (9] } +{(M+1)(N+1),.Zo PHCRCRAAC) } +
1 . ﬂ 2 1/2
. — ,8—
o L, 5, e-sor|

= Leifn () + 2e3in () + e5in ().
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Thus, Theorem 4 will be proved by Propositions 1 and 2 below. is satisfied, then
! 3 dition (1.2) is satisfied, then
Provostmon L If a >4, >4 and condition (12) is satish (33) W) =0, (1} ae.as Moo,
I (x) =0, {1} ae as max(M, N) - co. :
Proof of Proposition 1. Let 2! <M <?2? and 21-1 o N g2 uniformly in N.
The symmetric counterpart of Proposition 2 reads as follows: If & > 0,

with certain nonnegative integers p and g. The cases M =0 or N=0 are
neglected here, simply because of difficulties in notation. Since B >4% and the condition

of ©
) <2500 Y af[loglog(i+4)]* < w0

0 k=0

Ms

it is enough to prove ;

8.1) 2M,(x) o, {1} ae. as max(p, q) — 0. is satisfied, then

*iv(¥) =0.{1} ae as No-oo,

By representation (4.7),
uniformly in M.

([1 zpzq(szd#( f-1-12 ~ Proof of Proposition 2. Since
1 2P m n —1 An:k 212 2
= - L k 2,08 2pap
T2 2P+ 1)(2°+1) mzl nzl zzi k21[ A e . Cemn() <2 €55 20(X)

for 2271 < M < 2% and 227! < N < 27 with p, ¢ > O, instead of (8.3) we have

1 §§22 ¥ A 2§ AP-2 P only to prove
va 52 1]

TT—'—T—' o
B (P +1) (27 +1) & 5 n=k (8.4) % a0 =0.{1} ae.as po oo,
Taking into account inequality (4.8), hence uniformly in g.
, 01) ¥ 2 - We can again insert one more simplifying step. Clearly,
1
I[ p.22 ()] dpi(x) = 5758 Zl kzl’ i - 3 e e
[ (x)] = 2r+t—p—q+4x
Performing double summation yields 21 ,=Z_2 ,:2.2
© o 1 ar+1 at+1 ~
Z Z 2p zq(x)]zd,u(x) X2r+22:+z z Y (o () — o3 (0]
p=04g=0 m=2"+1 n=20+1
R | 2P 24 . .
=0} Y ¥ - Y Y ikaj with the same convention concerning 2" and 2* for r, t = —2 and —1 as we
p=0 g=02" 202 (= made after (7.1). Thus, in order to prove (8.4) it is sufficient to prove
L4 0 1 l o o
=0{l) ¥ ¥ ikai ¥ = %=0{1} 3 ¥ ak <. 1 2ptl et "
CEE Y s i=1 £ 85 “e:z(x)={ﬁ L X [om-od (x)J’} =o.{1}
m=2P+1 p=29+1

The application of B. Levi’s theorem provides (8.1) to be proved.
"' | ProPOSITION 2. If @ >4, B> 0 and the 'condition ac.as  p-oo,

! uniformly in g. Here, again for the sake of simplicity in notation, we assum
(8.2) }: Z ai[loglog(k+4)1* < o that p, > 0. plicity n, e

i=0 k=0


GUEST


92 F. Méricz

Using representation (4.6, we can split “e3(x) into three parts as
follows:
2p+1 m 29 a- 1 1/2
43;5(X)<%2 ¥ {Z yoen A"‘ Liay on x)J % +
m=2pp1ti=1 k=0

2q+1

1 2pt1 m n A;‘n:% 2)1/2
+%'— ) > {Z Z aA":l"iaik(pik(x)J} +

2728 m=2P+1 n=24+1 Li=1 p=20+41
A/l 2)1/2
A )wm ou(x )J }

1 2pt+1 24+1 m n Aac 1
+%.2—‘;EE z Z [izl kzl adn

m=2P+1 n=29+1

=16% 1 (%) + 205, () + €35 (x),
where 15%,(x) was already defined in (7.2) (as to the representation of
16 4(x) see the first equality in (7.4)), while 25%,(x) and & (x) are first

mtroduced here. On the basis of this decomposmon the next th.ree lemmas
will complete the proof of (8.5) and that of Proposition 2.

LemMa 3. If & >4 and condition (8.2) is satisfied, then
(8.6) léz,zq(x) =o0,{1} ae as p-oo,
uniformly in gq.

Proof. The statement of Lemma 3 is an easy consequence of (7.2). To
see this, we set

at+1
ag={Y a}"”? @(=01,.;t=-2-1,0,..)
k=2'+1
and
gt+1
> auc(/’xk(x) it af#0,
' oF (x) = “"k 241 N
<P,-,2r+x(x) if af=0

(keeping in mind the convention made after (7.1)). Obviously, [} (x):
i=0,1,...;t=-2,-1,0,...} is an orthonormal system and by (8.2)

i Z [a}]? [log (t+4)]* < co.

i=01=~12
So we can apply Theorem 3 and obtain (7.2) which in'ithis case says

8.7 42, (x)=0,{l} ae as p- oo,

icm°
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uniformly in g, where

(8.8)

IAu (x) {21

m=2P+1

q

Z

i=1t=-2

2
lau o; (X):, }

By this, (8.7) is equivalent to (8.6) to be proved.
Lemma 4. If o« >3 and condition (1.2) is satisfied, then

Zazq(x) =0y {I}

5(1

pzq+1

ae as max(p, g) = ©.

Proof. It is fairly simple. By (4.8) and (1.2),

o« 3 ZO J 283 ()1 du(x)

p=0 g=

ap¥1

z

2q+1

DI VD)

n=20+1 =1 p=2041
29+1

2q+1 m

IIEDNED)

m

|

@

n

2
i)

Applying B. Levi’s theorem, we get (8.8) to be proved.
Lemma S. If « >4, B >0 and condition (1.2) is satisfied, then

(8.9)

Seh(x) = 0. {1}

ae. as

Azt
%

AP
A%, J !
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Proof. An easy calculation gives that
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the last inequality is thanks to (4.8), (4.9) and (1.2). Hence B. Levi’s theorem
yields (8.9).
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Fourier series and Hilbert transforms with
values in UMD Banach spaces

by

JOSE L. RUBIO DE FRANCIA (Madrid)

Abstract. Let B be a Banach space with the unconditional martingale differences property
and let T be the circle group. It is shown that if in addition B has an unconditional basis then
the Fourier series of fe I(T), p> 1, converges to f a.e.

§ 1. Introduction. The Banach spaces B for which the Hilbert transform
H: I - I? admits a bounded B-valued extension to L%, 1 <p < oo, were
recently characterized by a condition called {-convexity (see [4] and [2]). The
class of all such spaces is also denoted as UMD, due to the fact that the
unconditionality of martingale differences holds for B-valued random vari-
ables if and only if B is {-convex. .

It is natural to ask to which extent the most important estimates of
harmonic analysis carry over to the B-valued setting, Be UMD. Since the
rotation method still applies, the singular integral operators falling under the
scope of this method have B-valued extensions which are bounded in I5. A
different class of singular integral operators is considered in [3] but the proof
requires that the space Be UMD has an unconditional basis. With the same
restriction, we aim to extend here the pointwise convergence theorems for
Fourier series ([5] and [10]) to the B-valued setting. Thus, it is shown in
Section 3 that the Fourier series of felf(T), p > 1, converges to f(x) a.e,
and in Section 4, that the lacunar sequences of partial sum operators
converge to f(x) a.e. if fe H(T). These are exactly the same results which
hold for the scalar case. Finally, Section 5 contains an interesting stability
property of UMD spaces.

§ 2. Notation and basic lemmas. Throughout the paper, B will denote a
Banach space in the class UMD. The UMD-constant for B will be the least
C such that the inequality

FIAS ()5 dx < C* fIIf (il dx
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