On the capacity of a continuum with a non-dense orbit under a hyperbolic toral automorphism

by

MARIUSZ URBAŃSKI (Toruń)

Abstract. In this paper we compute an upper and lower estimation for the capacity of a continuum (connected compact set) lying in the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ whose orbit under a hyperbolic toral automorphism is not dense in \mathbb{T}. Also estimations of capacity in Poincaré’s sense are considered.

Introduction. The main results.

1. First we define capacity. Let (X, d) be a compact metric space and let A be any subset in X. Cover it with finitely many balls \(\{B(x_i, r_i)\}_{i=1}^n \) with centres in A of radii $r_i \leq \varepsilon$. By $I(A, \varepsilon)$ denote the minimal possible k. The number

\[
C_A = \lim \sup_{\varepsilon \to 0} \frac{\log I(A, \varepsilon)}{-\log \varepsilon}
\]

is called the capacity of the set A. Observe that $\dim_H A \leq C_A$, where \dim_H is the Hausdorff dimension and that

\[
\text{if } a_i \searrow 0, \lim_{i \to \infty} \sup_{i} \frac{\log I(A, a_i)}{-\log a_i} < +\infty, \quad \text{then}
\]

\[
C_A = \lim_{i \to \infty} \frac{\log I(A, a_i)}{-\log a_i}.
\]

2. Denote by $\pi: \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ the standard covering projection. A hyperbolic toral automorphism is a map $f: \mathbb{T} \to \mathbb{T}$ which has a linear lift $\tilde{f}: \mathbb{R} \to \mathbb{R}$ without eigenvalues of modulus 1. It is clear that there exists a minimal number $r \geq 1$ such that either the eigenvalues of f are real and positive or they are not roots of real numbers. By \tilde{f} we denote \tilde{f}. We define

\[
E_1 = \bigcup_{j=0}^{\infty} (\tilde{f} - j\lambda \text{id})^{-1}(0)
\]

if an eigenvalue λ of \tilde{f} is real and

\[
E_1 = \bigcup_{j=0}^{\infty} (\tilde{f} - j\lambda \text{id})^{-1}(0) \cup \bigcup_{j=0}^{\infty} (\tilde{f} - j\lambda \text{id})^{-1}(0) \cap \mathbb{R},
\]
where \(\hat{f} : \mathbb{C}^* \to \mathbb{C}^* \) is the complexification of \(\tilde{f} \), if \(\lambda \) is complex. The linear subspace \(E = \bigoplus_{|\lambda| < 1} E_{|\lambda|} \) is called the contracting eigenspace for \(\tilde{f} \) and \(E^* = \bigoplus_{|\lambda| > 1} E_{|\lambda|} \) is called the expanding eigenspace for \(\tilde{f} \).

3. Now, let \(K \) be an arbitrary continuum lying in \(\mathbb{T}^n \) and let \(\tilde{K} \) be an arbitrary subset of its lift. Consider a cost \(c + \sum_{k \in A} V_k(\tilde{K}) \), where \(A \) consists of eigenvalues of \(\tilde{f} \), \(V_k(\tilde{K}) \in E_k \) is a linear subspace invariant under \(\tilde{f} \) such that \(\tilde{K} = c + \sum_{k \in A} V_k(\tilde{K}) \) and \(\dim \sum_{k \in A} V_k(\tilde{K}) \) is the least possible. These properties define the subspace \(\sum_{k \in A} V_k(\tilde{K}) \) uniquely.

4. Now, we recall that R. Mañé proved in [5] the following theorem. Let \(\alpha : (a, b) \to \mathbb{T}^n \) be a rectifiable nonconstant path and let \(f : \mathbb{T}^n \to \mathbb{T}^n \) be a hyperbolic toral automorphism. Then the closure of the orbit of \(\alpha((a, b)) \) under \(f \) contains a coset of a toral subgroup invariant under some power of \(f \).

([5] improves Frank's result, where the paths were \(C^2 \), see [2].)

We prove a related result:

Theorem 1. Let \(f : \mathbb{T}^n \to \mathbb{T}^n \) be a hyperbolic toral automorphism. Let \(K \subset \mathbb{T}^n \) be a set such that its lift \(\tilde{K} \subset \mathbb{R}^n \) contains a non-one-point continuum \(\tilde{K} = c + \sum_{k \in A} V_k(\tilde{K}), (|\lambda_1| \leq \ldots \leq |\lambda_A|) \). Denote \(V_k(\tilde{K}) = V_k \). If one of the following cases holds:

(a) \(\dim V_k = 1, |\lambda_k| > 1, |\lambda_{k-1}| < 1, \)
(b) \(\dim V_k = 1, |\lambda_k| < 1, |\lambda_{k+1}| > 1, \)
(c) \(\dim V_k = 1, |\lambda_k|, |\lambda_{k+1}| > 1 \) and \(C_k < 2 - \frac{\log|\lambda_{k-1}|}{\log|\lambda_k|} \)
(d) \(\dim V_k = 1, |\lambda_k|, |\lambda_{k+1}| < 1 \) and \(C_k < 2 - \frac{\log|\lambda_{k+1}|}{\log|\lambda_k|} \)
then the closure of the orbit of \(K \) under \(f \) contains a coset of a toral subgroup invariant under some power of \(f \).

Theorem 1 concerns in fact compact sets which are not zero-dimensional (i.e., countable or unions of a Cantor set and a countable set). The problem is that every such set must contain a non-one-point continuum, see [1].

5. Przytycki [7] has constructed for any Anosov diffeomorphism \(f \) of an \(n \)-dimensional torus \(\mathbb{T}^n \) an invariant subset of arbitrary dimension between 1 and \(n-2 \). Paper [7] develops the Hancock idea, see [3], [4]. We shall use this construction. We recall it in the case where the diffeomorphism \(f \) is algebraic and \(\dim \mathbb{E} = 1 \). Here is an outline: One may assume that the orthogonal projection \(P : \mathbb{E}^* \to \mathbb{E}^{* - 1} = \{ x \in \mathbb{E}^* ; x_n = 0 \} \) is an isomorphism. Fix \(k (1 \leq k \leq n-2) \). One may consider \(\mathbb{E}^{* - 1} \) as the union of \((n-1) \)-dimensional cuboids \[\{ x = (x_1, \ldots, x_{n-1}) ; m_1 \leq x_1 \leq m_1 + 1, \ldots, m_{n-1} \leq x_{n-1} \leq m_{n-1} + 1, m_n \in \mathbb{Z} \} \]
with edges of length 1. Denote by \(\mathcal{K} \) the union of \((n-k-2) \)-dimensional skeleton of these cuboids. Let \(D \) be a \(k \)-dimensional disc embedded by \(g \) into \(\mathbb{E}^* \). There exists a continuous mapping \(g_k : \mathbb{E}^* \to \mathbb{E}^* \) such that \(g_k \) is \(C_{S^1} \) close to \(g \) and \(g_k(D) \) is disjoint from \(P^{-1}(B(\mathcal{K}, r)) \), where \(B(\mathcal{K}, r) = \{ x \in \mathbb{E}^{* - 1} ; g(\mathcal{K}, x) < r \} \) and \(C_0 \) is a constant coefficient. Let \(d > 1, a > 0 \) satisfy the condition

\[
\alpha \| f^d v \| > \lambda^d \| v \|, \quad v \in \mathbb{E}^*.
\]

There exists a positive integer \(q \) which satisfies the inequality

\[
1 - a C_0 \sum_{i=1}^m (1/2^i) > 0.
\]

Assume that a continuous mapping \(g_k : D \to \mathbb{E}^* \) such that \(f^m \circ g_k(D) \cap P^{-1}(B(\mathcal{K}, r)) = \emptyset \),

then is defined. There exists a continuous mapping \(h : D \to \mathbb{E}^* \) such that \(h(D) \cap P^{-1}(B(\mathcal{K}, r)) = \emptyset \) and \(h \) is \(C_{S^1} \) close to \(f^{m+1} \circ g_k \). Define \(g_{k+1} = f^m \circ h \circ g_k \). By (1) there exists a continuous mapping \(G = \lim_{i \to \infty} g_i \). Is a continuum. In [7] Przytycki proved that

\[
k = \dim (\tau(G(D))) = \dim (G(D)) = \dim (\{ x \in \bigcup_{j=-\infty}^{\infty} f^j \circ \pi \circ G(D) \}).
\]

In this paper we prove the following theorem:

Theorem 2. Fix \(1 \leq k \leq n-1 \). Let \(f : \mathbb{T}^n \to \mathbb{T}^n \) be a hyperbolic toral automorphism. Let \(\lambda_1, \ldots, \lambda_k \) be arbitrary eigenvalues for \(\tilde{f} \) such that \(1 < |\lambda| \leq \ldots \leq |\lambda| \) and let \(V_1 \subset \mathbb{E}_{|\lambda|}, \ldots, V_k \subset \mathbb{E}_{|\lambda|} \) be arbitrary \(f \)-invariant, linear subspaces in \(\mathbb{R}^n \), \(\sum_{j=2}^k \dim V_j \leq k \), \(\sum_{j=2}^k \dim V_j = k + k' > k \). Then for every \(\varepsilon > 0 \)

there exists a \(k \)-dimensional continuum \(K \subset \mathbb{T}^n \) such that \(\dim (\{ x \in \bigcup_{j=-\infty}^{\infty} f^j(K) \}) = k \) and

\[
(C_k - \varepsilon + \log|\lambda|^{-1}) \left(\frac{\dim V_k - k}{\log|\lambda|} + \sum_{j=2}^k \dim V_j \log|\lambda| \right) = 0.
\]
Remark. In constructing \(K \) one can consider, instead of the whole \(V \), an invariant subspace \(V' \subset V \) such that \(\dim(V' \oplus V) = k + k' > k \), where \(k' = 1 \) if \(\lambda_1 \) is real and \(k' = 2 \) if \(\lambda_1 \) is complex (not real). In the case \(k' = 2 \) one can consider only \(dim V' \geq 2 \). (Otherwise, if \(dim V' = 1 \), one could consider \(\oplus \overline{V'} \) only, having \(\dim(\overline{V'}) = k + 1 \). These changes of \(V \) clearly improve the estimations (i), (ii) for an appropriate \(K \). It is immediately computable that, after these improvements of the spaces \(V \) (for \(k' = 1 \) or \(k' = 2 \) and \(dim V' \geq 2 \)), estimation (ii) is better than (i).

For example, in the case of \(T^4, \lambda_1 < 1 < \lambda_2 < \lambda_3 \), for every curve \(\gamma \) with non-dense orbit, its capacity, by Theorem 1, satisfies

\[
C_{\gamma} \geq 2 - \frac{\log \lambda_2}{\log \lambda_3}.
\]

This estimation is the best possible because, by Theorem 2, there exists a curve \(\gamma_0 \) with non-dense orbit where \(C_{\gamma_0} \leq 2 + \frac{\log \lambda_2}{\log \lambda_3} \). Can this be removed?

If \(\lambda_2 = \lambda_3 \) then the method used in the proof of Theorem 1 gives nothing interesting. In view of Theorem 2 we really cannot have any estimation of type \(C_{\gamma} \geq 1 + \text{const} > 1 \). So we cannot prove anything more than non-rectifiability.

6. We shall use the following simple

Geometrical Lemma. For all integer numbers \(n \geq 1 \), \(1 \leq p \leq n \), and real numbers \(\gamma, \eta > 0 \), there exists a constant \(C > 0 \) such that, if \(W \) is a \(p \)-dimensional parallelepiped lying in \(\mathbb{R}^n \) with the edges of lengths \(a_1, \ldots, a_p \geq \eta \), then \(I(W, \eta) \leq C a_1 \cdots a_p \).

Proofs.

1. Proof of Theorem 1. Consider first the case where \(|\lambda_{k+1} - 1| > 0 \). Fix \(0 < \theta < |\lambda_{k+1} - 1|/2 \). Suppose to the contrary that the closure of the orbit of \(K \) under \(f \) does not contain any coset of a toral subgroup invariant under \(f^m \) for every \(m \geq 1 \). The definition of the linear space \(\bigoplus_{p} V \) immediately implies the existence of at least one pair \((a, b)\) of points lying in \(\mathcal{R} \) such that

\[
b - a = v_{1} + v, \quad v \in \bigoplus_{p} E_{\lambda_1}, \quad 0 \neq v \in V.
\]

The group \(\mathcal{G}(\mathcal{V}) \) is of course a toral subgroup invariant under \(f^\gamma \). Therefore, according to the contrary assumption, for every \(x \in \mathbb{R}^n \) there exists at least one point \(x \in V', x \in V \) and \(\epsilon(x) > 0 \) such that

\[
f^n(K) \cap B(x, \epsilon(x)) = \emptyset \quad \text{for every} \quad j > 0.
\]

Choose points \(x_1, \ldots, x_m \in \mathbb{R}^n \) such that \(\bigcup_{j=1}^{m} B(x_j, \epsilon(x_j)) = \mathbb{T} \). So, for every \(x \in \mathbb{R}^n \), there exists a point \(x_j \in \mathbb{R}^n \) \((1 \leq j \leq m)\) such that \(\Phi(x, x_j) \leq \frac{1}{2} \epsilon(x_j) \). Thus, for \(\epsilon = \min(\epsilon(x_1), \ldots, \epsilon(x_m)) \),

\[
f^K \cap B(x, \epsilon(x)) = \emptyset \quad \text{for every} \quad j > 0, \quad x \in \mathbb{R}^n.
\]

(after a new, improved choice of \(\epsilon \)).

Denote by \(d_j \) the infimum of the lengths of rectifiable curves joining the points \(a \) and \(b \) in \(\bigoplus_{p} V \), whose \(j \)-th image under \(f \) is disjoint from \(B(x + x, e + Z^\eta) \) for all \(x \in \mathbb{R}^n \). It is clear that there exists a constant \(C_1 > 0 \) such that

\[
\|f^j\| \leq C_1 (\lambda_{\mu} + \theta)^j \|u\| \quad \text{for every} \quad u \in F \quad \text{and} \quad j > 0.
\]

Let \(\delta_j = u/C_1 (\lambda_{\mu} + \theta)^j \) \((j > 0, 1, \ldots)\). By (1) and (2)

\[
f^j(B(K, \delta_j) \cap (\bigoplus_{p} V')) \cap (B(x + x, e) + Z^\eta) = \emptyset \quad \text{for} \quad j > 0, \quad x \in \mathbb{R}^n.
\]

Now, we consider an arbitrary \(\delta_j \)-net in \(\mathcal{R} \). Since \(\mathcal{R} \) is connected, there exists a broken line with the vertices chosen from our \(\delta_j \)-net and the distances between the successive vertices not greater than \(2\delta_j \). Obviously, this broken line lies in a coset \(\bigoplus_{p} V \) and due to (3) its image under \(f^j \) is disjoint from \(B(x + x, e) + Z^\eta \) for all \(x \in \mathbb{R}^n \). So

\[
d_j < 2\delta_j I(\mathcal{R}, \delta_j).
\]

This implies

\[
I(\mathcal{R}, \delta_j) \geq \frac{d_j}{2\delta_j} = \frac{C_1 (\lambda_{\mu} + \theta)^j}{2e}
\]

and

\[
\frac{\log I(\mathcal{R}, \delta_j) + \log (C_1 (\lambda_{\mu} + \theta)^j/2e)}{\log (C_1 (\lambda_{\mu} + \theta)^j/2e)}
\]

but, as

\[
\lim_{j \to \infty} \frac{\log (C_1 (\lambda_{\mu} + \theta)^j/2e)}{\log (C_1 (\lambda_{\mu} + \theta)^j/2e)} = 1,
\]
we obtain

\begin{equation}
C_{\varphi} \geq 1 + \limsup_{j \to \infty} \frac{\log d_j}{\log (\lambda^j + \theta)}.
\end{equation}

Since the torus \(T^n \) is compact, there exists a constant \(C_{\varphi} > 0 \) such that every segment of the straight line \(x + V_\varphi \) with length \(\geq \frac{1}{4} C_{\varphi} \), intersects the set \(B(\varphi, \epsilon/3) + Z^* \) for all \(x \in \mathbb{R}^n \), \(\varphi \in V_\varphi \).

Since the directions of the vectors \(f^j b - f^j a \) tend to the direction of the straight line \(V_\varphi \) due to \(\lambda_{\varphi - 1} < \lambda_\varphi \) and due to \(\theta \), for an integer \(j \) large enough every segment of the straight line \(x + R(f^j b - f^j a) \) with length \(C_{\varphi} \), intersects the set \(B(\varphi, \epsilon/2) + Z^* \) for all \(x \in \mathbb{R}^n \), \(\varphi \in V_\varphi \).

For every \(j \geq 0 \) denote by \(l_j \) an arbitrary rectifiable curve in \(\varphi \)

\begin{equation}
\int l_j \cap (B(\varphi + \epsilon, \epsilon) + Z^*) = \emptyset \quad \text{for all} \quad x \in \mathbb{R}^n.
\end{equation}

Denote by \(P_j \) the projection of \(\varphi \) onto the line \(R(f^j b - f^j a) \), along \(\frac{1}{\epsilon} \varphi \).

In the curve \(f^j l_j \) choose points \(f^j a = y_1, \ldots, y_{k_0}, y_{k_0 + 1}, \ldots, y_{k_0 + 2} = f^j b \) such that \(\|P_j(y_{i+1} - y_i)\| = C_{\varphi} \) for \(i = 1, \ldots, t(j) \) and \(\|P_j(y_{i+1} - y_i)\| \leq C_{\varphi} \). Let \(y_{i+1} = y_i + P_j(y_{i+1} - y_i) \) \(i = 1, \ldots, t(j) \). Since the interval \(y_1 y_{i+1} \) has the length \(C_{\varphi} \), it intersects \(B(y_i, \epsilon/2) + Z^* \) for every \(1 \leq i \leq t(j) \) and \(j \) large enough. Thus by (5) there exists a point \(z_i \) in the segment of the curve \(f^j l_j \) between the points \(y_i \) and \(y_{i+1} \) and a point \(z \in y_i + R(f^j b - f^j a) \) such that \(z_i - z \in \mathbb{R}^n \), \(\|z_i - z\| = \epsilon/2 \).

Since \(+ R(f^j b - f^j a) \), \(V_\varphi \rightarrow 0 \) and \(\lambda_{\varphi} \) is the eigenvalue for \(f \) corresponding to \(V_\varphi \), there exists a constant \(C_{\varphi} > 0 \) such that

\[\|f^k u\| \geq C_{\varphi} (\lambda_{\varphi} - \theta)^k \|u\| \quad \text{for every} \quad k \geq 0, \quad u \in R(b - a).\]

Observe that \(\sum_{k=0}^{\infty (\log (\lambda_{\varphi} - \theta))_k} \|f^k u\| = \|f^j b - f^j a\| \); hence

\[C_{\varphi} (\lambda_{\varphi} - \theta)^j \|b - a\| = \|f^j b - f^j a\| \geq C_{\varphi} (\lambda_{\varphi} - \theta)^j \|b - a\| \cdot \frac{\log (\lambda_{\varphi} - \theta)}{\log (\lambda_{\varphi} - \theta) + \theta}.\]

So

\[t(j) \geq \frac{C_{\varphi}}{\lambda_{\varphi} - \theta} \|b - a\| - 1 \quad \text{and} \quad \|f^{-j} x - f^{-j} y\| \leq \frac{C_{\varphi}}{\lambda_{\varphi} - \theta}.\]

There exists a constant \(C_{\varphi} > 0 \) such that, for every \(u \in \mathbb{R}^n \), \(j \geq 0 \),

\[\|f^{-j} u\| \leq C_{\varphi} (\|\lambda_{\varphi - 1} + \theta\|)^j \|u\|\]

By the triangle inequality, for every \(i = 1, \ldots, t(j) \) the length of the part of \(l_j \) between \(y_i \) and \(y_{i+1} \) is not less than

\[\|f^{-j} y_i - f^{-j} y_{i+1}\| \geq \|f^{-j} y_i - f^{-j} y_{i+1}\| - \|f^{-j} y_i - f^{-j} y_{i+1}\| = C_{\varphi} \|\lambda_{\varphi - 1} + \theta\|^{-j} \|f^{-j} y_i - f^{-j} y_{i+1}\|.\]

Taking the sum over \(i \) and the infimum over the rectifiable curves, we obtain by (6)

\[d_j \geq C_{\varphi} \|\lambda_{\varphi - 1} + \theta\|^j \|b - a\| \cdot \frac{C_{\varphi} \|\lambda_{\varphi - 1} + \theta\|^{-j} \|b - a\|}{C_{\varphi} \|\lambda_{\varphi - 1} + \theta\|^{-j} \|b - a\| + C_{\varphi} \|\lambda_{\varphi - 1} + \theta\|^{-j} \|b - a\|}\]

As \(\|\lambda_{\varphi - 1} + \theta\| > 1 \), \(\|\lambda_{\varphi - 1} - \lambda_{\varphi} - \theta\| > 1 \), there exists a constant \(C_{\varphi} > 0 \) independent of \(j \) such that for \(j \) large enough

\[d_j \geq C_{\varphi} \|\lambda_{\varphi - 1} + \theta\| \|b - a\|.\]

Together with (4) this implies that

\[C_{\varphi} \geq 1 + \limsup_{j \to \infty} \frac{j(\log (\lambda_{\varphi} - \theta) - \log (\|\lambda_{\varphi - 1} + \theta\|) + \log C_{\varphi})}{j \log (\lambda_{\varphi} + \theta)} \]

\[= 1 + \frac{\log (\lambda_{\varphi} - \theta) - \log (\|\lambda_{\varphi - 1} + \theta\|) + \log C_{\varphi}}{\log (\lambda_{\varphi} + \theta)} \]

Since \(\theta \) can be an arbitrarily small positive number, we have

\[C_{\varphi} \geq 2 \frac{\log (\lambda_{\varphi - 1})}{\log \lambda_{\varphi}} \quad \text{hence} \quad C_{\varphi} \geq 2 \frac{\log (\lambda_{\varphi - 1})}{\log \lambda_{\varphi}}.\]

This contradicts the assumptions of our theorem.
The case \(|a_{i-1}| < 1\) is much simpler. Let \(P_x\) denote the projection of \(\bigcap_{y \in V_x} V_y\) onto \(V_x\) along \(\bigcap_{y \neq x} V_y\). The Hausdorff distances between the sets \(\mathcal{C}(f_x(R), P_x(f_x(R)))\) tend exponentially to 0, while the lengths of the curves \(P_x(f_x(R))\) tend to \(\infty\). Hence, in \(\mathcal{T}^n, \mathcal{C}(\pi(V_x)) \subset \mathcal{C}(\bigcup_{x \in V} f_x(R))\) (we use again the fact stated directly after formula (4)).

Proof of Geometrical Lemma. We can cover each edge of length \(a_i\) (1 \(\leq i \leq p\)) by \([a_i, \frac{\gamma}{\gamma}] + 1\) segments of length \(\leq \frac{\gamma}{\gamma}\). Thus we can cover our parallelepipeds with

\[
\prod_{i=1}^{p} \left(\left\lfloor \frac{2a_i}{\gamma} \right\rfloor + 1 \right) \leq \prod_{i=1}^{p} \left(\frac{2a_i}{\gamma} + \frac{a_i}{\eta} \right) = \left(\frac{2 + \frac{1}{\gamma}}{\gamma} \right)^p \prod_{i=1}^{p} a_i
\]

parallelepipeds with the edges of length \(\leq \frac{\gamma}{2}\), because \(a_i \leq \eta\) (1 \(\leq i \leq p\)). Since each parallelepiped with the edges of length \(\leq \frac{\gamma}{2}\) lies in a ball of radius \(\frac{\gamma}{2}\), the Lemma is true if we set \(C = (2 + 1/\gamma)^p\).

Proof of Theorem 2. Assume \(\dim E = 1\). We mention at the end of the proof how to get rid of that with the use of the ideas from [7]. Fix \(\epsilon, \theta > 0\). Wishing to construct a set satisfying the properties from Theorem 2, we must state precisely the definition of the mappings \(g_i: D \to E, i = 1, 2, \ldots\) from [5, Introduction]. Let \(V = \bigcup_{i=1}^{p} V_i\). We shall regard as a "good" parallelepiped each \(k\)-dimensional parallelepiped lying in \(V\) each edge of which is parallel to some vector from \(\bigcup_{i=1}^{p} V_i\) and is of length not less than \(r/4\).

Let \(v = (v_1, \ldots, v_{k+1})\) be a basis in \(V\) such that \(v_i \in \bigcup_{i=1}^{p} V_i, i = 1, \ldots, k+1\). Let \(v\) be a "triangulation" of \(V\) by parallelepipeds with edges of length exactly \(r/4\), parallel to vectors from \(v\).

Denote by \(k(W)\) the \(k\)-dimensional skeleton of a parallelepiped \(W\). Having \(g_i: D \to V\) defined, first perturb \(f^{(i+1)} \circ g_i\) to \(h\) by projecting \(f^{(i+1)} \circ g_i(D) \cap P^{-1}(B(x', r))\) onto \(P^{-1}(Fr B(x', r))\) as in [7]. Next approximate \(h\) to \(h\) so that

\[h(D) = \bigcap_{W \in \mathcal{C}} h(W), W \in \mathcal{C}, \forall \mathcal{O} \neq 0)\).

(Do this by consecutive projections onto the skeletons \(\bigcup_{i=1}^{p} (W, i = k + k, \ldots, k)\). Observe that there exists a constant \(C_2 > 0\) such that

\[g(k, f^{(i+1)} \circ g_i) \leq C_1 r \quad \text{and} \quad h(D) \cap P^{-1}(B(x', r/2)) = \emptyset.
\]

Now, if \(Q \subset V\) is a "good" polyhedron, i.e., if it is a union of a finite number of "good" parallelepipeds, then, setting in the Geometrical Lemma

\[\eta = r/4, \gamma = r/2, \text{we get}
\]

\[I(Q, 1/2) \leq \sum_{j=1}^{n} I(W_j, 1/2) \leq C \sum_{j=1}^{n} d^{a_j} \ldots d^{b_j},
\]

where \(Q = \bigcup_{j=1}^{n} W_j\) and each \(W_j (1 \leq j \leq m)\) is a "good" parallelepiped with edges of length \(d^{a_j} \ldots d^{b_j}\), respectively.

We denote by \(I(Q)\) the infimum over all admissible right-hand sums. Therefore

\[(1) \quad I(Q, 1/2) \leq CI(Q).
\]

If \(r\) is large enough, then for every \(u \in E^r\), \(\|f^u u\| \geq \|u\|\); so, if \(W\) is a "good" parallelepiped, then \(f^u(W)\) is also a "good" parallelepiped with edges whose product of lengths is not greater than

\[C_2 \left(\frac{\|\lambda_j\| + \|\theta\|^{\text{max}} \frac{1}{k} \right) \prod_{i=2}^{k+1} (\|\lambda_j\| + \|\theta\|^{\text{max}})^{\frac{1}{k}}, \prod_{i=1}^{k} a_i = C_2 A^k \prod_{i=1}^{k} a_i,
\]

where \(C_2 > 0\) is a constant independent of \(k\), and \(a_i\) is the length of the edges of \(W\). Thus, if \(Q\) is a "good" polyhedron, then

\[(2) \quad I(f^u(Q)) \leq CI(Q) C_2 A^k.
\]

Let \(Q(X) = \bigcup_{S \in E} S, S = B(f^u(X), (C_1 + 1)r)\), where \(X \subset V\). Observe here that \(Q(X)\) is a "good" polyhedron.

Now, if \(W\) is a "good" parallelepiped, then, since \(f^u(W)\) is also a "good" parallelepiped, the number of parallelepipeds \(S \in E, S = B(f^u(W), (C_1 + 1)r)\) is not greater than \(C_3 \prod_{i=1}^{k} a_i\), where \(a_i\) is the length of the edges of \(f^u(W)\) and \(C_3\) is a constant coefficient. Thus

\[I(Q(W)) \leq C_2 (r/4)^{k+1} C_2 \prod_{i=1}^{k} a_i.
\]

Consequently, if \(R\) is a "good" polyhedron, then

\[(3) \quad I(Q(R)) \leq C_2 (r/4)^{k+1} I(f^u(R))\]

Since, for every \(j = 0, 1, \ldots, e^{(i+1)} \circ g_{j+1}(D) \subset Q(f^u \circ g_i(D))\), we have

\[f^u \circ g_j(D) \subset Q(g_j(D)), \quad j = 0, 1, \ldots,
\]

and by (2) and (3) for \(h = 2C_2 C_2 (r/4)^{k+1}\)

\[I(Q(g_j(D))) \leq h^k A^k I(g_j(D)).
\]
By (1) this implies that for \(j = 0, 1, \ldots \)
\[
I(\bar{f}^j \circ \varrho_0(D), 1) \leq I(\bar{f}^j(\varrho_0(D)), 1/2) \leq C I(\bar{f}^j(\varrho_0(D))) \leq C h^j A^j I(\varrho_0(D)).
\]
From the construction of \(G \) we have \(\varrho(\bar{f}^j \circ G, \bar{f}^j \circ \varrho_0) \leq r \). Therefore
\[
I(\bar{f}^j \circ G, 1) \leq C h^j A^j I(\varrho_0(D)).
\]
There exists a constant \(C_4 > 0 \) such that
\[
\| \bar{f}^j \| \leq C_4(\lambda|J| - \theta)^{-m}\| \bar{f} \| \quad \text{for every } e \in V, m \geq 0;
\]
so
\[
I(G(D), C_4(1 + 2r)(\lambda|J| - \theta)^{-m}) \leq C h^j A^j I(\varrho_0(D)).
\]
Thus, by (1) from the Introduction,
\[
C_{\text{con}} \leq \lim_{j \to \infty} \frac{\log I(G(D), C_4(1 + 2r)(\lambda|J| - \theta)^{-m})}{\log(C_4(1 + 2r)(\lambda|J| - \theta)^{-m})} \\
= \lim_{j \to \infty} \frac{\log I(\varrho_0(D)) + \log h + \log \left(\sum_{i=1}^t \dim V_i \log (\lambda|J| + \theta) \right)}{\log(C_4(1 + 2r) + \sum_{i=1}^t \log(\lambda|J| + \theta))} \\
= \frac{\log h}{\log(\lambda|J| - \theta)} + \frac{\log \left(\sum_{i=1}^t \dim V_i \log (\lambda|J| + \theta) \right)}{\log(\lambda|J| - \theta)}.
\]
Since \(\theta > 0 \) is arbitrarily small, for \(q \) large enough
\[
C_{\text{con}} \leq \varepsilon + k \cdot \varepsilon \frac{\log \left(\sum_{i=1}^t \dim V_i \log (\lambda|J| + \theta) \right)}{\log(\lambda|J| - \theta)}
\]
and consequently
\[
C_{\text{con}} \leq \varepsilon + k \cdot \varepsilon \frac{\log \left(\sum_{i=1}^t \dim V_i \log (\lambda|J| + \theta) \right)}{\log(\lambda|J| - \theta)}
\]
If \(\dim E' > 1 \) to keep \(\text{dim}_{\text{ns}} (\bar{\omega} \cup \bigcup_{j=0}^\infty f^j(\varrho(D))) \) finite, one can repeat the corresponding construction from \([\text{[13]}\).

Namely, having \(\bar{f}^{\text{ng}(k)} \circ \varrho_0 \), one can change it to \(\bar{h}^{\text{ng}(k)}(D) \) that is disjoint from a family of dispersed balls in \(E' \), with a fixed (may be, large) radius. Next one can change it to \(k' \) and \(\lambda' \) as before. Large balls need large \(q \), in particular to have convergence in formula (2) from the Introduction. Of course, \(Q \) (X) and the constants \(C_2 r \), \(C_3 r \) must be changed adequately.

Estimations for the Pesin capacity

1. Let \(M \) be a smooth Riemannian manifold, let \(v \) be a Riemannian measure on \(M \), let \(X \subseteq M \) be an arbitrary Borel subset. Denote by \(\mathcal{S} = (U_i)_{i \in I} \) an arbitrary family of open subsets in \(M \) satisfying the following condition:

\(\mathcal{P} \) For every \(\varepsilon > 0 \) there exists a subfamily \(\{ V_i \}_{i \in I} \) of \(\mathcal{S} \) such that \(\bigcup_{i \in I} V_i \supseteq X \) and, for \(i \in I \), \(\text{diam}(V_i) < \varepsilon \).
Analogously to the definition of the dimension of the set \(X \) relative to the manifold \(M \) and family \(\mathcal{V} \), we can define the capacity of a compact set \(X \) relative to the manifold \(M \) and family \(\mathcal{V} \) as follows:

\[
(M, \mathcal{V})-\operatorname{Cap}_X = \dim M \lim_{\varepsilon \to 0} \sup_{\varepsilon > 0} -\log v(\mathcal{V}, \varepsilon)
\]

where \(I(X, \mathcal{V}, \varepsilon) \) denotes the smallest number of sets in \(\mathcal{V} \) with diameter \(\leq \varepsilon \) covering the set \(X \) and \(v(\mathcal{V}, \varepsilon) = \sup \{v(U) : U \in \mathcal{V}, \text{diam}(U) \leq \varepsilon \} \).

2. Let \(N \) be a smooth Riemannian manifold, \(f : N \to N \) a diffeomorphism, \(M \subset N \) a smooth immersed submanifold, and \(X \subset M \) any Borel subset. Fix \(\delta > 0 \) and consider the family

\[
\mathcal{V}_{f, \delta} = \{ U \subset M : \exists x \in U \exists \varepsilon > 0, x \notin f^{-\varepsilon}(B_{\rho_M}(f^*(x), \delta)) \}.
\]

Suppose that for sufficiently small \(\delta > 0 \) and for the family \(\mathcal{V}_{f, \delta} \) condition (P) holds. We call the numbers

\[
C_{X,f} = \limsup_{\varepsilon \to 0} ((M, \mathcal{V}_{f, \delta})-\operatorname{Cap}_X),
\]

\[
C_{X,f} = \liminf_{\varepsilon \to 0} ((M, \mathcal{V}_{f, \delta})-\operatorname{Cap}_X)
\]

the upper and the lower capacity relative to the mapping \(f \), respectively. If \(C_{X,f} = C_{X,f} \), then we shall call this number the capacity relative to the mapping \(f \) and denote it by \(C_{X,f} \).

3. Now we prove the following

Theorem 3. Let \(f : T^* \to T^* \) be a hyperbolic toral automorphism. Let \(K \subset T^* \) be a set such that its lift \(\hat{K} \subset \mathbb{R}^n \) contains a \(k \)-dimensional \((1 \leq k \leq n) \) continuum \(\hat{K} = c + \bigoplus_{i=1}^l V_i \), where \(V_i \subset \mathbb{R}^n (1 \leq i \leq l) \) are \(\hat{f} \)-invariant linear subspaces in \(\mathbb{R}^n \), \(\lambda_i \) are the eigenvalues for \(\hat{f} \) and \(1 < |\lambda_i| < \ldots < |\lambda_l| \). If \(\sum_{i=1}^l \dim V_i < k \), then \(\sum \dim V_i = k + \kappa \) and the projection of \(\hat{K} \) onto \(\bigoplus_{i=1}^l V_i \) along \(V_i \) has a non-empty interior, then, taking in the definition of thePesin capacity \(N = T^* \), \(M = \pi(c + \bigoplus_{i=1}^l V_i) \), the capacity \(C_{K,f} \) exists and

\[
C_{K,f} \geq (k + k) \sum_{i=1}^l \dim V_i \log |\lambda_i|.
\]

Proof. It is clear that in this case the family \(\mathcal{V}_{f, \delta} \) satisfies condition (P) for every \(\delta > 0 \) and our theorem is equivalent to the same theorem if we replace \(T^* \) by \(\mathbb{R}^* \), \(\pi(c + \bigoplus_{i=1}^l V_i) \) by \(c + \bigoplus_{i=1}^L V_i \), \(K \) by \(\hat{K} \), \(f \) and \(\hat{f} \).

Observe that here the map \(\delta \to (c + \bigoplus_{i=1}^l V_i, \mathcal{V}_{f, \delta})-\operatorname{Cap}_K \) is constant; hence, \(C_{K,f} \) exists and, of course, it is equal to

\[
(k + k) \limsup_{\varepsilon \to 0} \frac{\log I(X, \mathcal{V}_{f, \delta}, \mu, \varepsilon)}{-\log \varepsilon}
\]

for every \(\delta > 0 \),

where \(\mu \) is the Lebesgue measure on \(c + \bigoplus_{i=1}^l V_i \) and \(I(X, \mathcal{V}_{f, \delta}, \mu, \varepsilon) \) is the smallest number of sets in \(\mathcal{V} \) with measure \(\mu \) less than or equal to \(\varepsilon \), covering the set \(X \).

Now, fix \(\delta, \theta > 0 \). Let \(U_j = f^{-1}(B_{\rho_M}(f(x), \delta)) \in \mathcal{U}_{f, \delta} \), \(x \in M = c + \bigoplus_{i=1}^l V_i \). Since \(\mu(U_j) = (\det(\hat{f} \bigoplus V_i))^{-1} \Gamma^\delta \theta^{-k} \), where \(\Gamma \) is the Lebesgue measure of a unit ball in \(\bigoplus_{i=1}^l V_i \), it follows that if \(\mu(U_j) \leq \varepsilon \) then

\[
\frac{-\log(\varepsilon(T^* \delta \theta^{-k}))}{\log \det(\hat{f} \bigoplus V_i)}
\]

and this implies that

\[
I(\hat{K}, \mathcal{V}_{f, \delta}, \mu, \varepsilon) \geq I(\hat{f} \bigoplus V_i, \mu, \varepsilon) \geq C_{K,f} \sum \dim V_i \log |\lambda_i| (\hat{K}, \delta).
\]

From the assumptions of our theorem there exists a constant \(C_1 > 0 \) such that for \(j > 0 \)

\[
I(\hat{f} \bigoplus V_i, \delta) \geq C_1 (|\lambda_i| - \theta)^{\delta k_{V_i}} = \sum_{i=1}^l (|\lambda_i| - \theta)^{\delta k_{V_i}}.
\]

By (1) this implies

\[
C_{K,f} \geq (k + k) \sum \dim V_i \log |\lambda_i|.
\]

Since \(\theta \) is arbitrarily small, we obtain the required estimation.

4. We also prove the following
Theorem 4. The continuum $K = \pi(G(D))$ from Theorem 2 satisfies the following inequality:

$$C_{K,f} \leq \varepsilon + (k+k') \frac{\dim V_1 \log |\lambda_1| + \sum_1 \delta \dim V_i \log |\lambda_i|}{\sum_1 \dim V_i \log |\lambda_i|}.$$

Proof. Let $V_i = f^{-q+1}\{y \in M_i | (f^n(y),1+2r)\in W_{r_i+2r}, \ (x \in M = f^{i+1}V_i), \}$ where q and r denote the numbers from the proof of Theorem 2.

Obviously, for

$$I(\zeta) = \left[-\frac{\log (\zeta/\Gamma(1+2r \chi^A_\xi))}{\log \det (f^q \otimes V)} \right] + 1, \quad \mu(V_{10}) \leq \zeta.$$

Therefore, by (4) from the proof of Theorem 2,

$$I(G(D), W_{r_i+2r}, \mu, \zeta) \leq I(f^{q+1} \circ G(D), 1+2r) \leq C_{G(D)} I(\theta_0(D))$$

and

$$C_{G(D,f)} \leq (k+k') \frac{\log h}{\log \det (f^q \otimes V)} \frac{\log A}{\log \det (f^q \otimes V)}.$$

Thus for q large enough we obtain our estimation because

$$\log A = (\dim V_1 - k) \log |\lambda_1| + \sum_1 \delta \dim V_i \log |\lambda_i|$$

and

$$\log \det (f^q \otimes V) = \sum_1 \dim V_i \log |\lambda_i|.$$

Remark. In view of Theorem 4 we see that the estimation from Theorem 3 is the best possible. This is done for every k. Recall that for classical capacity we obtained the best possible estimations only for the curve $(n = 1)$.

One might think that the Pesin capacity is more adequate for such estimations.

However, the estimation in Theorem 3 is valid for every k-dimensional continuum K including continua with dense orbits. So the Pesin capacity is less sensitive than the classical one. It does not detect the "fractal" shape of curves with non-dense orbits.

I would like to thank Feliks Przytycki for stimulating discussions and help in composing the final version of the paper.

References

Received November 11, 1983 (1935)