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STUDIA MATHEMATICA, T. LXXXI. (1985) :

On the capacity of a continunm with a non-dense orbit under a hyperbolic toral
automor phism

by

MARIUSZ URBANSKI (Torur)

Abstract. In this paper we compute an upper and lower estimation for the capacity of a
continuum (connected compact set) lying in the torus 7" = R"/Z" whose orbit under a hyperbo-
lic toral automorphism is not dense in T". Also estimations of capacity in Pesin’s sense are
considered. :

Introduction. The main results.

1. First we define capacity. Let (X, o) be a compact metric space and let
A be any subset in X. Cover it with finitely many balls {B(x;, r;)}k; with
centres in A4 of radii ; <& By I(A, ¢) denote the minimal possible k. The
number '

. logI{4, &)
C, =limsuyp———
4 50 P —loge
is called the capacity of the set A. Observe that dimy A < C,, where dimy is
the Hausdorff dimension and that

(1) if & ~0, limsup(e;/e; () < +00, then
i~ra0

. logI(4, &)
Ca= S g,

2. Denote by n: R"— RY/Z" the standard covering projection. A hy-
perbolic toral automorphism is a map f: T"— T" which has a linear lift
/* R"— R" without eigenvalues of modulus 1. It is clear that there exists a
minimal number » > 1 such that either the cigenvalues of f* are real and
positive or they'are not roots of real numbers. By f we denote f*. We define

Ei= [ G-4070)
if an eigenvalue A of f is real and
£ = (0 (-~ U J (7~Tid©)n R,

Jj


GUEST


38 M. Urbainski

where f::C"— C" is the complexification of f, if A is complex. The linear

subspace E* = @ {E,;|A] <1} is called the contracting eigenspace for J and
= @ {E;;|4| > 1} is called the expanding eigenspace for f.

3. Now, let K be an arbitrary continuum lying in 7" and let K be an

arbitrary subset of its lift. Consider a coset c+ @ ¥, (K), where A consists of

eigenvalues of f; ¥, (K) < E, is a linear subspacc 1nvar1ant under f; such that
Rcce+ @ V,(K) and dlm((—B V;(K)) is the least possible. These properties

define the subspace (—B V,I(K) uniquely.

4. Now, we recall that R. Mafié¢ proved in [5] the following

Tueorem. Let a: (@, b) = T" be a rectifiable nonconstant path and let
Jf: T"— T" be a hyperbolic toral automorphism. Then the closure of the orbit of
a((a, b)) under f contains a coset of a toral subgroup invariant under some
power of f.

([5] improves Frank’s result, where the paths were C2, see [2].)

We prove a related result:

THEOREM 1. Let f. T"— T" be a hyperbolic toral automorphism. Let

K = T" be a set such that its lift K = R® contains a non-one-point continuum
~ q

Rcct @V, (K), (4] < ... <|4]). Denote V3, (K) =
i=

P
cases holds:

(a) dimV, =1, [4l>1, [|i-4<1,
(a) dimV, =1, |4l <1, |dpeq>1,
. log|A,-]
b dimV, =1, |i], A, >1 d Cyp<2——2"al
() q Iq‘ lq 1|> an K< IOquI 3
(b) dim¥V, =1, |4, 44l <1 and Cg< z—%iﬁ,
log |4,

then the closure of the orbit of K under f contains a coset of a toral subgroup
invariant under some power of f.

Theorem 1 concerns in fact compact sets which are not zero-dimensional
(i.e, countable or unions of a Cantor set and a countable set). The problem is
that every such set must contain a non-one-point subcontinuum, see [1].

5. Przytycki [7] has constructed for any Anosov dlffeomorphlsm fof an
n-dimensional torus T" invariant subsets of arbitrary dimension between 1 and
n—2. Paper [7] develops the Hancock idea, see [3], [4]. We shall use this
construction. We recall it in the case where the diffeomorphism f is algebraic
and dimE® = 1. Here is an outline: One may assume that the orthogonal

V;. If one of the following »

icm
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projection P: E*— R ! = {xeR"; x,=0} is an isomorphism. Fix k
(1 k< n—2). One may consider R"* as the union of (n—1)-dimensional
cubes

X = (Xqpeees Xpoy)t My <X <My +1,. m,_1+1, meZ}

with edges of length 1. Denote by 2 the union of (n—k—2)-dimensional
skeletons of these cubes. Let D be a k-dimensional disc embedded by g into E*.
There exists a continuous mapping go: D — E" such that go is Cor close to g
and g (D) is disjoint from P~ (B (X', r)), where B(', ) = {xeR"™': (X, x)
<r} and C, is a constant coefficient. Let 4 > 1, o > O satisfy the condition

my,_ 1<x-1<

ve E".

M a|lf"oll >

There exists a positive integer g which satisfies the inequality

Aloll,

)] ‘ 1—aC, f (1/4% > 0.
i=1

Assume that a continuous mapping g;: D — E* such that
FEog(D)nP B, 1)=0

is defined. There exists a continuous mapping h: D— E* such that
R(D)A P~ (B(A, )= and his Cor close to f®¢*Vog, We define g;4;
=F1*Yoh, By (1) there exists a continuous mapping G = limg;. G(D) is a

continuum. In [7] Przytycki proved that

o0
k = dim(r(G(D))) = dim(G(D)) = dim(cl( U f'omoG(D))).
j=-e

In this paper we prove the following

TueoREM 2. Fix 1< k< n-2. Let f: T"-— T" be a hyperbolic toral
automorphism. Let 1,...,A be arbitrary eigenvalues -for f such that 1
<Al <€...<|4f and let V, c E, ,.... Vi< E; be arbitrary finvariant, linedr

1 !

subspaces in R, Y. dimV; <k, Y. dimV;=k+k'> k. Then for every £>0
j=2 j=1 ©
there exists a k-dimensional continuum K < T" such that dim (cl( U FKY)
j==w

=k and

1
(i) Ck < e+(log |/11|)'1 ((dim V; —k)log|4;| + Y. dimV¥;log|,l),
j=2
. / log|44|
(ii) Setk+k (l_loglll


GUEST


40 M. Urbanski

Remark. In constructing K one can consider, instead of the whole V;,
1

an invariant subspace V; « ¥, such that dim(V;@® @ V}) = k+k” > k, where
2

k" =1if 1, isreal and k” = 1 or 2 if 1, is complex (not real). In the case k” = 2

one can consider only dim }7 > 2. (Otherwise, if dim ¥} = 1, one could consider

I-1 i—-1

@ ¥; only, having dim({@ V;) = k+1.) These changes of V; (V) clearly improve
1 1

the estimations (i), (i) for an appropriate K. It is immediately computable that,

after these improvements of the spaces ¥ (for k' = 1 or k' = 2 and dim V; > 2),
estimation (ii) is better than (i)!

For example, in the case of T% 1; < 1 < 1, < A4, for every curve y with
non-dense orbit, its capacity, by Theorem 1, satisfies

L logl,
>2— }
¢ 22 log A5

This estimation is the best possible because, by Theorem 2, there exists a
log i .
curve 7y, with non-dense orbit where Gy s e+2—B§75. Can this ¢ be
. 3
removed?

If A; =25 then the method used in the proof of Theorem 1 gives
nothing interesting. In view of Theorem 2 we really cannot have any
estimation of type Cg > 1+const > 1. So we cannot prove anything more
than non-rectifiability.

6. We shall use the following simple

GroMETRICAL LEmMA. For all integer numbers n =1, 1 < p < n, and real
numbers y, 1 > 0, there exists a constant C >0 such that, if W is a p-
dimensional parallelepiped lying in R" with the edges of lengths ay,...,a, =1,
then I (W, y) < Cay...a,.

Proofs.
1. Proof of Theorem 1. Consider first the case where {Ag—1] > 1. Fix

0 <6 <(dg—|4g~1])/2 Suppose to the contrary that the closure of the orbit of K
under f does not contain any coset of a toral subgroup invarjant under f™ for

q
every m 2> 1. The definition of the linear space @ ¥ immediately implies the
r

existence of at least one pair (a, b) of points lying in K such that
q—1
(0) b—a=v;+v, vle(-?Eli, 0#vel,

The group cl(m(¥})) is of course a toral subgroup invariant under f".
Therefore, according to the contrary assumption, for every x e R" there exists

icm
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at least one point % €V, and &(x) > 0 such that

FK) " B(n(x)+(), e(x)) = @

for every j= 0.

Choosé points xy,..., X,,& R" such that |J B(m(x;), 3¢ (x)) = T" So, for every
i=1

xe R, there exists a point x;eR" (1 <j<m) such that e(m(x), m(x;))
< 3e(x;). Thus, for & =4min(e(xy),..., e(x,))

(1 SHK) N B(n()+7(%), 2&) = @

for every j= 0, xe R",
(after a new, improved choice of X).
* Denote by d; the infimum of the lengths of rectifiable curves joining the
q
points a and b in ¢+ @ ¥, whose jth image under F is disjoint from
P
B(x+X, )+ Z" for all xe R". It is clear that there exists a constant C, > Osuch
that
N . q
2) 1| < Cy(Ag+0) |lul  for every ue @ V; and j > 0.
)4
Let 6;=1¢/C,(4,+6) (j=0,1,..). By (1) and (2

@) 7 (B(R, Sj)r\(c+(—ji731/,7))m(B(x+J‘c, 9+Z)=0Q for j>0 xeR.

Now, we consider an arbitrary § ;-net in K. Since K is connected, there exists
a broken line with the vertices chosen from our d;-net and the distances
between the successive vertices not greater than 25;. Obviously, this broken

a .
line lies in a coset ¢+ @ ¥ and due to (3) its image under fV is disjoint from B (x
4
+X, e)+2Z" for all xeR". So
4;<25,1(R, 5)).

This implies
IR, 6)> 5‘—1;—] L e
and
logI(R, 8) _ Iog(C; (4y+6))/26) + logd,
—logé; log (C; (A, + 6)T/e)
but, as .
log(Cy (4, + 6)/2e) _

= 10g(Cy (A, +0)fe)
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we obtain

. logd;
@ Cy> 1+h¥1.s;pjlog(lq+0)'

Since the torus T" is compact, there exists a constant C, > O such that
every segment of the straight line x+ ¥, with fength > 3 C, intersects the set
B(x+v, ¢/3)+Z" for all xeR", veV,.

Since the directions of the vectors f7b—f7a tend to the direction of the
straight line ¥, due to |4,-; <A, and due to (0), for an integer j large
enough every segment of the stralght line x+R(f?b—f'a) with length C,
intersects the set B(x-+v, &2)+Z" for all xeR", veV,.

For every j >0 denote by I; an arbitrary rectlﬁable curve in c+@ V;

joining a and b such that
5 F)nBx+x +2Z" =0 for all xeR"

q . q-1
Denote by P; the projection of @ ¥; onto the line R(f'b~j’a), along @ ¥,
14 P

In the curve fU(l;) choose points f7a = yy,..., Vi Vin+1> Yup+2 =J' b such
that || P; (¥4 1~y = C, fori=1,...,t(j) and “PJ(YI(j)+2_th)+1)” < C,. Let
Vies = Vi+Pjir1—y)en+R(F'b—f7a) (1<i<t(j)). Since the interval
V;¥i+1 has the length C,, it intersects B(y,+7¥;, ¢/2+Z" for every
1 <i<t(j) and j large enough. Thus by (5) there exists a point z; in the
segment of the curve j7(l) between the points y, and y;+; and a point

. n q—_l
zey;+R(F7b—77a) such that z,—zie D V,, ||lz;—z]| = &/2.

a=p

Yi+R(F/ b-Flq)

e ™

' Since X (R(f'b—f'a), ;)0 and 4, is the eigenvalue for f corresponding
to ¥, there exists a constant Cy >0 such that

/%l 2 C3(hg—0)llull  for every k = 0, ue R(b—a).
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tH+1

Observe that Z IVi+ 1=yl =I77b—F7 al|; hence

Co(t(N+1)= C3(A,—0)|Ib—al|.
So
(6 t(j) = C3* C3(4,—6)/||b—al| -1
and
I zi=F Iyl < C,C3 1 (4, —6) .

. qu
There exists a constant C, >0 such that, for every ue @ V., j=0,
r

I~ ull < Ca(lAg-1]+6) [[ul.
By the triangle inequality, for every i = 1,...,t(j) the length of the part
of I; between y; and z; is not less than

W y=F =zl 2 Wz~ =T~ =7yl
Z Ci (-1l +0)7e/2—C, C3* (4~ ).

Taking the sum over i and the infimum over the rectifiable curves, we obtain
by (6)

d) > (€31 C3 (= 0) Ib—al| ~1)(C (g1l +6) 7 &/2— C, C5 2 (3,~6) )

(
% 21 C3 C (A= O/({Ag- 1| +0)) —[Ib—all +-
+C,C5 (4, ~0)" f—~c4‘(llq 1|+9)'

{\s (Ag= O/ Ay~ 1|+6) > 1, |A,_4l, 4,—6 > 1, there exists a constant Cs >0
independent of j such that for j large enough
d; 2 Cs ((2,— O)/(|2g- 1| +0))’.
Together with (4) this implies that
Ce> 1+1imsupj(logu"_e)fl()g(u"’ 1|+0))+log Cs
oo Jjlog(A,+6)
log (4, —0)—log (|4, 4] +6)
log (A, +6) )

Since 0 can be an arbitrarily small positive number, we have

=1+

log|4,-,
log i,

_10g 1A,

Ci=2-
X log 4,

hence Cyx>2

This contradicts the assumptions of our theorem.
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The case |4,—,| <1 is much simpler. Let P, denote the projection of
é V; onto ¥, along q@
g,,(f (R), P,(F/(R) tend exponentially to 0, while the lengths of the curves

P, (F/(K)) tend to co. Hence, in T", cl(zV}) = cl (190 SH(R)) (we use again the fact

stated directly after formula (4)).

. The Hausdorff distances between the sets

Proof of Geometrical Lemma. We can cover each edge of length a;
(1<i<p) by [a/5y]+1 segments of length <4y. Thus we can cover our
parallelepiped with

r d 2ai a; 4
iI=]l<[2ai/v]+1) H( ) (V ,1) Ij

parallelepipeds with the edges of length < y/2, because ; <y (1 <i<p)
Since each parallelepiped with the edges of length < y/2 lies in a ball of
radius <y, the Lemma is true if we set C = (2/y+1/n)". .

Proof of Theorem 2. Assume dim E* = 1. We mention at the end of
-the proof how to get rid of that with the use of an idea from [7]. Fix
&, 0 > 0. Wishing to construct a set satisfying the properties from Theorem 2,
we must state precisely the deﬁnition of the mappings g;: D—E" i=1,2,...

from [5, Introduction]. Let V= (—B . We shall regard as a “good” paral-
lelepiped each k-dimensional paral]eleplped lying in V each edge of which is
!
parallel to some vector from |) ¥, and is of length not less than r/4.
i=1

Let ¥ =(vy,..., ty4+x) be a basis in V such that vE U o i=1,

., k+ k. Let t be a “triangulation” of ¥ by parallelepipeds w1th edges of length
exactly r/4, parallel to vectors from ¥~
Denote by k(W) the k-dimensional skeleton of a parallelepiped W.
Having g, D—V defined, first perturb f4*Yog, to h by projecting
FeVog,(D)nP Y (B(A, 7)) onto P"*(FrB(A,r)) as in [7]. Next ap-
proximate h by ' so that

WD) = U {k(W): Wer, Wnh(D) # O},

(Do this by consecutive projections onto the skeletons {JI(W), I=k+
+k'—1,...,k). Observe that there exists a constant C; >0 such that

oW, J4* Nog) < Cyr h(D)n P~ (B(A', 1/2)) = @.

Now, if Q =V is a “good” polyhedron, i.e., if it is a union of a finite
number of “good” parallelepipeds, then, setting in the Geometrical Lemma

and

icm
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n=rf4 y=1/2, we get

10,12 < }'f W, 1/2<C i af...aP
& A

where Q = U W, and each W, (1 <j<m) is a “good” parallelepiped with

edges of length a?,...,dd.

We denote by I (Q) the infimum over all admissible right-hand sums.
Therefore

(1 1(Q, 1/2) < CI(Q).

If g is large enough, then for every ueE*, ||f4u| = |Jul|; so, if W is a
“good” parallelepiped, then f%(W) is also a “good” parallelepiped with edges
whose product of lengths is not greater than

X
:R‘

aj,

Ca (Al +0)™" 7" ﬁ (2] +6)""iy f[ 4=
=2 i=1

i=1

[

where C, >0 is a constant independent of j, and {a;}}., are the lengths of
the edges of W. Thus, if Q is a “good” polyhedron, then

2 1(f(Q)) < I(Q) C, 4%

Let Q(X)=U{k(S): Ser, S = B(F*(X), (C, +3)1)}h
Observe here that Q(X) is a “good” polyhedron.

Now, if W is a “good” parallelepiped, then, since f4(W) also is a “good”
parallelepiped, the number of parallelepipeds Sez, S < B(f4(W), (C1+3)7)

where X cV

is not greater than C, H a;, where {a;}¥_, are the lengths of the edges of

<1
FeW) and C; is a constant coefficient. Thus

1ew) <ear2(*1¥)c Tl a

Consequently, if R is a “good” polyhedron, then

©) 1Q(R) < 23 ¢/ax (¥ )1 (7o),

, S Vog,,, (D) = Q(fYog;(D), we have
f’yogj(D)CQj(gO(D))v j=0’1""a

and by (2) and (3) for h = 2C, C, (r/4)* (k+k’)
k

Since, for every j=0, 1,...

1(Q/ (g0 (DY) < W 49 1(go (D).
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By (1) this implies that for j=0, 1,...
1(f90g;(D), 1) < I(Q'(90 (D)), 1/2) < CI(Q’ (90 (D)) < Ch' A% I (g, (D)).
From the construction of G we have o(f%0G, f%og)) < r. Therefore
(4 I{(7%0G (D), 1+2r) < Ch! A% I(go(D)).
There exists a constant C, > 0 such that
1770l € Co(Aa]=6)""|loll  for every ve ¥, m > 0;
50
I(G(D), Co(1+2r) (A4 —-9)"’/) < Cthqu(go(D)),
Thus, by (1) from the Introduction,

o LogI(G(D), Cy(1+2)(144/-6)"")
Comy =1 )
6) II,-ILS:p —log(Cq(1+2r) (124~ 6)~")

! -
logI(go(D))+jlog h+jq((dim V; — k') log (J4,] + 0) + Y dim ¥ log ()4 +0))
lim L2
joa ~log(Cs(1+20)+jqlog (|4, - 0)

1 logh
q (44~

+ log™! (|A4] — ) ((dim V; — k') log (|A,] +6) + Z dim ¥ log (|4, +0)).

Since th]S inequality holds for arbitrary 6 > 0 and since k is independent *

of ¢, for ¢q large enough we obtain the estimation (i) from Theorem 2.

In proving (i), we estimated the number ¢f “ellipsoids” j~#(By (-, 1+42r)).
Instead of that we could divide (cover) each such “ellipsoid” into cubes with
edges of the length of the shortest axis of the “ellipsoid”. We shall now prove
estimation (i) with the use of this idea..

There exists a number £ > 0 such that every ball By (x, 1+2r), xe ¥, lies
in a parallelepiped I1(x) with edges of length exactly £, parallel to the vectors
from 7.

Also there exist constants Cs, Cg such that

17~/ wll < Cs (Al =65/ Iwll ~ for every j> 0, we¥, i=1,..,},
179wl = Co(1+6)~/w]  for every j 2 0, we ¥

Thus we can cover each edge of the parallelepiped 7~%(II(x)) parallel to
some vector from V; by [ECs || —0)Y/ECs(I4| +0)"¥]+1 segments of
length < C5&(|4—6)"%/; bence for j large enough we can cover our paral-

lelepiped by
2C; (Mll +0 )"j]mm vi
H [ J A =
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parallelepipeds with edges of length < £C; (|A]— 6)~%. Therefore, by (4), for j
large enough,

Ktk 1 dim V;\aj
1(G(D), 26C5(41—6) %)< C<z_cc6_5> I(go(m)th'ﬂ(H ("1’“9) ) .

s \=o

By (1) from the Introduction it follows that

1 log h
Copy S —————
0= glog (14l —
1
(dim ¥, — k) log(|A,[+6)+ Y. dim ¥;log (|4 +0)+ (k+ &) log (4] +6)
+ i=2 : _
log (4, —6)

1

Z im ¥ log (|4 —6)
log(14]—6)

Since 6 > 0 is arbitrarily small, for g large enough

log Uql)
log]4)|

Cg(p) $.€+k+kr/(1—

and consequently

log |4,
< 1= .
Cuemy Se+k+k (1 oz /2]

I dimE*>1 to keep” still dim,,(cl( () fi(=(GDY)) =k Ge.
j=-w

dim,,, (E’ ncl( Cj Sfi(r(G (D))))) =0), one can repeat the corresponding
J=—w

construction from [7].

Namely, having f%*Yog,, one can change it to k" such that k(D) is
disjoint from a family of dispersed balls in E¥, with a fixed (may be, large) radius.
Next one can change it to h and b’ as before. Large balls need large g, in
particular to have convergence as in formula (2) from the Introduction. Of
course, Q(X) and the constants C,r, C; must be changed adequately.

Estimations for the Pesin capacity

1. Let M be a smooth Riemannian manifold, let v be a Riemannian
measure on M, let X = M be an arbitrary Borel subset. Denote by %
= {U,}ses an arbitrary family of-Open subsets in M satisfying the following
condition:

(P) For every e¢>0 there exists a subfamily {Vi}ia, Vie¥ of
U such that \JV; > X and, for icl, diam(V) < e.
iel
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Analogously to the definition of the dimension of the set X relative to the
manifold M and family %, see [6], we can define the capacity of a compact set X
relative to the manifold M and family % as follows:

M. 2)-Cy = dim Mlimsup 22K %9
(M, %)-Cy = dim Mlm SUp=— S @, &)

where I(X, %, ) denotes the smallest number of sets in % with diameter <¢
covering the set X and v(%, &) = sup {v(U): Ue, diam(U) < ¢|

2. Let N be a smooth Riemannian manifold, /i N~ N a diffeomor-
phism, M = N a smooth immersed submanifold, and X < M any Borel
subset. Fix & > 0 and consider the family

Upy={U € M: 350350 U =1 7" (B (/" (), 9)}-

Suppose that for sufficiently small § > 0 and for the family % , condition (P)
holds. We call the numbers

Cxs = limsup((M, %;,5)-Cx),
d-+0 4

Cxs = liminf((M, %,,)-Cx)
§~+0

the upper and the lower capacity relative to the mapping f, respectively. If Cr.s
= Cy, s, then we shall call this number the capacity relative to the mapping f
and denote it by Cy,;.

3. Now we prove the following
TreoreM 3. Let f: T"—>T" be a hyperbolic toral automorphism. Let
K < T be a set such that its lift K < R contains a k-dimensional (1 <k < n)

continuum K = c+ (~B i, where V, c E; (1<i< ) are F- inuariant linear sub-

spaces inR", A; are the elgenvaluesforfandl < Mll < |y IfZ dim ¥V, € k,

}: dim ¥, = k+k' and the projection of K onto EB V, along V; hus a non-empty
i=1
interior, then, taking in the definition of the Pesm capaczty N=T,M=n(c+

1
+ @ V), the capacity Cy,, exists and
. :
]
log|4,|(dim V; —k')+ " dim ¥, log |4
' 2

Cy > (k+K) :
Y dim ¥ log |4
1
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Proof. It is clear that in this case the family % ; satisfies condition (P) for

every 6 >0 and our theorem is equivalent to the same theorem if we replace T"
by R, (c+(—BV) by c+6—) 7, K by K, and f by f.

Observe that here the map 6 —(c+ @ o U N)-C  is constant; hence Cy
1

exists and, of course, it is equal to

IOgI(X, %]',6; H, 8)

“loge for every & > 0,

(k+k') limsup
e=0
1
where pis the Lebesgue measure onc+ @ ¥V, and I(X, %y, u, ¢) is the smallest
1

number of sets in % with measure p less than or equal to &, covering the set X.
Now, fix §,68>0. Let U, 7B iy (7 (05 SeUss (xeM =c+

+@V). Since p(U)= det(f']@ V)i I's***, where I' is the Lebesgue
1

H®~

!
measure of a unit ball in @ V;, it follows that if u(U;) <e then
i=1

—log(a(FE"“‘))
1
log det (] l(—lB 4]
and this implies that

, 1
[—log(s/rsk+k )/logdct(f[ela'l’i)]

(1) IR, U5 p, 0 = 1(F (R), 8).

From the assumptions of our theorem there exists a constant C; > 0 such that
for j >0

I{F/(R), 8) = Cy (4] ~0)"™ 7" I104 —6" iy,

By (1) this implies
1

(dim ¥, —Kk)log(|A;| — 8)+)_ dim ¥ log(|4| —6)
2

Ciy = (k+k) 7
Y dim ¥ log |4
1

" Since 9 is arbitrarily small, we obtain the required estimation.

4. We also prove the following
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TuroreM 4. The continuum K = n(G (D)) from Theorem 2 satisfies the .
Sfollowing inequality:

1
(dim ¥, —K)log|A,|+ Y, dim ¥ log| 4|
2

Ci.s S e+(k+Kk) 7
Y. dim V;log 4]
1

1
Proof. Let V;=F"9(By,, (700, 1+2)e ¥z 45 (xeM = EP V),
where ¢ and r denote the numbers from the proof of Theorem 2.
Obviously, for
. log (¢/T' (1 +2r)**¥
o= [ 2Tz

: ]‘“’ #Vj) < €.
log det (7D V)
1

Therefore, by (4) from the proof of Theorem 2,

1GD), Up,142m 1, ) SI(FH90G(D), 1+2r)
< Chfm‘”‘nl(go(D))

and

log h logd
log det(f4V) log det (f]V)’

Thus for g large enough we obtain our estimation because

Cewy < (k+k) +(k+k

1
log A = (dim V; — k) log|4,|+Y. dim ¥, log 4|
2
and

]
log det(f]¥) = Y. dim ¥} log|4,].
1

Remark. In view of Theorém 4 we see that the estimation from
Theorem 3 is the best possible. This is done for every k. Recall that for
classical capacity we obtained the best possible estimations only for the curve
(n=1).

One might think that the Pesin capacity is more adequate for such
estimations.

However, the estimation in Theorem 3 is valid for every k-dimensional
continuum K including. continua with dense orbits! So the Pesin capacity is
less sensitive than the classical one. It does not detect the “fractal” shape of
curves with non-dense orbits.

icm°
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