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The Lie structure of C* and Poisson algebras
. by
JANUSZ GRABOWSKI (Warszawa)

Abstract. Associative algebras with a Lie structure are considered. In particular, we
describe the form of maximal Lie ideals of C* algebras, maximal Lie ideals and maximal finite-
codimensional Lie subalgebras of Poisson algebras of functions on symplectic manifolds.

* 1. Notation and preliminaries. There are many natural algebraic objects
which carry both an associative and a Lie ring structure. For example, every
associative ring A can also be regarded as a Lie ring with the Lie bracket
[X,Y]:=XY-YX.

It is easy to see that in this case ady is a derivation of the associative
ring A for all Xe A, ie,

(1.1) [X,YZ]=[X, YI1Z+Y[X, Z].
We also have the identity
(1.2 [X, YZ]+[Y, ZX]+[Z, XY]=0.

Another example is the associative ring C*(M) of all smooth functions on a
symplectic manifold M with a Lie ring structure given by the Poisson
bracket. In this case also ady is a derivation of C*(M) for all Xe C*(M).

More generally, by a Poisson ring we shall understand an associative
commutative ring A equipped with a Lie bracket which makes 4 a Lie ring
and is such that ady is a derivation of the associative ring A for all Xe 4.

One can check that (1.2) is then also satisfied.

Our aim in this note is to propose a general approach to investigations
of such structures (close to the methods used in [1] and [3]), which gives us
various results (partially well-known) concerning the relations between the
Lie and the associative structures.

The above examples lead to the following definition:

(1.3) DeFINITION. An associative ring (algebra) 4 equipped with a Lie
bracket which makes A a Lie ring (algebra) and satisfies (1.1) and (1.2) will be
called an AL-ring (algebra). )

A topological AL-ring (algebra) is defined in the natural way.

(1.4) DEFINITION. An associative ideal K of an AL-ring (algebra) A4 which
is also a Lie ideal of A will be called an AL-ideal of A. An AL-homomorphism

“
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of AL-rings (algebras) 4, and A, is a mapping a: 4; — A, which is
simultaneously a homomorphism of the associative and the Lie ring (algebra)
structures.

1.5. Remark. AL-rings (algebras) with AL-homomorphisms form a
category. For-an AL-ideal K of an AL-ring (algebra) 4 the additive group
(vector space) A/K has a natural AL-ring (algebra) structure for which the
natural projection n: 4 — A/K is an AL-homomorphism.

For subsets B and C of an AL-ring 4 we shall denote by [B, C], BC
and B+C the sets of all finite sums of the elements [X, Y], XY and X+,
respectively, for XeB and YeC.

Instead of [B, {X}], B{X}, {X} B and B+{X} we shall write [B, X],
BX, XB and B-X, respectively.

By subrings (subalgebras), left or right ideals and ideals of an AL-ring
(algebra) A we shall always understand subrings (subalgebras), left or right
ideals and two-sided ideals of 4 with respect to the associative ring (algebra)
structure. :

Subrings (subalgebras) and ideals of 4 with respect to the Lie ring
(algebra) structure will be called Lie subrings (subalgebras) and Lie ideals.

Let L be a subset of an AL-ring A. We shall use the following notation:

N(L):={Xed: [X,L]1<L},

ad™'(L):= {XeA: [X, A] = L},

P(L):={XeL: AX =L, X4 cLand AXA c L},
J(L):= Plad™*(L)).

The following theorem contains a list of rather trivial and practically
well-known observations (see for example [1], [7], [8], [12]), but it will be
very useful in the sequel.

(1.6) TurOREM. Let A be an AL-ring (algebra) and let L be an additive
subgroup (a linear subspace) of A. Then:

(@) N(L) is a Lie subring (subalgebra) of A. .

(b) ad~ (L} is an AL-subring (subalgebra) of A and a Lie ideal of N(L).

(c) P(L) is the largest ideal of A contained in L.

(d) If L is a Lie subring (subalgebra) of A, then L = N (L) and P(L)is a
Lie ideal of N(L). Moreover, J(L) is a Lie ideal of N(L).

() If L is a Lie ideal of A, then L= ad™*(L), N(L) = 4, ad~*(L) is a
Lie ideal of A, J(L) is an AL-ideal of A and [ad~'(L), ad~!(L)] = J(L). .

Proof. (a) This follows immediately from the Jacobi identity.

(b) ad™!(L) is a Lie subring (subalgebra) and a Lie ideal of N (L) by the

Jacobi identity. By (1.2) ad~*(L) is an associative subring (subalgebra).
(¢) Trivial.
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(d) Let L be a Lie subring (subalgebra). Obviously, L = N(L). Since
A[P(L), N(L)] = [AP(L), N(L)]+[4, N(L)]P(L) = L
and similarly [P(L), N(L)JA = L and A[P(L), N(L)] A c L, P(L) is a Lie
ideal of N(L). By definition, J(L) = P(ad~!(L)), so as above J(L) is a Lie
ideal of N(ad™!(L)). Also, ad™*(L) is by (b) a Lie ideal of N(L), and so
N(L) = N(ad™*(L).

(e) Let L be a Lie ideal of A. Then obviously L =ad™*(L), N(L)= 4
and ad~*(L) is a Lie ideal of 4 by (b). By (d), J(L) is an AL-ideal of 4 and
ad™*(L) is a Lie ideal of A and an associative subring (subalgebra) by (b).
Then .

Afad™1(L), ad~*(L)] = [Aad~ (L), ad~* (L)]+[4, ad~(L)]ad "1 (L)
cad ! (L).
Similarly, [ad~!(L), ad~!(L)]4 < ad~*(L). Hence by (1.2)
[, A[ad™'(L), ad~*(L)] 4] < [4, [ad"*(L), ad~* (L)] AA]+
+[[ad~!(L), ad"*(L)], A44] <[4, ad"*(L)] = L
and so A[ad™!(L), ad™*(L)]4 < ad™*(L). Thus

[ad™'(L),ad " (L)] = P(ad™* (L)) =J(L). =
If A is a topological AL-ring and L is closed, then N(L), ad™*(L), P(L)
and J(L) are closed and we can derive the topological version of (1.6).

(1.7) DeriNimioN. For an ideal J of an associative ring 4 and for a
natural n we define J/n:={XeA: nXeJ}. We define the radical of J as

r(J):= {XeA: there is an m such that (XA)(XA)...(X4)(m times) < J}.

(1.8) Remark. It is easy to see that J/n and r(J) are ideals of A.
(1.9) Lemma (Herstein). Let A be an AL-ring (algebra), J an ideal of A

and XeA such that [X,[X, A]] = J. Then [X, AJA[X, Al<J/2.
Proof. Take Y, Ze A. By (1.1)

[X,[X, YZ]] =[X, [X, Y]] Z+2[X, Y1[X, Z]+ Y[ X, [X, Z]].

Hence [X, YI[X, Z]eJ/2. Putting Y:=VU, V,Ued, we get by (L1)
[X,VIULX, Z]eJ/2. m

The following theorem and corollary generalize the classical theorems
about associative rings of Zuev [12] and Herstein [6].

(1.10) Tueorem (Zuev). Let A be an AL-ring (algebra) and let L be
a Lie ideal of A. Then for each Xead™*(L) the square of the ideal I of A
generated by [X,A] lies in J(L)2, ie, II<J(L)2. Moreover,
[A, ad™*(L)] = r{J(LY2).


GUEST


o ©
262 J. Grabowski Im“

Proof. ad (L) is a Lie ideal of 4 and [ad™*(L), ad"*(L)] = J(L) by
(e) of Theorem (1.6), so by Lemma (1.9),

[X, AJA[X, Al J(L)2 for all Xead™!(L).

It is easy to see that for Z =[X,, Y]+ ... +[X,, Y,], where X,cad™*(L)
and Yed, i=1,...,n we have

(ZA)(ZA)...(ZA)(n+1 times) = J (L)/2.

Hence Zer(J(L)/2). =

(1.11) CororLarY (Herstein). If A is an AL-ring (algebra) which is simple
as an associative ring (algebra) and is of characteristic # 2, then for each
Lie ideal L of A we have [A, A] = L or L < Z(L), where Z(L) is the Lie
centre of A.

Proof. If [4, A] ¢ L, then ad™*(L) # 4 and J(L) = {0). Since 4 is of
characteristic # 2, J(L)/2 = {0}. If there is an X e L such that [X, 4] {0},
then the ideal I of A4 generated by [X, A] equals A and by Theorem (1.10),
AA = {0}. Since A is simple, A as an associative ring (algebra) is generated
by one element and by (1.1), [4, A] = {0} = L — a contradiction. m

2. Lie snbalgebras of finite codimension.

(2.1) ProposiTioN. Let A be an AL-algebra. Then:

(@) If L is a finite-codimensional Lie subalgebra of A, then ad™*(L) is a
finite-codimensional AL-subalgebra of A.

(b) If L is a finite-codimensional associative subalgebra of A, then P(L) is
a finite-codimensional ideal of A.

() If L is a finite-codimensional Lie subalgebra of A, then J (L) is a finite-
codimensional ideal of A. In particular, if A has no finite codimensional ideals
except A, then every finite-codimensional Lie subalgebra of A contains [A, A].

Proof. (a) Since Lnad™*(L) is finite-codimensional in L as the kernel
of the adjoint representation of L in the finite-dimensional vector space A/L,
ad™!(L) is of finite codimension in A.

(b) Put K={XeL: AX = L}. K is a left ideal of A and it is of finite
codimension as the kernel of the natural representation of L in the finite-
/dimensional vector space A/L by the right multiplication. Moreover,
P(L) = K-and P(L) is finite-codimensional in K as the kernel of the natural
representation of K in 4/K by the left multiplication.

(c) Since ad™*(L) is by Theorem (1.6) (b) an associative subalgebra of 4
and it is by (a) of finite codimension, J(L)= P(ad~'(L)) is of finite
codimension in 4 by (b).

If J(L) = 4, then clearly [4, A]c L. u

The above proposition allows us to answer P. de la Harpe’s question
[5] whether the Banach-Lie algebra gl(H, C,) of all compact linear
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operators on a separable Hilbert space H has a nontrivial Lie subalgebra of
finite codimension (the answer for the case of closed Lie subalgebras is given
in [8]) and to solve the problem of the existence of nontrivial closed Lie
subalgebras of finite codimension for other complex classical Banach-Lie
algebras of compact operators.

Let us recall what “classical” means above. Let H be a separable
infinite-dimensional Hilbert space and let 1< p < +o0. By gl(H, C,) we
denote the Schatten p-class of compact operators on H (see [11]). The classes
gl(H, C,) are ideals 'of the associative algebra gl(H) of all bounded operators
on H and gl(H, C,) =gl(H, C) if p < gq. In particular, gl(H, C,) is the ideal
of all compact operators, gl(H, C,) is the ideal of Hilbert-Schmidt operators
and gl(H, C,) is the ideal of nuclear operators. Each gl(H, C,) is a2 Banach
algebra and a Banach-Lie algebra with respect to the Schatten p-norm.

Let Jp be a conjugation and J, an anticonjugation of H. This means
that there are orthonormal bases (e,),ey and (f,)uez+ of H such that

Jr(Y xpen) = Y X.e,

_ neN neN

and

JQ(Z Xy font Z x"f;.) = ZNx—nf;n_ Z Xy f e

neN neN neN
We denote after [4]:

o(H, Jg, Cp):={Xegl(H, C,): JgX*Jp=—X},
sp(H, Jg, Cp):=1{Xegl(H, C): JoX*J, =X},
SI(H, Cy):= {Xegl(H, C,): tr(X) = 0}.
(2.2) Dermimion. The Lie algebras gl(H, C,), sl(H, Cy), o(H, Jg, C,)

and sp(H, Jy, C,) are called classical complex Banach-Lie algebras of
compact operators.

(2.3) TueoreM (P. de la Harpe). The classical complex Banach-Lie
algebras of compact operators, except gl(H, C,), are topologically simple. The
only nontrivial closed Lie ideal of gl(H, C,) is sl(H, C,).

(2.4) TueoreM (P. de la Harpe). The Lie algebra gl(H, C,) has no
nontrivial finite-codimensional Lie ideals.

The following theorem generalizes (2.4).

(2.5) Taeorem. The Lie algebra gl(H, C,) has no nontrivial finite-
codimensional Lie subalgebras.

The classical complex Banach—Lie algebras of compact operators, except
gl(H, C,), have no nontrivial closed finite-codimensional Lie subalgebras. The
only such Lie subalgebra of gl(H, C,) is sl(H, C,).

Proof. Since in associative algebras ideals are also Lie ideals, by
(24) gl(H, C,) has no nontrivial ideals of finite codimension and
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[el(H, C.), gl(H, C,)] =gl(H, C,) (see also [10]). By (2.3), if 4 is a
classical complex Banach-Lie algebra of compact operators, then A4 has no
nontrivial closed ideals and [4, A] is dense in A4, except 4 = gl(H, C,),
where [gl(H, C,), gl(H, C,)] is dense in si(H, C,) and sl(H, Cy) is 1-
codimensional in gl(H, C;). So the theorem follows by Proposition (2.1)
C). =m

( (2.6) Remark. Observe that the classical complex Banach-Lie algebras
of compact operators, except gl(H,C,), bave many dense finite-
codimensional Lie subalgebras, since [gl(H, C,,), gl(H, Cy,)] = gl(#H, C,).

(2.7) DerFiNmmioN. Let A be a (topological) AL-algebra. A (closed) ideal
(Lie subalgebra, Lie ideal) L of A will be called maximal if L+ A and if for
each (closed) ideal (Lie subalgebra, Lie ideal) K of 4 such that Lg K we
have K = A.

We shall deal in the sequel with AL-algebras which have the following
properties:

(P,) Every maximal finite-codimensional ideal of A is equal to its radical.
(P,) The Lie normalizer N (I) of each maximal finite-codimensional ideal I of

A is a proper finiteodimensional subspace of A.

The following theorem is analogous to a result of Atkin [1].

(2.8) THEOREM (Atkin). Let A be an AL-algebra satisfying (Py) and (P,).
Then I+ N(I) gives us a one-one correspondence between maximal finite-
codimensional ideals I of A and maximal finite-codimensional Lie subalgebras
of A not containing [A, AY. The inverse mapping is of the form Li—r(P(L)).

Moreover, each finite-codimensional Lie subalgebra of A not containing
[A, A] is contained in N(I) for a maximal finite-codimensional ideal I of A.

We shall use in the proof of the above theorem the following lemma.

(2.9) LemMa. Let A be an AL-algebra, let J be a finite-codimensional ideal
of A and let I be an ideal of A containing J and equal to its radical. Then
NJ) = N().

Proof. Let Xe N(J). Consider the finite-dimensional associative algebra
A'=A/J. Then I' =1/J is an ideal of A’ equal to its radical and since
ady(J) = J, ady can be projected on A’ and gives us a derivation ady of A'.

Take YelI' and define the descending sequence

Vi=YA o V,=YA YA > V,=YA YA YA >...

of subspaces of 4'. Since A’ is finite-dimensional, there is a natural n such
that ¥, =V,.,. Let Z=YU,YU,...YU,e¥, It is easy to prove by
Leibniz’s formula that (ady)"(V,+,) = I, so (ad})"ZeI'. On the other hand,
(ady)"Z is of the form

(ady Y)U, (ad} Y) U, ... (ady Y) U, +Y",

where Y'el'. Hence ady Yer(I) =1, ie, [X,I] <. w
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Proof of Theorem (2.8). Let I be a maximal finite-codimensional
ideal of 4. Observe that I A N(I) is an ideal of A, since

[ANMD AL, I <[4, I+AIN), I =1

and similarly (N (I) nI)A = N(I). This ideal is of finite codimension by (P,)
and it is easy to see that it contains II,
Thus if L is a Lie subalgebra of 4, L# A, such that N(I) < L, we have

HeInN{I)eP(L), sothat Icr(P(L).

P(L) is a finite-codimensional ideal of 4, P(L)=L# 4, so r(P(L))# 4
(P(L) is contained in some maximal finite-codimensional ideal of A which is
equal to its radical). Hence I = r(P(L)) by the maximality of I. In particular,
I=r(P(N(D)). :
By (d) of Theorem (1.6), P(L) is a Lie ideal of N(L). Thus
N() = Le N(L) = N(P(L))

and, by Lemma (2.9), N(P(L)) = N(I), so that N(I) = L= N (L) = N(N(I)).
This shows that N(J) is a finite-codimensional maximal Lie subalgebra of A.
Since N(N(I)) = N(I) # A, N(I) does not contain [A4, A]. :

If N(I) = N(I') for a maximal finite-codimensional ideal I of A, then as

above
I'=r(P(NI) =r(P(NIY) = I'.

Conversely, let L be a finite-codimensional Lie subalgebra of 4 which does
not contain [4, A]. Then the ideal J(L) does not equal A4 and it is of finite
codimension by Proposition (2.1). By Theorem (1.6) (d), J(L) is a Lie ideal of
N(L), whence L < N(J(L)). J(L) is contained in a maximal finite-
codimensional ideal I of A which by (P,) equals its radical. Thus by Lemma
(29), L= N(J(L)) = N(I) and the theorem follows. m

(2.10) CoroLLARY. Let M be a C*® (R-analytic, Stein) manifold with a C*®
(R-analytic, holomorphic) symplectic structure. Let A be the Poisson algebra of
all C* functions on M with compact support or the Poisson algebra of all C®
(R-analytic, holomorphic) functions on M. Then

Max L, = {feA: df (x) =0!

gives us a one-one correspondence between points of M and maximal finite-
codimensional Lie subalgebras of A not containing [A, A].

Proof. The maximal finite-codimensional ideals of 4 are of the form
I,={feA: f(x) =0} for xeM (see [3]), so 4 has the property (P,).

It is easy to see that

N({) = {feA: df (x)=0}.

Thus the property (P,) is also satisfied and the corollary follows by Theorem
(28). =
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3. Lie ideals.

(3.1) DeFiNmmoN. An ideal L of a Lie ring (algebra) 4 we shall call
perfect if L# A and ad™'(L) = L.

For a (topological) AL-algebra A denote by R,(A4) the set of all (closed)
ideals of A different from A and equal to their radicals and by R;(4) the set
of all (closed) perfect Lie ideals of A.

(3.2) TueoreM. Let A be a (topological) associative algebra over a field of
characteristic # 2 and such that the (closed) ideal generated by [A, A] equals
A. Then we have a one-one mapping « from R,(A) into R;(A) given by

R (A)aI+ad™ ' (e Ry(4).

The inverse mapping is of the form L~ P(L). In particular, if every (closed)
ideal of A equals its radical, then o is also “onto”.
Proof. Let IeR,(4). Since [4,ad " '(I)]<=I cad™*(I) (the second
inclusion follows since A is an associative algebra), ad™*(I) is a Lie ideal of
"4 and ad"'(I)#£ A4 by the assumptions. If Xead™'(ad™!(J)), then
[X,[X,4]] <1 and by Lemma (1.9), [X, AJ<r()=1, ie, ad™!(l) is
perfect. Since I cad™!(I), I = P(ad™*(I)). On the other hand,

P(ad ()[4, A] <[4, P(ad™* () A]+[4, P(ad™ ' (D)] A = 1.

The (closed) ideal generated by [4, A] equals 4, so P(ad™*(I)) 4 < I. Thus
P(ad™"() cr(I)=1 and thus P(ad~ (N} =1.

Suppose that every (closed) ideal of A equals its radical and let
LeR)(A). Then J(L)=P(ad"'(L))=P(L) and by Theorem (1.10),
[4, L] =r(P(L)) = P(L), ie, L=ad™*(P(L)). On the other hand, from
P(L) = L it follows that ad™*(P(L)) cad™*(L)=L. m

(3.3) Remark. Note that for each C*-algebra A4 every closed ideal I of
A is self-adjoint (see [2], § 1) and thus r(J) = I, because if XeA/I and
X(A/T)... X (A/T)(n times) = {0}, then (XX*)" = 0.

(34) CoroLLAry. If A is a C*-algebra such that the ideal generated by
[A4, A] is dense in A, then for A as a topological AL-algebra the mapping

R, (A)aI—ad~(De R (A4)

is a one-one correspondence.

For a (topological) AL-algebra A4 denote by M,(4) the set of all
maximal ideals of 4 and by M,(4) the set of all maximal perfect Lie ideals
of A. o

(3.5) Trirorem. Let A be a (topological) associative algebra over a field of
characteristic # 2 such that every (closed) ideal of A different from A is

contained in some ideal from R,(A) and that the (closed) vector space generated
by [A, A] equals A.

icm
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Then the mapping I+>ad™*(I) is a bijection from M,(A) onto M,;(A). The
inverse mapping is of the form L P(L).

Proof. It is easy to see that M,(A4) = R,(A), ie., each maximal ideal of
A equals its radical. Thus by Theorem (3.2)

M,(4)sI—ad~*(I)e R,(4)

iS a one-one mapping.

We shall prove that ad™*(J) is a maximal Lie ideal of A for Ie M,(A).

Suppose that for a (closed) Lie ideal L of A4, L+ A, we have
ad™'(I) = L. Then ad (L)% A by the assumptions and thus J(L)# A.
Since J(L) # 4, J (L) is contained in some ideal from R,(4), so r(J(L)) # A+
(l(r(J (L)) # 4) and by Theorem (1.10), [, L] = r(J(L).

Observe that Inad™*(l) is an ideal of 4 because of the inclusions

[A(I nad™'(D)), 4] <[4, A]I+A[ad™1(l), 4] = I
and

[(I~nad~ ' (D)4, A] < I[A, AT+[ad™1(J), AJA < I.

We have ad™!(I) c L cad (L) and thus I nad~'(I) c J(L) by the defini-
tion of J(L). Since II < Inad™*(I), I =r(J(L)). By the maximality of I,
I=r(J(L) U= c](r(J (L)))) and thus [4, L] <1, ie, L <ad™!(l), which
proves the maximality of ad™*(J).

It suffices to prove now that the mapping in question is “onto”. Take
Le M,(4). By Theorem (1.10), [4, L] = r(J(L)). Since J(L) # 4, there is an
IeR,(A) containing J(L) and hence containing r(J(L)). Thus L <ad™*(J)
and, by the maximality of L, L = ad™*(I). Since J (L) is the largest ideal of 4
contained in ad™'(L) and I cad™*(I) =L, I =J(L)=r(J(L)).

If I is not maximal, it is contained in some ideal I'e R,(4), I # I', and
as above I'=J(L) =1 — a contradiction. =

(3.6) CoroLLARY. If A is a C*-algebra such that [ A, A] is dense in A, then
I+>ad™ (1) gives us a one-one correspondence between maximal ideals I of A
and maximal perfect Lie ideals of A.

For a more general class of AL-algebras than those mentioned in the
above theorems we can prove a weaker result.

Denote

ad”“’(L)::_iad"'(L), where  ad~0*1(L) = ad™! (ad " (L).

It is easy to see that if L is a linear subspace of an AL-algebra A, then
ad”™ (L) is a Lie ideal of A.

(3.7) TueoreM. Let A be an AL-algebra over a field of characteristic # 2.
Suppose that r(J) # A for each ideal J of A different from A. Let L be a Lie
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ideal of A which does not contain [A, A]. Then there is an ideal J of A,
J # A, such that L < ad™*(J).

If additionally the ideal of A generated by [A, A] equals A and each ideal
of A different from A is contained in some maximal ideal of A, then each
maximal Lie ideal of A not containing [A, A] is of the form ad~*°(I) for a
maximal ideal 1 of A. In other words,

M,(A)3] —ad~®()e R,(4)

contains M,(A) in its image.

Proof. Let L be a Lie ideal of A which does not contain [A4, 4]. Then
by Theorem (1.10), [d4,L]<r(J(L)), J(L)=ad™'(L)# 4, and hence
r(J(L)) # A. Thus L<ad™'(r(J(L))) and since L is a Lie ideal of 4,
proceeding by induction we get L < ad“w(r (J'(L))). Suppose L is maximal.
Let I be a maximal ideal of A containing r(J(L)). Then L < ad™~ “(J). Since
[A,A] ¢ 1, ad™ (I} # A and. L=ad~*(I) by the maximality of L. w

(3.8) CoroLLARY. Let M be a C* (R-analytic, Stein) connected manifold
with a C® (R-analytic, holomorphic) symplectic structure. Let A be the
AL-algebra of all C® (R-analytic, holomorphic) functions on M with the
"Poisson bracket. Let L be a Lie ideal of A which does not contain [4, A].
Then for each feL there is a sequence p;, p, ... of points of M such that
dfp)=...=df(p)=0i=1,2,....

Proof. The proof is similar to the proof of Proposition 6.6 in [3]. Since
A bas a unit, every proper ideal of 4 is contained in some maximal and thus
prime ideal of A. Hence r(J)# A for each ideal J of A4, J s A, and by
Theorem (3.7), L<=ad™®(J) for an ideal J of A, Js A. There are
J1: 125 -, fu€ A such that df;, ..., df, span the cotangent bundle of M. Then
the hamiltonian vector fields X, =s grad(fy), ..., X, = s grad(f) span the
tangent bundle of M.

Suppose that there are an fe L and a natural m such that 4 f(p)=0
for each pe M and some natural k, < m. Then, as in [3], one can prove that
the ideal of A generated by the finite set

Q={X,0..0X)f iy, ...,ie=1.nm k=1,...,m

i
equals A. :

But X, (k) =[f, h] for all he A and i =1, ..., n, and thus @ < J, since
Lcad™>(J) — a contradiction. m ‘

(3.9) CoroLrary. Let A be the Poisson algebra of all C* functions with
compact support on a C*® symplectic manifold M or the Poisson algebra of all
R-analytic functions on an R-analytic compact symplectic manifold M. Then
each Lie ideal of A which does not contain [A, A] is contained in the Lie ideal
L,={fed: 0=df(p)=d*f(p)=..) for a pe M. ‘

In particular, in the R-analytic and comnected case the only such
nontrivial Lie ideal consists of constant functions.
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In the C® case the Lie ideals L, are maximal.
Proof. Each ideal of A4 different from A is contained in the ideal
I,={feA: f(p) =0} for some peM. It is easy to see that

ad™(Ip) = {fed: df (p) =... =d"f(p) =0},

so by Theorem (3.7), Lcad™®(I,)=L,.

To prove that in the C® case L, is maximal, it suffices to show that
[A, A]+L,=A. Let (xy,..., %y V1,.-,¥,) be coordinates in a
neighbourhood of p in which the symplectic form can be written as

S dx; A dy;. Then in a neighbourhood of p we have
i=1

Lf.1= z 0x; dy; 0Oy; Ox;

i=1

(Lo 2

Choose he A, feA such that a—?? = h in a neighbourhood of p, and ge A
1

such that g=y, in a neighbourhood of p. Then [f,gl=h in a
neighbourhood of p, which proves that [4, A]+L,=A. =

Note that the C* version of the above corollary is due to Qmori [9].

(3.10) ProrosiTION. Let A be one of the Poisson algebras mentioned in
Corollary (3.8). Then A has no finite-dimensional or Lie-commutative Lie ideals
except the Lie ideal of constant functions.

Proof. It is easy to see that the Liecentre of 4 consists of constant
functions. Assume that feA is not constant. Then there are pe M and
geA such that [f,gl(p)#0. If f is in a Lie ideal L, then [g" f]
=ng"" '[g,fleL and we can choose g such that L cannot be finite-
dimensional.

If L is commutative, then [f, g [f, g1] = [f, g1*+4[f. [/, g1] =0 and
since we can choose g such that g(p) =0,

[f. gLf, g1]® = (LS, 91 ()" # 0

— a contradiction. m
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Uniformly non-I") Orlicz spaces with Luxemburg norm

by
HENRYK HUDZIK (Poznaf)

Abstract. K. Sundaresan [15] has given a criterion for an Orlicz space L®(y) over an
atomless measure yx and generated by an Orlicz function ¢ satisfying the corresponding
condition 4, to be uniformly non-K". This paper gives some simpler criteria for this property of
Orlicz spaces over an atomless as well as a purely atomic measure x and generated by arbitrary
Orlicz functions (the necessity of the corresponding condition 4, is proved here).

0. Introduction. N is the set of positive integers, R is the set of real
numbers, (T, 7, u) is a space of positive measure. A function @: R— [0,
+ o0] is said to be an Orlicz function if it is not identically zero and is even,
convex, and vanishing and continuous at zero. The Orlicz space L*(y) is then
defined as the set of all equivalence classes of 7 -measurable functions x: T
— R such that [®(kx(#))dpu < +oo for some k > 0 depending on x. Under

T

the so-called Luxemburg norm || ||, defined by

Ixllg =inf{r > 0: [ (r™* x(r))du < 1}
T

the Orlicz space L®(y) is a Banach space (see [12, 13]).
Let us write I(x) = I,(x) = [ ®(x(2))dp for any xe L®(u). The functional
T

I is a convex modular on L®(y) (see [14]).
We define the subspace E®(y) of the Orlicz space L?(y) by

E®(y) = {xe L®(): I(kx) < + oo for any k > 0}.

Recall that an Orlicz function @ satisfies condition 4, for all ue R (at infinity)
[at zero] if the inequality @ (2u) < K& (u) holds for all ue R (for u satisfying
|yl = vo) [for u satisfying |u| <wv,], where K and v, are some positive
constants and @ (vy) > 0 (see [12, 13]).

0.1. LemMma (see [4, 5] and [10]). Let ¢ be an Orlicz function and
xe L®(u). The condition I{x) =1 iff ||x|l¢ = 1 holds iff & satisfies condition 4,
for all ue R (at infinity) [at zero] in the case of a measure space atomless and
infinite (atomless and finite) [purely atomic with measure of atoms equal to
one), respectively(').

') In the purely atomic case we assume that ®(c) =1 for some ¢ > 0.
P!
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