I. Labuda

258

STUDIA MATHEMATICA, T. LXXXI. (1985)

- [F] D. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge University Press. 1974.
- [K&A] L. V. Kantorovich and G. P. Akilov, Functional Analysis (in Russian), Moscow 1977; French transl., Éditions Mir, Moscow 1981.
- [L] I. Labuda, Completeness type properties of locally solid Riesz spaces, Studia Math. 77 (1984), 349-372.
- [L&Z] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, North-Holland, 1971.
- [S] Z. Semadeni, Banach Spaces of Continuous Functions I, PWN-Polish Scientific Publishers, 1971.
- [1] Yu. A. Abramovich, Some theorems on normed lattices, Vestnik Leningrad. Univ. 13 (1971), 5-11; English transl., Vestnik Leningrad Univ. Math. 4 (1977), 153-159.
- [2] A. Costé, Convergence des séries dans les espaces F-normés de fonctions mesurables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 131-134.
- [3] L. Drewnowski, On subseries convergence in some function spaces, ibid. 22 (1974), 797-803.
- [4] D. Fremlin, Inextensible Riesz spaces, Math. Proc. Cambridge Philos. Soc. 77 (1975), 71–89.
- [5] I. Labuda, On locally solid Riesz spaces, Bull. Polish Acad. Sci. Math. 32 (1984), 689-694
- [6] W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces III, Indag. Math. 66 (1963), 655-668.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK ODDZIAŁ W POZNANIU INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES POZNAŃ BRANCH Mieżwiskiego 27/29, 61-725 Poznań, Poland

Received October 21, 1983

(1928)

Added in proof. The proof of Theorem 2.6 is not correct. In its final part it is asserted that the set $q(A_{x^{\wedge}}^{\infty})$ is nowhere dense. It is not clear why this should be so since the function x^{+} need not be, a priori, constant on equivalence classes. In fact, it can be shown that Theorem 2.6 implies the non-existence of measurable cardinals (cf. the beginning of § 2).

The Lie structure of C^* and Poisson algebras

ь

JANUSZ GRABOWSKI (Warszawa)

Abstract. Associative algebras with a Lie structure are considered. In particular, we describe the form of maximal Lie ideals of C^* algebras, maximal Lie ideals and maximal finite-codimensional Lie subalgebras of Poisson algebras of functions on symplectic manifolds.

'1. Notation and preliminaries. There are many natural algebraic objects which carry both an associative and a Lie ring structure. For example, every associative ring A can also be regarded as a Lie ring with the Lie bracket [X, Y] := XY - YX.

It is easy to see that in this case ad_X is a derivation of the associative ring A for all $X \in A$, i.e.,

$$(1.1) [X, YZ] = [X, Y]Z + Y[X, Z].$$

We also have the identity

(1.2)
$$[X, YZ] + [Y, ZX] + [Z, XY] = 0.$$

Another example is the associative ring $C^{\infty}(M)$ of all smooth functions on a symplectic manifold M with a Lie ring structure given by the Poisson bracket. In this case also ad_X is a derivation of $C^{\infty}(M)$ for all $X \in C^{\infty}(M)$.

More generally, by a *Poisson ring* we shall understand an associative commutative ring A equipped with a Lie bracket which makes A a Lie ring and is such that ad_X is a derivation of the associative ring A for all $X \in A$.

One can check that (1.2) is then also satisfied.

Our aim in this note is to propose a general approach to investigations of such structures (close to the methods used in [1] and [3]), which gives us various results (partially well-known) concerning the relations between the Lie and the associative structures.

The above examples lead to the following definition:

(1.3) Definition. An associative ring (algebra) A equipped with a Lie bracket which makes A a Lie ring (algebra) and satisfies (1.1) and (1.2) will be called an AL-ring (algebra).

A topological AL-ring (algebra) is defined in the natural way.

(1.4) DEFINITION. An associative ideal K of an AL-ring (algebra) A which is also a Lie ideal of A will be called an AL-ideal of A. An AL-homomorphism

of AL-rings (algebras) A_1 and A_2 is a mapping α : $A_1 \rightarrow A_2$ which is simultaneously a homomorphism of the associative and the Lie ring (algebra) structures.

1.5. Remark. AL-rings (algebras) with AL-homomorphisms form a category. For an AL-ideal K of an AL-ring (algebra) A the additive group (vector space) A/K has a natural AL-ring (algebra) structure for which the natural projection $\pi\colon A\to A/K$ is an AL-homomorphism.

For subsets B and C of an AL-ring A we shall denote by [B, C], BC and B+C the sets of all finite sums of the elements [X, Y], XY and X+Y, respectively, for $X \in B$ and $Y \in C$.

Instead of $[B, \{X\}]$, $B\{X\}$, $\{X\}$ B and $B+\{X\}$ we shall write [B, X], BX, XB and B+X, respectively.

By subrings (subalgebras), left or right ideals and ideals of an AL-ring (algebra) A we shall always understand subrings (subalgebras), left or right ideals and two-sided ideals of A with respect to the associative ring (algebra) structure.

Subrings (subalgebras) and ideals of A with respect to the Lie ring (algebra) structure will be called Lie subrings (subalgebras) and Lie ideals.

Let L be a subset of an AL-ring A. We shall use the following notation:

$$\begin{split} N(L) &:= \{X \in A \colon [X, L] \subset L\}, \\ \operatorname{ad}^{-1}(L) &:= \{X \in A \colon [X, A] \subset L\}, \\ P(L) &:= \{X \in L \colon AX \subset L, XA \subset L \text{ and } AXA \subset L\}, \\ J(L) &:= P(\operatorname{ad}^{-1}(L)). \end{split}$$

The following theorem contains a list of rather trivial and practically well-known observations (see for example [1], [7], [8], [12]), but it will be very useful in the sequel.

- (1.6) THEOREM. Let A be an AL-ring (algebra) and let L be an additive subgroup (a linear subspace) of A. Then:
 - (a) N(L) is a Lie subring (subalgebra) of A.
 - (b) $ad^{-1}(L)$ is an AL-subring (subalgebra) of A and a Lie ideal of N(L).
 - (c) P(L) is the largest ideal of A contained in L.
- (d) If L is a Lie subring (subalgebra) of A, then $L \subset N(L)$ and P(L) is a Lie ideal of N(L). Moreover, J(L) is a Lie ideal of N(L).
- (e) If L is a Lie ideal of A, then $L \subset \operatorname{ad}^{-1}(L)$, N(L) = A, $\operatorname{ad}^{-1}(L)$ is a Lie ideal of A, J(L) is an AL -ideal of A and $[\operatorname{ad}^{-1}(L), \operatorname{ad}^{-1}(L)] \subset J(L)$.

Proof. (a) This follows immediately from the Jacobi identity.

(b) $\operatorname{ad}^{-1}(L)$ is a Lie subring (subalgebra) and a Lie ideal of N(L) by the Jacobi identity. By (1.2) $\operatorname{ad}^{-1}(L)$ is an associative subring (subalgebra). (c) Trivial.

Lie structure

(d) Let L be a Lie subring (subalgebra). Obviously, $L \subset N(L)$. Since

$$A[P(L), N(L)] \subset [AP(L), N(L)] + [A, N(L)]P(L) \subset L$$

and similarly $[P(L), N(L)] A \subset L$ and $A[P(L), N(L)] A \subset L$, P(L) is a Lie ideal of N(L). By definition, $J(L) = P(\operatorname{ad}^{-1}(L))$, so as above J(L) is a Lie ideal of $N(\operatorname{ad}^{-1}(L))$. Also, $\operatorname{ad}^{-1}(L)$ is by (b) a Lie ideal of N(L), and so $N(L) \subset N(\operatorname{ad}^{-1}(L))$.

(e) Let L be a Lie ideal of A. Then obviously $L \subset \operatorname{ad}^{-1}(L)$, N(L) = A and $\operatorname{ad}^{-1}(L)$ is a Lie ideal of A by (b). By (d), J(L) is an AL-ideal of A and $\operatorname{ad}^{-1}(L)$ is a Lie ideal of A and an associative subring (subalgebra) by (b). Then

$$A[\operatorname{ad}^{-1}(L), \operatorname{ad}^{-1}(L)] \subset [A\operatorname{ad}^{-1}(L), \operatorname{ad}^{-1}(L)] + [A, \operatorname{ad}^{-1}(L)] \operatorname{ad}^{-1}(L)$$

 $\subset \operatorname{ad}^{-1}(L).$

Similarly, $[ad^{-1}(L), ad^{-1}(L)]A \subset ad^{-1}(L)$. Hence by (1.2)

$$[A, A[ad^{-1}(L), ad^{-1}(L)]A] \subset [A, [ad^{-1}(L), ad^{-1}(L)]AA] +$$

 $+[[ad^{-1}(L), ad^{-1}(L)], AAA] \subset [A, ad^{-1}(L)] \subset L$

and so $A \lceil \operatorname{ad}^{-1}(L), \operatorname{ad}^{-1}(L) \rceil A \subset \operatorname{ad}^{-1}(L)$. Thus

$$[ad^{-1}(L), ad^{-1}(L)] \subset P(ad^{-1}(L)) = J(L).$$

If A is a topological AL-ring and L is closed, then N(L), ad⁻¹(L), P(L) and J(L) are closed and we can derive the topological version of (1.6).

(1.7) DEFINITION. For an ideal J of an associative ring A and for a natural n we define $J/n := \{X \in A : nX \in J\}$. We define the radical of J as

$$r(J) := \{X \in A : \text{ there is an } m \text{ such that } (XA)(XA)...(XA)(m \text{ times}) \subset J\}.$$

- (1.8) Remark. It is easy to see that J/n and r(J) are ideals of A.
- (1.9) Lemma (Herstein). Let A be an AL-ring (algebra), J an ideal of A and $X \in A$ such that $[X, [X, A]] \subset J$. Then $[X, A] A [X, A] \subset J/2$.

Proof. Take $Y, Z \in A$. By (1.1)

$$[X, [X, YZ]] = [X, [X, Y]]Z + 2[X, Y][X, Z] + Y[X, [X, Z]].$$

Hence $[X, Y][X, Z] \in J/2$. Putting Y := VU, $V, U \in A$, we get by (1.1) $[X, V] U[X, Z] \in J/2$.

The following theorem and corollary generalize the classical theorems about associative rings of Zuev [12] and Herstein [6].

(1.10) THEOREM (Zuev). Let A be an AL-ring (algebra) and let L be a Lie ideal of A. Then for each $X \in \operatorname{ad}^{-1}(L)$ the square of the ideal I of A generated by [X, A] lies in J(L)/2, i.e., $II \subset J(L)/2$. Moreover, $[A, \operatorname{ad}^{-1}(L)] \subset r[J(L)/2)$.

Proof. $ad^{-1}(L)$ is a Lie ideal of A and $[ad^{-1}(L), ad^{-1}(L)] \subset J(L)$ by (e) of Theorem (1.6), so by Lemma (1.9),

$$[X, A] A [X, A] \subset J(L)/2$$
 for all $X \in \operatorname{ad}^{-1}(L)$.

It is easy to see that for $Z = [X_1, Y_1] + ... + [X_n, Y_n]$, where $X_i \in \operatorname{ad}^{-1}(L)$ and $Y_i \in A$, i = 1, ..., n, we have

$$(ZA)(ZA)...(ZA)(n+1 \text{ times}) \subset J(L)/2.$$

Hence $Z \in r(J(L)/2)$.

(1.11) COROLLARY (Herstein). If A is an AL-ring (algebra) which is simple as an associative ring (algebra) and is of characteristic $\neq 2$, then for each Lie ideal L of A we have $[A,A] \subset L$ or $L \subset Z(L)$, where Z(L) is the Lie centre of A.

Proof. If $[A, A] \neq L$, then $\operatorname{ad}^{-1}(L) \neq A$ and $J(L) = \{0\}$. Since A is of characteristic $\neq 2$, $J(L)/2 = \{0\}$. If there is an $X \in L$ such that $[X, A] \neq \{0\}$, then the ideal I of A generated by [X, A] equals A and by Theorem (1.10), $AA = \{0\}$. Since A is simple, A as an associative ring (algebra) is generated by one element and by (1.1), $[A, A] = \{0\} \subset L$ — a contradiction.

2. Lie subalgebras of finite codimension.

- (2.1) Proposition. Let A be an AL-algebra. Then:
- (a) If L is a finite-codimensional Lie subalgebra of A, then $\operatorname{ad}^{-1}(L)$ is a finite-codimensional AL-subalgebra of A.
- (b) If L is a finite-codimensional associative subalgebra of A, then P(L) is a finite-codimensional ideal of A.
- (c) If L is a finite-codimensional Lie subalgebra of A, then J(L) is a finite-codimensional ideal of A. In particular, if A has no finite codimensional ideals except A, then every finite-codimensional Lie subalgebra of A contains [A, A].

Proof. (a) Since $L \cap \operatorname{ad}^{-1}(L)$ is finite-codimensional in L as the kernel of the adjoint representation of L in the finite-dimensional vector space A/L, $\operatorname{ad}^{-1}(L)$ is of finite codimension in A.

- (b) Put $K = \{X \in L : AX \subset L\}$. K is a left ideal of A and it is of finite codimension as the kernel of the natural representation of L in the finite-dimensional vector space A/L by the right multiplication. Moreover, $P(L) \subset K$ and P(L) is finite-codimensional in K as the kernel of the natural representation of K in A/K by the left multiplication.
- (c) Since $ad^{-1}(L)$ is by Theorem (1.6) (b) an associative subalgebra of A and it is by (a) of finite codimension, $J(L) = P(ad^{-1}(L))$ is of finite codimension in A by (b).

If
$$J(L) = A$$
, then clearly $[A, A] \subset L$.

The above proposition allows us to answer P. de la Harpe's question [5] whether the Banach-Lie algebra $gl(H, C_{\infty})$ of all compact linear

operators on a separable Hilbert space H has a nontrivial Lie subalgebra of finite codimension (the answer for the case of closed Lie subalgebras is given in [8]) and to solve the problem of the existence of nontrivial closed Lie subalgebras of finite codimension for other complex classical Banach-Lie algebras of compact operators.

Let us recall what "classical" means above. Let H be a separable infinite-dimensional Hilbert space and let $1 \le p \le +\infty$. By $\mathrm{gl}(H,C_p)$ we denote the Schatten p-class of compact operators on H (see [11]). The classes $\mathrm{gl}(H,C_p)$ are ideals of the associative algebra $\mathrm{gl}(H)$ of all bounded operators on H and $\mathrm{gl}(H,C_p) = \mathrm{gl}(H,C_q)$ if $p \le q$. In particular, $\mathrm{gl}(H,C_\infty)$ is the ideal of all compact operators, $\mathrm{gl}(H,C_2)$ is the ideal of Hilbert–Schmidt operators and $\mathrm{gl}(H,C_1)$ is the ideal of nuclear operators. Each $\mathrm{gl}(H,C_p)$ is a Banach algebra and a Banach–Lie algebra with respect to the Schatten p-norm.

Let J_R be a conjugation and J_Q an anticonjugation of H. This means that there are orthonormal bases $(e_n)_{n\in\mathbb{N}}$ and $(f_n)_{n\in\mathbb{Z}^+}$ of H such that

$$J_R\left(\sum_{n\in\mathbb{N}}x_n\,e_n\right)=\sum_{n\in\mathbb{N}}\bar{x}_n\,e_n$$

and

$$J_{Q}(\sum_{n \in N} x_{-n} f_{-n} + \sum_{n \in N} x_{n} f_{n}) = \sum_{n \in N} x_{-n} f_{n} - \sum_{n \in N} x_{n} f_{-n}.$$

We denote after [4]:

$$\begin{split} & \circ (H, J_R, C_p) := \{ X \in \mathrm{gl}(H, C_p) \colon J_R X^* J_R = -X \}, \\ & \mathrm{sp}(H, J_Q, C_p) := \{ X \in \mathrm{gl}(H, C_p) \colon J_Q X^* J_Q = X \}, \\ & \mathrm{sl}(H, C_1) := \{ X \in \mathrm{gl}(H, C_1) \colon \mathrm{tr}(X) = 0 \}. \end{split}$$

- (2.2) Definition. The Lie algebras $gl(H, C_p)$, $sl(H, C_1)$, $o(H, J_R, C_p)$ and $sp(H, J_Q, C_p)$ are called classical complex Banach-Lie algebras of compact operators.
- (2.3) THEOREM (P. de la Harpe). The classical complex Banach-Lie algebras of compact operators, except $gl(H, C_1)$, are topologically simple. The only nontrivial closed Lie ideal of $gl(H, C_1)$ is $gl(H, C_1)$.
- (2.4) Theorem (P. de la Harpe). The Lie algebra $gl(H, C_\infty)$ has no nontrivial finite-codimensional Lie ideals.

The following theorem generalizes (2.4).

(2.5) Theorem. The Lie algebra $gl(H, C_{\infty})$ has no nontrivial finite-codimensional Lie subalgebras.

The classical complex Banach-Lie algebras of compact operators, except $gl(H, C_1)$, have no nontrivial closed finite-codimensional Lie subalgebras. The only such Lie subalgebra of $gl(H, C_1)$ is $sl(H, C_1)$.

Proof. Since in associative algebras ideals are also Lie ideals, by (2.4) $gl(H, C_{\infty})$ has no nontrivial ideals of finite codimension and

(2.6) Remark. Observe that the classical complex Banach-Lie algebras of compact operators, except $gl(H, C_{\infty})$, have many dense finite-codimensional Lie subalgebras, since $[gl(H, C_{2p}), gl(H, C_{2p})] \subset gl(H, C_{p})$.

(2.7) Definition. Let A be a (topological) AL-algebra. A (closed) ideal (Lie subalgebra, Lie ideal) L of A will be called *maximal* if $L \neq A$ and if for each (closed) ideal (Lie subalgebra, Lie ideal) K of A such that $L \nsubseteq K$ we have K = A.

We shall deal in the sequel with AL-algebras which have the following properties:

 (P_1) Every maximal finite-codimensional ideal of A is equal to its radical.

 (P_2) The Lie normalizer N(I) of each maximal finite-codimensional ideal I of A is a proper finite-codimensional subspace of A.

The following theorem is analogous to a result of Atkin [1].

(2.8) Theorem (Atkin). Let A be an AL-algebra satisfying (P_1) and (P_2) . Then $I \mapsto N(I)$ gives us a one-one correspondence between maximal finite-codimensional ideals I of A and maximal finite-codimensional Lie subalgebras of A not containing [A, A]. The inverse mapping is of the form $L \mapsto r(P(L))$.

Moreover, each finite-codimensional Lie subalgebra of A not containing [A, A] is contained in N(I) for a maximal finite-codimensional ideal I of A.

We shall use in the proof of the above theorem the following lemma.

(2.9) Lemma. Let A be an AL-algebra, let J be a finite-codimensional ideal of A and let I be an ideal of A containing J and equal to its radical. Then $N(J) \subset N(I)$.

Proof. Let $X \in N(J)$. Consider the finite-dimensional associative algebra A' = A/J. Then I' = I/J is an ideal of A' equal to its radical and since $\operatorname{ad}_X(J) \subset J$, ad_X can be projected on A' and gives us a derivation ad'_X of A'. Take $Y \in I'$ and define the descending sequence

$$V_1 = YA' \supset V_2 = YA' YA' \supset V_3 = YA' YA' YA' \supset \cdots$$

of subspaces of A'. Since A' is finite-dimensional, there is a natural n such that $V_n = V_{n+1}$. Let $Z = YU_1 YU_2 ... YU_n \in V_n$. It is easy to prove by Leibniz's formula that $(\operatorname{ad}'_X)^n(V_{n+1}) \subset I'$, so $(\operatorname{ad}'_X)^n Z \in I'$. On the other hand, $(\operatorname{ad}'_X)^n Z$ is of the form

$$(\operatorname{ad}_X' Y) U_1 (\operatorname{ad}_X' Y) U_2 \dots (\operatorname{ad}_X' Y) U_n + Y',$$

where $Y' \in I'$. Hence $\operatorname{ad}'_X Y \in r(I') = I'$, i.e., $[X, I] \subset I$.

Proof of Theorem (2.8). Let I be a maximal finite-codimensional ideal of A. Observe that $I \cap N(I)$ is an ideal of A, since

$$[A(N(I)\cap I), I] \subset [A, I]I + A[N(I), I] \subset I$$

and similarly $(N(I) \cap I)A \subset N(I)$. This ideal is of finite codimension by (P_2) and it is easy to see that it contains II.

Thus if L is a Lie subalgebra of A, $L \neq A$, such that $N(I) \subset L$, we have

$$II \subset I \cap N(I) \subset P(L)$$
, so that $I \subset r(P(L))$.

P(L) is a finite-codimensional ideal of A, $P(L) \subset L \neq A$, so $r(P(L)) \neq A$ (P(L) is contained in some maximal finite-codimensional ideal of A which is equal to its radical). Hence I = r(P(L)) by the maximality of I. In particular, I = r(P(N(I))).

By (d) of Theorem (1.6), P(L) is a Lie ideal of N(L). Thus

$$N(I) \subset L \subset N(L) \subset N(P(L))$$

and, by Lemma (2.9), $N(P(L)) \subset N(I)$, so that N(I) = L = N(L) = N(N(I)). This shows that N(I) is a finite-codimensional maximal Lie subalgebra of A. Since $N(N(I)) = N(I) \neq A$, N(I) does not contain $\lceil A, A \rceil$.

If N(I) = N(I') for a maximal finite-codimensional ideal I' of A, then as above

$$I = r(P(N(I))) = r(P(N(I'))) = I'.$$

Conversely, let L be a finite-codimensional Lie subalgebra of A which does not contain [A, A]. Then the ideal J(L) does not equal A and it is of finite codimension by Proposition (2.1). By Theorem (1.6) (d), J(L) is a Lie ideal of N(L), whence $L \subset N(J(L))$. J(L) is contained in a maximal finite-codimensional ideal I of A which by (P_1) equals its radical. Thus by Lemma (2.9), $L \subset N(J(L)) \subset N(I)$ and the theorem follows.

(2.10) COROLLARY. Let M be a C^{∞} (R-analytic, Stein) manifold with a C^{∞} (R-analytic, holomorphic) symplectic structure. Let A be the Poisson algebra of all C^{∞} functions on M with compact support or the Poisson algebra of all C^{∞} (R-analytic, holomorphic) functions on M. Then

$$M\ni x\mapsto L_x=\{f\in A\colon df(x)=0\}$$

gives us a one-one correspondence between points of M and maximal finite-codimensional Lie subalgebras of A not containing [A, A].

Proof. The maximal finite-codimensional ideals of A are of the form $I_x = \{f \in A: f(x) = 0\}$ for $x \in M$ (see [3]), so A has the property (P_1) . It is easy to see that

$$N(I_x) = \{ f \in A : df(x) = 0 \}.$$

Thus the property (P_2) is also satisfied and the corollary follows by Theorem (2.8). \blacksquare

3. Lie ideals.

(3.1) Definition. An ideal L of a Lie ring (algebra) A we shall call perfect if $L \neq A$ and $\operatorname{ad}^{-1}(L) = L$.

For a (topological) AL-algebra A denote by $R_a(A)$ the set of all (closed) ideals of A different from A and equal to their radicals and by $R_l(A)$ the set of all (closed) perfect Lie ideals of A.

(3.2) Theorem. Let A be a (topological) associative algebra over a field of characteristic $\neq 2$ and such that the (closed) ideal generated by [A, A] equals A. Then we have a one-one mapping α from $R_a(A)$ into $R_l(A)$ given by

$$R_a(A) \ni I \mapsto \operatorname{ad}^{-1}(I) \in R_1(A)$$
.

The inverse mapping is of the form $L \mapsto P(L)$. In particular, if every (closed) ideal of A equals its radical, then α is also "onto".

Proof. Let $I \in R_a(A)$. Since $[A, \operatorname{ad}^{-1}(I)] \subset I \subset \operatorname{ad}^{-1}(I)$ (the second inclusion follows since A is an associative algebra), $\operatorname{ad}^{-1}(I)$ is a Lie ideal of A and $\operatorname{ad}^{-1}(I) \neq A$ by the assumptions. If $X \in \operatorname{ad}^{-1}(\operatorname{ad}^{-1}(I))$, then $[X, [X, A]] \subset I$ and by Lemma (1.9), $[X, A] \subset r(I) = I$, i.e., $\operatorname{ad}^{-1}(I)$ is perfect. Since $I \subset \operatorname{ad}^{-1}(I)$, $I \subset P(\operatorname{ad}^{-1}(I))$. On the other hand,

$$P(ad^{-1}(I))[A, A] \subset [A, P(ad^{-1}(I))A] + [A, P(ad^{-1}(I))]A \subset I.$$

The (closed) ideal generated by [A, A] equals A, so $P(\operatorname{ad}^{-1}(I))A \subset I$. Thus $P(\operatorname{ad}^{-1}(I)) \subset r(I) = I$ and thus $P(\operatorname{ad}^{-1}(I)) = I$.

Suppose that every (closed) ideal of A equals its radical and let $L \in R_1(A)$. Then $J(L) = P(\operatorname{ad}^{-1}(L)) = P(L)$ and by Theorem (1.10), $[A, L] \subset r(P(L)) = P(L)$, i.e., $L \subset \operatorname{ad}^{-1}(P(L))$. On the other hand, from $P(L) \subset L$ it follows that $\operatorname{ad}^{-1}(P(L)) \subset \operatorname{ad}^{-1}(L) = L$.

- (3.3) Remark. Note that for each C^* -algebra A every closed ideal I of A is self-adjoint (see [2], § 1) and thus r(I) = I, because if $X \in A/I$ and $X(A/I) \dots X(A/I)$ (n times) = $\{0\}$, then $(XX^*)^n = 0$.
- (3.4) Corollary. If A is a C^* -algebra such that the ideal generated by [A, A] is dense in A, then for A as a topological AL-algebra the mapping

$$R_a(A) \ni I \mapsto \operatorname{ad}^{-1}(I) \in R_I(A)$$

is a one-one correspondence.

For a (topological) AL-algebra A denote by $M_a(A)$ the set of all maximal ideals of A and by $M_l(A)$ the set of all maximal perfect Lie ideals of A.

(3.5) THEOREM. Let A be a (topological) associative algebra over a field of characteristic $\neq 2$ such that every (closed) ideal of A different from A is contained in some ideal from $R_a(A)$ and that the (closed) vector space generated by [A, A] equals A.

Then the mapping $I \mapsto \operatorname{ad}^{-1}(I)$ is a bijection from $M_a(A)$ onto $M_1(A)$. The inverse mapping is of the form $L \mapsto P(L)$.

Proof. It is easy to see that $M_a(A) \subset R_a(A)$, i.e., each maximal ideal of A equals its radical. Thus by Theorem (3.2)

$$M_a(A) \ni I \mapsto \operatorname{ad}^{-1}(I) \in R_1(A)$$

is a one-one mapping.

We shall prove that $\operatorname{ad}^{-1}(I)$ is a maximal Lie ideal of A for $I \in M_a(A)$. Suppose that for a (closed) Lie ideal L of A, $L \neq A$, we have $\operatorname{ad}^{-1}(I) \subset L$. Then $\operatorname{ad}^{-1}(L) \neq A$ by the assumptions and thus $J(L) \neq A$. Since $J(L) \neq A$, J(L) is contained in some ideal from $R_a(A)$, so $r(J(L)) \neq A$. $\operatorname{cl}(r(J(L))) \neq A$) and by Theorem (1.10), $[A, L] \subset r(J(L))$.

Observe that $I \cap ad^{-1}(I)$ is an ideal of A because of the inclusions

$$[A(I \cap \operatorname{ad}^{-1}(I)), A] \subset [A, A]I + A[\operatorname{ad}^{-1}(I), A] \subset I$$

and

$$[(I \cap ad^{-1}(I))A, A] \subset I[A, A] + [ad^{-1}(I), A]A \subset I.$$

We have $\operatorname{ad}^{-1}(I) \subset L \subset \operatorname{ad}^{-1}(L)$ and thus $I \cap \operatorname{ad}^{-1}(I) \subset J(L)$ by the definition of J(L). Since $II \subset I \cap \operatorname{ad}^{-1}(I)$, $I \subset r(J(L))$. By the maximality of I, I = r(J(L)) $(I = \operatorname{cl}(r(J(L))))$ and thus $[A, L] \subset I$, i.e., $L \subset \operatorname{ad}^{-1}(I)$, which proves the maximality of $\operatorname{ad}^{-1}(I)$.

It suffices to prove now that the mapping in question is "onto". Take $L \in M_I(A)$. By Theorem (1.10), $[A, L] \subset r(J(L))$. Since $J(L) \neq A$, there is an $I \in R_a(A)$ containing J(L) and hence containing r(J(L)). Thus $L \subset \operatorname{ad}^{-1}(I)$ and, by the maximality of L, $L = \operatorname{ad}^{-1}(I)$. Since J(L) is the largest ideal of A contained in $\operatorname{ad}^{-1}(L)$ and $I \subset \operatorname{ad}^{-1}(I) = L$, I = J(L) = r(J(L)).

If I is not maximal, it is contained in some ideal $I' \in R_a(A)$, $I \neq I'$, and as above I' = J(L) = I — a contradiction.

(3.6) COROLLARY. If A is a C^* -algebra such that [A, A] is dense in A, then $I \mapsto \operatorname{ad}^{-1}(I)$ gives us a one-one correspondence between maximal ideals I of A and maximal perfect Lie ideals of A.

For a more general class of AL-algebras than those mentioned in the above theorems we can prove a weaker result.

Denote

$$ad^{-\infty}(L) := \bigcap_{i=1}^{\infty} ad^{-i}(L), \quad \text{where} \quad ad^{-(i+1)}(L) = ad^{-1}(ad^{-i}(L)).$$

It is easy to see that if L is a linear subspace of an AL-algebra A, then $ad^{-\infty}(L)$ is a Lie ideal of A.

(3.7) THEOREM. Let A be an AL-algebra over a field of characteristic $\neq 2$. Suppose that $r(J) \neq A$ for each ideal J of A different from A. Let L be a Lie

ideal of A which does not contain [A, A]. Then there is an ideal J of A, $J \neq A$, such that $L \subset \operatorname{ad}^{-\infty}(J)$.

If additionally the ideal of A generated by [A, A] equals A and each ideal of A different from A is contained in some maximal ideal of A, then each maximal Lie ideal of A not containing [A, A] is of the form $\operatorname{ad}^{-\infty}(I)$ for a maximal ideal I of A. In other words,

$$M_a(A) \ni I \mapsto \operatorname{ad}^{-\infty}(I) \in R_l(A)$$

contains $M_1(A)$ in its image.

Proof. Let L be a Lie ideal of A which does not contain [A, A]. Then by Theorem (1.10), $[A, L] \subset r(J(L))$, $J(L) \subset \operatorname{ad}^{-1}(L) \neq A$, and hence $r(J(L)) \neq A$. Thus $L \subset \operatorname{ad}^{-1}(r(J(L)))$ and since L is a Lie ideal of A, proceeding by induction we get $L \subset \operatorname{ad}^{-\infty}(r(J(L)))$. Suppose L is maximal. Let I be a maximal ideal of A containing r(J(L)). Then $L \subset \operatorname{ad}^{-\infty}(I)$. Since $[A, A] \neq I$, $\operatorname{ad}^{-\infty}(I) \neq A$ and $L = \operatorname{ad}^{-\infty}(I)$ by the maximality of L.

(3.8) Corollary. Let M be a C^{∞} (R-analytic, Stein) connected manifold with a C^{∞} (R-analytic, holomorphic) symplectic structure. Let A be the AL-algebra of all C^{∞} (R-analytic, holomorphic) functions on M with the Poisson bracket. Let L be a Lie ideal of A which does not contain [A, A]. Then for each $f \in L$ there is a sequence p_1, p_2, \ldots of points of M such that $df(p_i) = \ldots = d^i f(p_i) = 0$, $i = 1, 2, \ldots$

Proof. The proof is similar to the proof of Proposition 6.6 in [3]. Since A has a unit, every proper ideal of A is contained in some maximal and thus prime ideal of A. Hence $r(J) \neq A$ for each ideal J of A, $J \neq A$, and by Theorem (3.7), $L \subset \operatorname{ad}^{-\infty}(J)$ for an ideal J of A, $J \neq A$. There are $f_1, f_2, \ldots, f_n \in A$ such that df_1, \ldots, df_n span the cotangent bundle of M. Then the hamiltonian vector fields $X_1 = \operatorname{s} \operatorname{grad}(f_1), \ldots, X_n = \operatorname{s} \operatorname{grad}(f_n)$ span the tangent bundle of M.

Suppose that there are an $f \in L$ and a natural m such that $d^{k_p} f(p) = 0$ for each $p \in M$ and some natural $k_p \le m$. Then, as in [3], one can prove that the ideal of A generated by the finite set

$$\Omega = \{(X_{i_k} \circ \ldots \circ X_{i_1}) f : i_1, \ldots, i_k = 1, \ldots, n, k = 1, \ldots, m\}$$
 equals A .

But $X_i(h) = [f_i, h]$ for all $h \in A$ and i = 1, ..., n, and thus $\Omega \subset J$, since $L \subset \operatorname{ad}^{-\infty}(J)$ — a contradiction.

(3.9) Corollary. Let A be the Poisson algebra of all C^{∞} functions with compact support on a C^{∞} symplectic manifold M or the Poisson algebra of all R-analytic functions on an R-analytic compact symplectic manifold M. Then each Lie ideal of A which does not contain [A, A] is contained in the Lie ideal $L_p = \{ f \in A \colon 0 = df(p) = d^2f(p) = \ldots \}$ for $a p \in M$.

In particular, in the R-analytic and connected case the only such nontrivial Lie ideal consists of constant functions.

In the C^{∞} case the Lie ideals L_p are maximal.

Proof. Each ideal of A different from A is contained in the ideal $I_p = \{f \in A: f(p) = 0\}$ for some $p \in M$. It is easy to see that

$$ad^{-n}(I_p) = \{ f \in A : df(p) = \dots = d^n f(p) = 0 \},$$

so by Theorem (3.7), $L \subset \operatorname{ad}^{-\infty}(I_p) = L_p$.

To prove that in the C^{∞} case L_p is maximal, it suffices to show that $[A, A] + L_p = A$. Let $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ be coordinates in a neighbourhood of p in which the symplectic form can be written as $\sum_{i=1}^{n} dx_i \wedge dy_i$. Then in a neighbourhood of p we have

$$[f, g] = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \frac{\partial g}{\partial y_i} - \frac{\partial f}{\partial y_i} \frac{\partial g}{\partial x_i} \right).$$

Choose $h \in A$, $f \in A$ such that $\frac{\partial f}{\partial x_1} = h$ in a neighbourhood of p, and $g \in A$ such that $g = y_1$ in a neighbourhood of p. Then [f, g] = h in a neighbourhood of p, which proves that $[A, A] + L_p = A$.

Note that the C^{∞} version of the above corollary is due to Qmori [9].

(3.10) Proposition. Let A be one of the Poisson algebras mentioned in Corollary (3.8). Then A has no finite-dimensional or Lie-commutative Lie ideals except the Lie ideal of constant functions.

Proof. It is easy to see that the Lie-centre of A consists of constant functions. Assume that $f \in A$ is not constant. Then there are $p \in M$ and $g \in A$ such that $[f, g](p) \neq 0$. If f is in a Lie ideal L, then $[g^n, f] = ng^{n-1}[g, f] \in L$ and we can choose g such that L cannot be finite-dimensional.

If L is commutative, then $[f, g[f, g]] = [f, g]^2 + g[f, [f, g]] = 0$ and since we can choose g such that g(p) = 0,

$$[f, g[f, g]](p) = ([f, g](p))^2 \neq 0$$

a contradiction.

References

- [1] C. J. Atkin, A note on the algebra of Poisson bracket, preprint.
- [2] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris 1964.
- [3] J. Grabowski, Isomorphisms and ideals of the Lie algebras of vector fields, Invent. Math. 50 (1978), 13-33.
- [4] P. de la Harpe, Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer, 1972.

J. Grabowski

[5] P. de la Harpe, The algebra of compact operators does not have any finite-codimensional ideal, Studia Math. 66 (1979), 33-36.

- [6] I. N. Herstein, Lie and Jordan structures in simple associative rings, Bull. Amer. Math. Soc. 67 (1961), 517-531.
- [7] I. N. Herstein, Topics in Ring Theory, Univ. of Chicago, 1965.
- [8] G. J. Murphy and H. Radjavi, Associative and Lie subalgebras of finite codimension, Studia Math. 76 (1983), 81-85.
- [9] H. Omori, Infinite Dimensional Lie Transformation Groups, Lecture Notes in Math. 427, Springer, 1974.
- [10] C. Pearcy and D. Topping, On commutators in ideals of compact operators, Michigan Math. J. 18 (1971), 247-252.
- [11] R. Schatten, Norm Ideals of Completely Continuous Operators, Springer, 1960.
- [12] I. I. Zuev, Lie ideals of associative rings (in Russian), Uspekhi Mat. Nauk 18 (1) (1963), 155-158.

INSTYTUT MATEMATYKI UNIWERSYTETU WARSZAWSKIEGO INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY 00-901 Warszawa, Poland

270

Received February 8, 1983 (1933) Revised version June 4, 1984

STUDIA MATHEMATICA, T. LXXXI. (1985)

Uniformly non-I(1) Orlicz spaces with Luxemburg norm

b

HENRYK HUDZIK (Poznań)

Abstract. K. Sundaresan [15] has given a criterion for an Orlicz space $L^{\Phi}(\mu)$ over an atomless measure μ and generated by an Orlicz function Φ satisfying the corresponding condition Δ_2 to be uniformly non- $f_n^{(1)}$. This paper gives some simpler criteria for this property of Orlicz spaces over an atomless as well as a purely atomic measure μ and generated by arbitrary Orlicz functions (the necessity of the corresponding condition Δ_2 is proved here).

0. Introduction. N is the set of positive integers, R is the set of real numbers, (T, \mathcal{T}, μ) is a space of positive measure. A function $\Phi: R \to [0, +\infty]$ is said to be an *Orlicz function* if it is not identically zero and is even, convex, and vanishing and continuous at zero. The *Orlicz space* $L^{\Phi}(\mu)$ is then defined as the set of all equivalence classes of \mathcal{T} -measurable functions $x: T \to R$ such that $\int_{T} \Phi(kx(t)) d\mu < +\infty$ for some k > 0 depending on x. Under the so-called Luxemburg norm $\|\cdot\|_{\Phi}$ defined by

$$||x||_{\Phi} = \inf\{r > 0: \int_{T} \Phi(r^{-1} x(t)) d\mu \le 1\}$$

the Orlicz space $L^{\Phi}(\mu)$ is a Banach space (see [12, 13]).

Let us write $I(x) = I_{\Phi}(x) = \int_{T} \Phi(x(t)) d\mu$ for any $x \in L^{\Phi}(\mu)$. The functional I is a convex modular on $L^{\Phi}(\mu)$ (see [14]).

We define the subspace $E^{\Phi}(\mu)$ of the Orlicz space $L^{\Phi}(\mu)$ by

$$E^{\Phi}(\mu) = \{x \in L^{\Phi}(\mu): I(kx) < +\infty \text{ for any } k > 0\}.$$

Recall that an Orlicz function Φ satisfies condition Δ_2 for all $u \in R$ (at infinity) [at zero] if the inequality $\Phi(2u) \leq K\Phi(u)$ holds for all $u \in R$ (for u satisfying $|u| \geq v_0$) [for u satisfying $|u| \leq v_0$], where K and v_0 are some positive constants and $\Phi(v_0) > 0$ (see [12, 13]).

0.1. Lemma (see [4, 5] and [10]). Let Φ be an Orlicz function and $x \in L^{\Phi}(\mu)$. The condition I(x) = 1 iff $||x||_{\Phi} = 1$ holds iff Φ satisfies condition Δ_2 for all $u \in \mathbf{R}$ (at infinity) [at zero] in the case of a measure space atomless and infinite (atomless and finite) [purely atomic with measure of atoms equal to one], respectively (1).

⁽¹⁾ In the purely atomic case we assume that $\Phi(c) = 1$ for some c > 0.