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Laws of large numbers in von Neumann
algebras and related results
by
ANDRZEJ LUCZAK (L6d7)

Abstract. Noncommutative weak and strong laws of large numbers and the Glivenko- °
Cantelli theorem are proved. Two cases are considered: a von Neumann algebra with a normal
faithful state on it dnd the space of operators integrable with respect to a normal faithful finite
trace.

1. Preliminaries and notation. One of the problems occurring in noncom-
mutative probability theory concerns the extension of various results centred
around laws of large numbers to the noncommutative context. Due to the
existence of the nonabelian counterparts of the notions of convergence in
measure and convergence almost everywhere, it is possible to consider the
noncommutative setting of the well-known classical theorems such as e.g.
Kolmogorov's law of large numbers or the law of the iterated logarithm. In
this setting the role of a random variable is played by an element of a von
Neumann algebra .#, and a probability measure is replaced by a normal
faithful state on .. If this state is tracial, the von Neumann algebra .# can
be replaced by an algebra consisting of unbounded operators. Many results
in this area have recently been obtained by Batty [1], Goldstein [3] and
Jajte [4].

The purpose of this paper is to present some noncommutative weak
and strong laws of large numbers for elements from the space L' (.4, 7) (see
below) and a strong law of large numbers together with the noncommutative
version of the Glivenko—Cantelli theorem for elements from a von Neumann
algebra with a normal faithful state.

It is worthwhile to observe that the case where the state considered is
not tracial is usually much more difficult to handle due to the “nonsubad-
ditivity” of a state. At the same time, the techniques employed in the two
cases differ considerably.

For the general theory of von Neumann algebras, the reader is referred
to [7], [9] or [10]. Here we only establish the notation used throughout the
paper and recall some basic definitions.

Let .# be a von Neumann algebra. If p is a projection in .#, p* denotes
1-~p where 1 is the identity operator. For two projections p, g in ., we
write p<gq if p is equivalent to some subprojection of g.
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For each self-adjoint operator x affiliated with .4, we denote by eg(x)
the spectral projection of x corresponding to the Borel subset B of the line.

If ¢ is a normal faithful state on .# and x, y are two self-adjoint
operators affiliated with .#, we say that x and y are identically distributed if
0(es(x)) = ¢(es(y)) for every Borel B.

If 7 is a normal faithful semifinite trace on .#, then .# denotes the
algebra of operators measurable in Nelson’s sense (see [6]), and L(#, 1)~
the space of r-integrable operators from .. Detailed descriptions of M,
L'(.#,7), as well as of the theory of noncommutative integration, are
contained in [6], [8] and [11].

Vari.wus notions of independence for sequences of elements from .# (or
) were introduced in [1]. We shall use the following one only:

Let .# be a von Neumann algebra with a normal faithful state o, and
Ny, & two von Neumann subalgebras of .#. We say that 4", and 4", are
independent if

e(xy) =e(x)e(y) for all xe A"y, ye.47.

Note that this assumption is weaker than that in [1], both being
equivalent when ¢ is tracial.

Two elements x, y from 4 (or 4 if ¢ is tracial) are said to be
independent if the von Neumann algebras W*(x) and W*(y) generated by x
and y, respectively, are independent. A sequence {x,} of elements from .#
() is said to be successively independent if, for every n, the von Neumann
algebra W*(x,) generated by x, is independent of the von Neumann algebra
W*(xy, ..., X,,) generated. by the elements x, ..., x,, for m <n.

A fundamental role in our considerations is played by two notions of
convergence: convergence in measure and almost uniform convergence. Now,
we give a brief description of these notions.

Let .# be a von Neumann algebra with a normal faithful semifinite
trace . The measure topology in .# is given by the fundamental system of
neighbourhoods of zero of the form

N(e, 8) = {xe #: there exists a projection e in . such
that xee 4, ||xe|| <& and 7(et) < 8).
1t follows that .4, being the completion of .# in the above topology, is a
topological *-algebra (see [6]).
The following “technical” form of convergence in measure will best suit
our purposes [11, Prop. 2.7]:
x, = X in measure if and only if, for each & >0,

(e, y (1 — X)) = 0.
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Now, -let 0 be a.normal faithful state on ., and x, x, — elements from
M (or M if Qis tragal). We say that x, — x almost uniformly (a.u) if, for each
&> 0, there is a projection e in . with g(el) < ¢ such that (x,—x)ee A for
sufficiently large n and ||(x,—x)e|| — O.

It is worth noting that, in fact, the above definition does not depend on
the choice of g.

We shall now establish some simple facts related to the above notions.

Lemma 1.1 (Tchebyshev's inequality). Let .# be a von Neumann algebra

with a normal faithful tracial state , and x — an element from 4. Then, for
each ¢ > 0,

T (ee,wy (1X1)) < 8722 (x2).

0
Proof. From the spectral decomposition |x|? = { 4% e4;(jx]) we find that
o

o0
2
2 > [ 22 (x> g, o (1)
&

and the conclusion follows.

: The following lemma is a slight generalization of Lemma 3.2 from [1]
(with b, = n) and can be proved in virtually the same way.

Lemma 1.2 (Kronecker’s lemma). Let {x,} be a sequence in . and

n n
byfoo. Put S,= Y, . If S, converges almost uniformly, then b;' Y b, x,
k=1

! k=1
converges almost uniformly to zero.

The proposition below shows -that, as in the classical case, almost
uniform convergence can be described by the Cauchy condition.

ProrosiTioN 1.3. Let {x,} be a sequence in ./ and 1 a normal faithful
tracial state on M. If {x,} is Cauchy almost uniformly, ie, for each ¢> 0,
there are a projection e in M with t(e*) < ¢ and a positive integer N such that
lxn—xm)ell <& for n, m= N, then {x,} converges almost uniformly.

Proof. It follows that {x,} converges in measure (because it is Cauchy
in measure); let x be its limit. It is known (see e.g. [11, p. 94]) that some
subsequence {x, } of {x,} converges to x almost uniformly. For any ¢> 0,
choose projections p and ¢ fulfilling the conditions

() t(p*), ©(g") <e/2,

(i) |I(x,—xm) pll <& for sufficiently large n, m,

(iii) l(x,, —x)qll — 0 as k— oo.

Put e=p A q. Then 1(e*) <& and (x,—x)e = (%~ Xy,) €+(x,, —X) € belongs
to .#. Moreover, |[(x,—x)ell <[I(xn—X) Pll +l(xy, — %) ql| = 0 as m, k— oo,
which ends the proof.
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2. A multidimensional strong law of large numbers and the Glivenko-
Cantelli theorem for states. Let .# be a von Neumann algebra with a faithful
"normal state o. For further reference we formulate the following immediate
corollary to Theorem 1.2 in [3]:

Tueorem 2.1. Let {x,} be a sequence of positive operators from .M and

. oo
{e.} a sequence of positive numbers. If Y erto(x,) <3, then there exists
n=1
a projection e in M such that
llexpell < 26, for n=1,2, ...

e@=1-2% & tolx) and
n=1

In what follows we shall need the following elementary lemma.

o0
Lemma 2.2. If a, 0 are such that Y. a, < oo, then there exists 4

n=1
00
sequence {e,} of positive numbers such that &, |0 and S oeta, <.
n=1

We say that x and y from . are uncorrelated if

e(x*y) = o(x*)e®)-

This definition is consistent with the notion of orthogonality with respect to
the natural scalar product (x, y)=g¢(y*x) in .# (when g(x) = g(y) =0);
moreover, the relation defined in this way is symmetric regarding x and y.
Now, we shall prove a “multidimensional” law of large numbers in von
Neumann algebras.
Tueorem 2.3. Let {x®) for i =1, ..., r be a sequence of pairwise uncorre-
lated, uniformly bounded (i.e., sup||x?|| < oo) operators from .#. Then

N

1 ;
N Y [ —e

n=1

xM1]1-0 awu,uniformlyini=1,...,r,

i.e., for each & > 0, there exists a projection e in M with g(e) > 1—& such that

e
(~—— T [x0—o(x) 1J)e

n=1

max - 0.

15igr

Remark. Let us observe that, unlike the tracial case, the multi-
dimensional version is essentially stronger than that for r = 1.

Proof. We can assume that |ix?| <1 and o(x) =0, i=1,.
n=1,2,..PutSY= Z x®, For any i, we have the following estimations:
n=1
1 ¥ LA 1
@1 e =z ¥ el xi) =7 Z o(IXP?) € =5

N* nm=1 N n=1 Nz.

icm

Laws of large numbers 235
For K chosen so that K2< N < (K+1)%,
|() S()|2“ 1(22 1 d 4’2
“ U i - ’ ———T> (i)+_ Z xg)
N K Nn=K2+1
N-K? N-K2\* 36
K? < —=.
< NK? + N > K?
Thus, by putting Ty = (6/K)1, we obtain
22 ISP —8DP<Tg foreachi=1,...,r.
Let
(2.3) = (Y S92,
i=1

From (2.1) and the definition of Ty it follows that Y. [o(S22)+e(T¥)]
N=1

< 00, thus, on account of Lemma 2.2, there exists a sequence of positive
numbers {ey} such that ey |0 and

Y ex ' [o(Sk)+e(TR)] < .
N=1
For given ¢ > 0, choose N, such that

o0
> o

N=Ng

Lo(Si2)+e(TH)] <é&/2.

From Theorem 2.1 applied to the sequence va%, Ty s S22. T

follows that there is a projection e in .# with

0@ =1-2 Y e'[eS2)+e(TH]=1-
N=Np
and

(24) leS2,ell < 26y, lleTRell < 26y for N > No.

Take an arbitrary n>0. Let Ny, > N, be such that ey <#?/8 for
Nz N,. For any N> N?, we find K> N, for which K <N <(K+1)%
According to (2.2), (2.3) and (24), we have ‘

IS8 ell? < (ISP —S ) el + 1S el
< 2(ISR — S el >+ ISz ell?)
=2(|le|SP - S“’zlze||+||€|5“’z|29||)
< 2(|!€7}(2€||+||93 2€l)) < 8eg <1,

Thus, for N > N, max ||S® || <#, which concludes the proof.

1€isr

i=1,..,r1
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For r = 1, the above theorem extends Theorem 4.1 from [1], where {x.}
are assumed to be independent and {Sy} is convergent in a weaker sense.

We shall now prove the following extension of the well-known
Glivenko—Cantelli theorem:

TueoreM 24. Let {x,} be a sequence of closed, self-adjoint, pairwise
independent and identically distributed operators affiliated with 4. Then, for
each ¢ > O, there is a projection e in' M such that g9(e) = 1—¢ and

N
e [% ) €(~ oy (%) — 0 {e(- w,;.)(x1))1]e

n=1

sup -0 as N- oo,

—mw<i<ow

Remark. The type of convergence considered in the above theorem, a
little weaker than au. convergence, was used in [2] and [12] in proving
noncommutative martingale and ergodic theorems. One easily observes that
it reduces to the usual notion in the commutative case.

Proof. For every real A, put

1 X 1 X
Sy(A+0) = N Y mwn(®X),  Sy(A—0)= N > e w0, 2) (%)
n=1 n=1
S(A+0) = 0(e- o (x:1)) 1, S(A—0) = o(e(- o, n(x))1,
and let 1, be defined as
Ay = inf {Ar 0(e(- (1) < ifr < ole- w1 (X0)}-

fori=1,...,r=1;r=1,2,...
If 4 <A< Ay, for some i and any r, then

S(Ay+0) < S(A—0) < S(Ai14,,—-0),
Sy (A +0) < Sy(2~0) < Sy(i41,—0);
thus
Sy (ir+0) =S (Aiy 1,,~0) < Sy(A—0)—S(A—0)
< Sy(Ait1,,—0) =S (4, +0).
But, from the definition of 4,, we have
8 (41,6~ 0)— 5 (A +0) < (1/r)1
and, consequently,
25)  Sy(di+0)—5 (4, +0)—(1/r)1 < Sy(A—0)~S (1 —0)

<
S SN (it 1= 0~ S (A4 1, — 0)+(1/1) 1.
If Ag Al,, then

26  —(UN1<8(A-0)-S(-0) < Sw(A1,—0) =8 (4, — 0)+(1/r)1
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and, if 4 > 4,,, then
2.7) Sy(A—0)—S(A—0) = 0.
Putting, for convenience,
Sn(dor+0)—5 (4o, +0) = Sy(4,~0)— S (4, —0) = 0,

we conclude in virtue of (2.5), (2.6) and (2.7) that, for every real A and each
r=1,2,..., there is an i between 0 and r—1 such that

Sy (A +0) =S (2, +0)~(1/) 1 < Sy (A~ 0)~S(A~0)
S8 (Ai+ 10— 0= 8 (is1,— 0 +H(1/N1;
thus, for an arbitrary projection p from .4, we have
PLSy(A+0) =84, +01p—(1/1)p < p[Sy(A-0)—S(A-0)]p
' < pLSn(Aie 1, =0~ S (i1, —O1 p+(1/r) P

and, as a consequence of the above inequality, we obtain

P[S¥(A~0)~S (A~ O plf & max [p[Sy (A + )~ S (4, +6)] pll + 1/r,
s :

which gives

28 sup_ llp[Sx(A—0)—5(A—0)] pl|

< max 1P CSx (Air +6)— S (A + )] pll + 1/r
1<i<r
0= +0

for each r =1, 2, ... and each projection p from 4.

But, according to Theorem 2.3, for each & > 0, there is a projection e in
# with g(e) = 1—¢ such that
max ||[[Sy (4 +6)— S (4;,+6)] el - 0

1<isr

8= +0

as N— o0

for every fixed r. Thus, from (2.8) we infer that

lim sup [le[Sy(A—0)—S(A—0)]ell < I/r

N=+oo —w<i<w
for every r, which completes the proof.
Remark. The theorem just proved is a generalization of Theorem 4.1
from [4], where ¢ is assumed to be tracial and {x,} — successively
independent.

3. Laws of large numbers for traces. Now, we assume that .4 is a von
Neumann algebra with a normal faithful finite trace . For an arbitrary
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positive number c, we define
X = xeyo,q (1x])-
TaeoreM 3.1 (Weak law of large numbers). Let {x,} be a successively
independent sequence'of self-adjoint, identically distributed elements from 4. If

lim 1 (e, o) (1%1)) = 0,

then
n
=Y x—o, 1> 0 in measure,
=1

where «, = t(x; ero, (|1X,])).

Proof. Assume that .4 acts in # and put S, = x;+ ... +x,,
Sy =xPek . +x0, A, =1(8,) = ne(x{).

For an arbitrary y > 0, we have
P = €2y,i0) (Su— 11 1)) A €0,) (15, — A, 1)) A /_\ €po,n (%) =

Indeed, if, for some ¢ of norm one, &eps#, then feep,, (x|) # and,
consequently, x, & =xM¢ k=1, ..., n, which yields §,¢ = §, & Thus, from
the elementary properties of the spectral decomposition we obtain

SISy — 1 1] €12, o) (10 =18, 1) &l = 1[(S, — 173, D) €]
< ISy =S &Nl + IS, — i, 1) &
= ngn—rﬁnll_e[o,y) (lgn_rﬁn 1|) f” <

which is impossible; so p =0 and this implies (see [7], p. 80)

(3-1) e[lv,w) (Isn_ 'ﬁn 1!) < e[y. ) (Ign - 'ﬁn 1') \% k\/l e[n. o) (|xkl)

From the properties of a trace, Lemma 1.1 and the inequality t(|x—
—~1(x)1*) € (|x|) we obtain the following consequence of (3. 1)

(3<2) (e[Zy.aa) (lsn”mnll)) = Y_ZT(Ign—mn l|2)+T \/ e[n, o) lxkl))

P Z (1% + Z 7 (€n, o) (%))

=97 nz (X)) + e (€tn, ) (1% h).
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Now, take any ¢ > 0. From (3.2) with y = ng/2 we get

) (521

T (e[e,ao) ('ﬁ’l—anl n
- T(e[ne. o) (Isn‘—ﬁn 1]))

47 (1™
—T(lx—nl)'i“m (e, oy (1%1])

=4¢"2n"! J Azf(eu(fxll))"'m(e[n,m) (|x1|))

[0,m)

The integral can be estimated as follows:

[o_f)lz‘f("-‘u(|x1|)) Z (k+1)*t (e[k,k+1)(lxll))

= kZO (2k+1)7 (g (%1))) < {ego,m (Ix4)) +

n—-1 n—1

+3 Y k(e (X)) <1+3 kZI K ek, o) (14]))-

Thus, finally,
A
T\ e ) | [

which ends the proof.

Using a similar technique, one can prove the following version of the
weak law of large numbers:

TueorReM 3.2. Let {x,} be a successively independent sequence of self-
adjoint elements from L} (.M, 7). If

)3 (e o —2p 1)) > 0

—fx,,l

)) <de~2p~1 [1 +3 :il kt (e[k)w) (lel))] +

+1T (€, o (IX2)) >0 s 1> 0o,

as n-» o,
k=1
(i) %Z (2 —a 1J™) = 0 as n— o,
k=1
1 n
@) — Y t([x—01*")—>0 as n— oo,
n =1
where a, =1(x,), then
1 n
- Y (—a1)—> 0  in measure.
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Our next goal is to obtain a noncommutative version of the well-known
Marcinkiewicz law of large numbers which is a generalization of the

celebrated Kolmogorov strong law of large numbers for independent,’

identically distributed random variables. We begin with a lemma on the
“equivalence of convergence”.

LemMa 33. Let {x,}, {y,} be sequences of elements from M and {c,} a
sequence of positive numbers. If

o
Z T(e[c,,. w)('an) < 0,
1

n=

0
then the series Z (%, y,) converges almost uniformly if and only if the series

,,._

Z (x " y,) converges almost uniformly.

Proof. From the inequality

T( O e[c,,,,w) |xm|))

Z (e{c,,. w ( Ixml)) as n— o0

we have

0

\/ e ) Ixml -0 strongly as n—» oo;
thus

o« 0 \

¢3) \_/1 m/=\n 10,cp (IXml) = 1.
Put

Sn = i (xm+ym)9 Sn =

L]
Y G+
m=1 m=1
and assume that S, converges almost uniformly.
For each ¢ > (, there are a projection g in . with t1(¢g") <& and a
number N, such that ||(S,—S)gll <e for n, k > N;. From equality (3.3) it
follows that we can find a number N, with

T( /\ e[o,c,,,)(|xm|))? 1—e.
m=N

2
Put

N =max(Ny,N;) and p= /_\’e[o.cm)(lxml)-
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Then t((p A q)Y) < t(pY+1(g) < 2¢ and, for n > k > N, we have
8a=80®@ A @l < s1 =X 510+ ... +x,—= x5 A )l +

+IEa =3I A Dl =5~ S (P A @l < IS, —Sall < e

Thus {S,} is Cauchy almost uniformly and, on account of Proposition 1.3,
we infer that {S,} converges almost uniformly. Analogously, we prove that
the convergence of {S,} implies that of {S,}.

Lemma 3.4. Let {x,} be a successively independent sequence in M and let
w 1
Z j'lr(eu_w) (Ix,))dA < 0.
n=10

Then Y. (x,—t(x{")1) converges almost uniformly.
1

=
Proof. Integrating by parts, we obtain

g At (epa, oy (1%aD) dA = 37 (g1, e (1) +3 g 227 (eaa (1)

=37 (ep1, ) (D) + 3T (XP).
By assumption, we have

a @

Y r(xVH) <o and Y t(ep, m (X)) < 0.

n=1 n=1
The first inequality together with Proposition 5.2 from [1] gives the almost

o

uniform convergence of the series Y (x{"—z(x{")1), which, along with the
n=1

second inequality and Lemma 3.3, proves the almost uniform convergence ot

the series Y. (x,—1(x{")1).
n=1

LemMma 3.5. Let {x,} be as above and

w 1

) g A1 (egp, 2, ) (1Xl)) dA < 00

e
for some positive constants b,. Then

o0
. 1
o X E—(x,,—'r(xf,b")) 1) converges almost uniformly,

n=1
(ii) 771— Y (%=t (x¥) 1)~ 0 almost uniformly.

Proof. We have

i 1
g AT (€3, (X)) dA = g A (g, oy (1%/b1)) dA
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and, by Lemma 34, the series Y, (%,/b,—t([x,/b,)"")1) converges almost
n=1

uniformly. But, for every positive c,

x\1) X X x . (' D x©
— = — g ! ] = — x|) = ——
¢ ¢ [0,1) ¢ ¢ 10,0) ¢’

thus we get (i). (i) is a consequence of (i) and Lemma 1.2.

Now, let n be a nonnegative random variable with distribution Prob(y
<) =7(eo,5(x)), AeR, for an x from 4. We have En =t (Jx]") for each
r > 0 and, from the classical moments lemma (see e.g. [5]) we obtain the
estimation

G4 i (e gyt (X)) < Txf) < 142 x; (€ gt (XD):

TueoREM 3.6. Let {x,} be a sequence of successively independent,
identically distributed elements from L'(M, 1), 0 <r < 2. Then
1 n
W’El (xe—0o, 1) = 0 almost uniformly

where o, =0 for r <1 and o =t(xy) for 1 <
Proof. Using (3.4), we get

Ao (ep o (X)) dA <

The above inequa]ity together with Lemma 3.5 yields

r<2.

1
(X [P TdA <0 if r < 2.
0

Ms
ot e

n=1

n
Z (6 —7(x{""1)—>0  almost uniformly.
The classical measure-theoretic arguments show that
d 1
Z( () — )0 as n— oo,

which completes the proof.
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