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Spline approximation in H,(T), p<1
by

P. OSWALD (Dresden)

Abstract. The paper deals with direct and inverse inequalities for H,-approximation
(p<1) by polynomial splines defined with respect to the dyadic partitions of the torus and
complements previous work of several authors concerning spline bases in real Hardy spaces.

0. Introduction. The aim of this paper is to develop a theory of direct
and inverse mequahtles for spline approx1mat10n in the real Hardy spaces
H,(T), p<1(Y)

First the background of this topic will briefly be illuminated.
Investigations concerning inequalities of Jackson type in the classical Hardy
spaces

01 H,D)= {F(z) analyticin D = {zeC: |z] <1} and

21(
i/p

HFIIH,,(D,—sup{l } IF(re")l"dt} .<oo£
0

were started for p < 1 by Storozhenko [13], [14]. Her main results consist in
direct inequalities for polynomial approximation in H,(D) such as

(0-2) En(F)H,,(D) = inf “F—Pn”Hp(D)

n
Pp(z)= 3 cpz™
m=0

SC-(n+1)" 1w (nfin+1), F“’)Hp(,,,, FY(z)e H, (D),

where k=1, 2,..., 1, n=0, 1,... (the positive constant is independent of n
and F(z)), and in applications to various summation methods of the power
series of F(z)e H,(D). However, the methods used by Storozhenko explicitly
explored the analyticity of the functions and approximating polynomials in D
and thus do not directly apply to such approximations as splmes which are
based on non-analytic, purely real constructions.

On the other hand, real techniques do play an important role in the

(%) Detailed definitions will be given in the next section.
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proofs that spline systems are (unconditional) Schauder bases in Hardy spaces
for p < 1, which were independently obtained by P. Sjélin, J.-O. Strémberg
[12],[11], P. Wojtaszczyk [16], and the present author [7]. In order to estimate
the degree of approximation of the basis expansions with respect to the spline
systems under consideration the author [8] has recently given a characteriz-
ation of the H -moduli of continuity in terms of a corresponding K’'-functional
of Peetre. Thus, Jackson type estimates in H,, p < 1, can be obtained in a
straightforward manner from the usual quasi-norm estimates for the related
operators which can be checked by well-developed real methods, e.g., by using
atomic and molecular decompositions. On these lines it was established in [8]
that for the partial sums P{™ f(¢) of the basis expansion with respect to the
periodic orthonormal spline system F of degree m = 0, 1,... of a function f (f)
belonging to the real space H,(T) on the periodic interval T= [0, 1) we'have
"the estimate

(03) f =P flin, < C* 0y (/7 N,
if (m+1)7' < p < 1. This inequality is equivalent to

Es-m)(f)up = H;Q&)Hf“g”l;p < C'mm-i-l(l/nsf)Hpa n=1,2,...,

n=1,2,...,

(04)

where S denotes the corresponding spline spaces and again (m--1)~!
<p<1 has to be assumed (here the constants depend only on m). In the
particular case m'=0 some extension of (04) to other values of p was
provided in [8]; the general case, however, remained unsolved.

In the present paper we cover the remaining gaps for the direct as well
as for the inverse inequalities. The main result is the following

TueoReM. Let 0<p<1,m=0,1,..., and fe H,(T). Then the following
inequalities hold for n=1, 2,...:

©3) EP (N, < C- s (U, D,
©8  Gurs(Un S, < Cn~m=t {3 Kt OR=L Ep(p)g Y10
k=1

with: positive constants C depending on m and p.

After the preliminary Section 1 the proof of the direct estimate will be
given in Section 2. Section 3 deals with the inverse inequalities and the
corresponding Bernstein inequalities. The in some sense exceptional case p
=1 will also be considered there. As in [7], [8], it turns out that the atomic
decomposition methods are well-situated for handling H -estimates (p < 1)
for splines.
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and P. Wojtaszezyk for stimulating discussions.

1. Preliminaries.

Atomic decompositions in H,(T). Let 0<p<1 and T=[0, 1) be the
periodic unit interval. Then, as usual, the real Hardy space H,(T) is the
quasi-Banach space of all real-valued distributions f=f(t)e2'(T) arising as
limits-

f(t) = lim RCF(r -e"'Zm)

r=1-0

(in the sense of 2'(T))
for some F(z)eH,(D) satisfying ImF (0) = 0. The quasi-norm is given by
”f”Hp=“F”Hp(D) and thus H,(D) and H,(T) are the same spaces in a
certain sense. )

However, for our purpese it is more favourable to work with the atomic

. real description of H,(T) due to R. Coifman [2]. A function a(t)e L,(T),

1< g < oo, is called a (p, g, s)-atom with respect to toeT if p < g, the integer
s satisfies s > [1/p—1], and

- suppa(t)cJ=[to, t0+l‘]’)’ |J|<l,
ally, < |J|ta- vz,
W lele, < 11
fa(t+te)tdt=0, r=0,...,s;

0

where intervals and translations have to be understood in the ‘periodic sense.
Prorosimion 1. (cf. [2], [3], [15]). Let 0<p<1, 1< g< oo, p<gq,and

s> [1/p—1]. Then J(®)eH,(T) if and only if there exists a decomposition

(1.2 f@= Y Aa;(t) (convergence in Z(T))
j=o

o0
with Y |4|P < oo where the functions a;(t), j=1, are (p, q, s)-atoms and
j=1

a0
ao(t) € L, (T) satisfies |lao|l,, < 1. Moreover, the quantity inf { Y |4|P}*/? where
=0

the infimum is taken over all decompositions (1.2) is an equivalent quasi-norm in
H,(T).
Splines and spline systems. Let n=1, 2,... The dyadic partitions of T

Ty ={0=58,0<Sp; <...<Syp-y <1}
are defined by setting

27k 1.
Smi = {1——2""(n—i),

i=0,...,2]
i=2...,n—1
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for n=2%+1>1where [ =1,...,2and k = 0, 1,... are uniquely determined
by n. Furthermore, we put

Spjnti =Sni>  Swjnri =Sait+i, J=0, £1,...,

for the corresponding expanded partitions on T and R = (— o0, o0).

For m =0, 1,... we denote by S (T) the n-dimensional subspace of
Cm=1(T) (of L, (T) if m = 0) consisting of all periodic spline functions of
degree m with respect to x,. The corresponding B-splines

L
NR@ = 3 N, tel0,1),
J==w
where
Niu(.'j")(f)=(S;‘j+m+1—S;,j)'[sil,j,-~-aS;|.j+m+1;(S"t)ﬁ”
(te R) have the properties (cf. [107, [4], [16])

(13) Supp N&I’.’;) (t) = [sn,h Sn,i+m+ 1)5 n>m+ 1 »
n—1
(1.4) Z Ng’;’(t) =1, Nf,'_'})(t) 20, reTl,
i=o
(1.5) {NmHZd forms an algebraic basis in S (T),
(1.6) 4 N ) = m-{ Ne @ N }
' ™ (Shitm=5n1)  (Smitme1—Sni+1)

n=1

(L7 if g(®)= ¥ B NI (5)eS™(T) then for 0 < p < oo
i=0

2 nT e

i=0

n—1
Co-{ X nHIBIP} < llglle,, < Ca+ {
i=0

with constants independent of g(t) and n,
" (18) if n=2" then N&(t) = N (t—i-2").
The periodic orthonormal spline systems F™ = {£(™ ()} are uniquely
determined by the conditions )
f™@esS™(T), n=1,2,...,
F™ is orthonormal,
S (p2-1) >0, fM(@)=1.
These systems were introduced by Z. Ciesielski ([1], [4]). We used them in
[7] to prove the following

ProrosiTioN 2. The systems F™, m =0, 1,..., form Schauder bases in
Hy(T) if m+1)7' g p< 1.

(1.9)
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An analogous statement has been given by P. Wojtaszczyk [16] for a
slightly modified spline system on T; moreover, his results also include
unconditional convergence of the corresponding expansions if p > (m+1)~"
(cf. also [12], [11]).
Moduli of continuity. Let k = 1,2,... By
k
Aif =3 ('I‘)~(—1)’°"~f(r+1h), heR,
1

=0

(1.10)

we denote the usual differences of order k of a function (or distribution) £ (1)
on T. We define by

(1.11) wk(5,f)L,, = sup HAﬁfH:,,,, 0<ox1,
O<h<d

and

(1.12) (0, N, = sup (4 fllu,, 0<6<1,

0<h<d

the moduli of continuity of order k of fe L,(T) and fe H,(T), resp. In the case
0 <p<1 the following properties hold (cf. e.g. [5], [9]) for f, geL,(T):

(L13) (3, f+9)2, < 06, F)F, + 04 6, ).,
(L) o, < C-Qs+ 1 0,3, f), , 6 <A,
(119 (8., < C an(6, My, < C-Uflu,, 1 <k,

with constants independent of f(r), 4, and 8. The same relations remain
generally valid in the H|, case, too. But in this case there is another useful
approach to the moduli of continuity via a certain K'-functional. In [8] we
have obtained

ProposiTION 3. Let 0 <p<1, k
for 0 <6 <1 we have

Co e, Nu, < inf {lIf=gllu,+8llg¥u,}
yer(T)

1,2,..., and fe H,(T) be given. Then

< Gy (5aﬂn,,

where HY(T) is the space of all distributions g(t)e @' (T) with g {(£), g®(f) e H (T,
and the constants Cy, C, are independent of § and f(t).

In [8], (1.16) has been used in the proof of the Jackson type estimates (0.3),
(0.4) for spline approximation in H »(T). However, in the present paper we only
need the elementary properties (1.13)~(1.15) of the moduli of continuity.

k o
Finally, by 4*f, = 3 (—1)"-’(’1‘)- Bir, 4B = A B, we denote the differ-
=0 A .

ences of order k of a sequence {f;}. ,

2 — Studia Mathematica 81,1
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2. Direct inequality. In this section we prove inequality‘ (0.5). of Jackson
type stated in the main theorem in the Introduction. The idea is to reduf:e
(0.5) to (0.4) by purely “atomic” considerations. In order to do this we begin
with

LeMMma 1. Let m=1,2,...,5=0,1,..., and n=2' > s+m-+1 be given.
Then for any spline

n—1
g =Y BN (1)eS™(T)
i=0
there exists a step function §(t)eSO(T) such that
n~1
2.1 9(—-g@) = jZo b;(1)

where the functions by(t), j =0,...,n—1, satisfy

(2.2) supp b;(t) < [Snjs Snjrs+1) = Lnjs
j-1
(23) bl <C- 3 |48
i=j—m

where B, =B for i =0,...,n—1, j=0, +1,..., and

(2.4) | byt +s,) t"dt =0,
IO,j

r=0,...,§
(the positive constant C in (2.3) is independent of n=2' and y(1)).

Proof. We fix an arbitrary m=1, 2,... and n=2'>m+s+1 (for the
sake of briefness we omit the indices m and n in the notations, €8, §; = Sy,
N (1) = N;(t), and so on). As usual, we denote by f(t)4 the restriction of
f(t) to an interval 4 = T. Setting 4; = [s;, 5;+1) we obtain (cf. (1.3), (14))

n—1 n—1 J
25 90 =Y 90ly=Y (X BNl
j=o J=0 i=j—m
r—1 j-1 i
=T {2 (=48 T Nella) B 1y
j=0 i=j-m k= j~m

Obviously, the functions

i
A40= Y N@lyp i=j=m..j=1, j=0,.,n—1,

k=j-m )
satisfy (cf. (1.4), (1.8)
(2.6) suppAd; (=4, 0<4,;0<1, ted;,
2.7 ’ Ay (@) = Ay jo(t—=j 270,
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Spline approximation 19

Now we define the step functions

k@)=Y Gl k=-—m,..., —1,
r=0
by the conditions
(2.8) [ (Aeo@=h@)rd =0, r=o0,... s,
To
and observe that the reals ¢, , are uniquely determined by (2.8) and indepen-
dent of n = 2! (make a change of variable t = 2'-7 in (2.8) and consider the

corresponding system of linear equations).
If we put h;(t)=h_;(t~j-27"), i=j—m,...,j—1, and

n=1  j=1
g =73 { ) (“Aﬂi)'hf,j(t)"'ﬂj'1|4j}GS£|°)(T)a

j=0 i=j-m

then by (2.512.8) and the obvious properties of 4 (f) we obtain the asser-
tions of the lemma (with

i=1
b= 3 Aﬁ,--(h,‘j(t)—Ai‘j(t)), Jj=0,...,n-1).

i=j—m

(2.9)

Remark. In the case s =0 this lemma was essentially proved in [8],
Remark 3.

Now, by Lemma 1 we can obtain
. LEMMA 2. Let m,m*=0,1,..., m>m* 0<p<1, and n=2'>m+
+1+[1/p] be given. Then for any g(eS™(T) there exists a spline
g* (Ve S (T) satisfying
(2.10) g —9*lla, < C* 0y 27, g)u,,
where C does not depend on g(t) and n = 2"

Proof. As in the proof of Lemma 1

n—

and n =2' in the notations. Let g(r) = Y. §;-N;(t) be the B-spline represen-
=0

we fix the parameters and omit m
1

tation of g(t). From (1.6) we obtain

(m" () —
g"m () I

n—1
()= 2" 3 4™ ,_e NP (0 €SE"(T).
i=0

Let 5 =[1/p—1]+m* By Lemma 1 there exists a step function g™ (t) such
n—1

that g () — g™ () = Y b;(r) where b,(t) satisfies (2.2), (2.4), and (instead of
i=o :

(2.3)

J-mt—1
b, < C-2- F jam*t gy,

i=j—m

(2.11)
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Now we consider the functions
1 Sm¥ =1
(2.12) Bty =|... [ biCww)depye... AL,
s sj
According to (2.2), (24), (2.11), and (2.12) we have
(2.13) supp B; (1) < I,
ET e -Um ~1/p
(2.14) IBlle, <C-{ X 4™+ Bl-270 (L=,
' © i=j~m
and
(2.15) [ By(t+s)-1"dt = 0, r=0,..,[1/p—1].
1o

Thus, the functions B;(1) are multiples of (p, cv, [1/p~1])-atoms and by
Proposition 1, (1.7) and (1.8), we obtain
n—1 n—=1 j-m—1 . _ .
(2.16) “ Z B.,-“”” <C { Z ( 2 |4m +1 ﬁil'z llp)p} p
=0 =0 i=j-m 1
n—1 n-
<C{T A g2 < C|| T A" N,
i=0 =0
=C- HA';W; ! g(’)“l,r, <C [LUES] (2«1, g)l,,,'

To complete the proof of Lemma 2 it remains to observe that

n~1
g* () =g()— 3. B,(1)
. j=0
) )
belongs to S (T). This, however, becomes clear if we consider

n~1
g (1) = g™ ()= Y. byt = g™ ()eSP(T)
i=0

and use the simple fact that a function f(t) with f'(t)eS® (T) obviously
belongs to S¥*V(T). o \

Proof of the direct inequality (0.5). For arbitrarily given m
=0,1,... and 0 <p <1 we pick any integer m > m* such that ’(0'4‘) holds,
ie, if feH,(T) then there exists a spline g,()eSi"(T) satisfying the
inequality

(217) ”f_gn“fl,, < C Ty 4y (nmis.f)ﬂ'p < C * Wy q (n‘l:f)ﬂp

where n =1, 2,... (cf. (0.4), (1.15)). ‘
On the other hand, for n=2'>m+[1/p] by Lemma 2 there exists a

©
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corresponding spline g#* () e S™ (T) with
(218) “gn _g:‘HH,, < C: Dy 1 (n_— 15 gn)L', < C: Opyey g (I’l— la gn)Hp'

Now the desired result can be obtained by standard considerations from

(2.17), (2.18), and the properties of the moduli of continuity (1.13}1.15); If
m+[1/p] <2'<n < 2! then

Egm Nu, <ERP Nu, < Ilf- g3illa,
< C'(”f*gzluul,'*'”gzl“g;lHH,,)
< C'(Ilf~gzzllu,,+wm‘+x (2-laf)up)
S o0t 274 S, < C- ey (07,
But for small n = 1,...,2:(m+[1/p]) we have
B Dy < BE (N, = By, < C- ey (1, N,
S C Oy (07, Ny

P
It can easily be seen that the constants are independent of n and (1) (they

. might depend on p and m), and thus (0.5) (with m* instead of m) is

completely proved.

Remark. In [16] P. Wojtaszczyk has proved that several spline sys-
tems form (unconditional) basic sequences in H,(T) (cf. Theorems 2 and 2’ in
[16]). Now the inequality (0.5) of Jackson type allows us to establish in all
cases considered by P. Wojtaszczyk the corresponding estimates for the rate
of convergence of the basis expansions with respect to these systems.

3. Inverse inequalities. As usual, inverse inequalities easily follow from
appropriate inequalities of Bernstein type. For spline approximation in
H,(T), p< 1, only a very special case of such an inequality was considered
in [8] Remark 3. Now the general case will be considered.

Prorosirion 4. Let m=0,1,..., n=2, 3,.., O0<p<l, and g¢(n
eSI(T) be given. Then we have
3.1) 147" gllu, < C-(hn)m*? ’|lgl|u,,, O0<h<C/n

where the positive constants C are independent of n, h, and ¢(t).

Proof. First we show a somewhat sharper inequality but in a special
case (the idea of this part of the proof was essentially contained in [8D): Let
m, n, and g(r) be as above, k=1,2,..., and (k+1)"! <p <1. Then

(3-2) 4k gllu, < C-(hnyi®m* D ligll, . 0< h < C/n.

To prove (3.2), we consider the B-spline representation of g(r) as in
the preceding section and the corresponding formula for the difference of
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order k

n-1
gly=Y, B 2ENL).

We observe that for sufficiently large nz=n(m, k) and small
0<h< C(m, k)-n~! the functions 4%N,(r) have the properties of multiples
of (p, 1, k—1)-atoms:

(3.3) supp 4k N; (1) = J; = [Si- 1, Si+m+ 1)
1 17l

(3.4) [ kN (t+s-y) tdt = (=1) | Ni(t+5;-,) 4%, dt =0,
o 0

r=0,....k—1 (cf (1.3), and careful computations give
(35) 45 Nill, < C - (hnyrintom+ 1) p=1

S C . {(hn)min(k,mi- 1). n" 1/p} . l Jifl - 1/p.

Therefore, by Proposition 1 and (1.7) we obtain for the indicated values of h,
m, k, p, and n

n—1
HMGHHP <C { Z lﬁ,]”(hn)”‘"'i"("’"‘“)-n“}l“’ .
i=0

< C(my - i,

This yields (3.2), and thus (3.1) in the case (m+2)"!' < p<1 (for small n
=1,...,n(m, k) we still have the estimate (3.5) and the obvious relation
45 Nillg, < C+||4kNillz,, so that (3.2) remains valid for these n, t00).

It should be mentioned that (3.2) does not hold if k=m-+1 and 0
< p<(m+2)~'. A slight modification of the above considerations, however,
gives (3.1) for all O0<p<1 Taking for given p some integer s
> max{[1/p—1], m) and denoting h; =j-(n-(s—m))™*, we consider the ap-
propriately normed divided difference

s

Ch)[h hysovns By S (8] =f(h)+jZ1 ¢ f(h)

where 0 < h < 1/2-h; and the constant C (k) is chosen in such a way that the
coefficient of f(h), as indicated in the representation of the divided difference,
is 1 for all h. It can easily be seen that the other coefficients ¢, are uniformly
bounded with respect to h because the knot points h, hy,..., h., are
“almost” equally spaced if 0 < h < 1/2-h,. Using these coefficients we define

& ©
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the function
(3.6) Golt) = 4p+? g(t)-}-z};::‘cj.Az;+1g(t).(h/hj)m+l
-3 T N0+ T 6N O
= "il Bidi (1)

i=0

and check the functions d;(r) to be multiples of (p, 1, s)-atoms if n > 4(m+1).
Again it is clear that

suppdl (f) < J;k = [S?‘, Sitm+ 1): S:* = si—'(m+ 1)/71
and
ddle, < C- ()" -n~t < C-(niy™* 1 n=Yp.| J¥1-Urp,

But by the definition of the coefficients ¢; we also have zero moments up to
the order s:

]l ;1
| die+spytde =(—1"*1 [ N (t+5¥) x
0 0
x{ATF e+ Y cp (Yt A ¢ de
i=1
71

= (=1t C(h)-hmt! (J)" Ni(t+50)Thy Byyeey By E™ L AME ] dr = 0

because the function f(§) = &1+ 4™{! 1" is a polynomial in ¢ of degree less
than s—m for all r =0,...,s.

Thus, by Proposition 1 we obtain (cf. (1.7), the modifications for small n
are obvious)

n-1
(3.7 19oller, < C-(hny™** {IZO Bl ™1} < C - (hmy™* - llgll s,

and this yields, together with the construction of g (t) in (3.6), the desired
result:

145+ gl <Nl + _max (e ~<h/h,,)m+1)v-j§1 145 gl

< C-(hny ™9 {iglig, +llgl,} < C- (V- lgllg
This finally proves Proposition 4.
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Proof of the inverse inequality (0.6). Let f(eH,(T), 0 <j;< 1,
and m =0, 1,... be given. By g,() we denote the best approximating splines
in S§P(T) for f(t), ie.,

If=giln, = E5? (Nlu,, =0, 1.

Then (3.1) yields the inequality (cf. (1.12), (1.14)

(38 wm+1("—1’ gl"gl—-l)l <C(nt- 2 g =gy 1”11,,

<C-(n 2B (N, > 2.

-Thus, according to (1.13), (1.15), and (3.8), we obtain for 2 n < 2k+1
k=0,1,...,

K
mm+1(1/n,f)ﬂr,, < wm+1(1/”~f"élk)f1 -+ Z Wty (1/n, gt”gzq)f'l,,

Cllf—gull, + Z (2'n

k

‘( Z 2!(m+ 1)p.E(2r7) (f)fi,,}

1 .
B ()

< C-p~Pm+1).
Since the sequence of best approximations is decreasing with respect to n,

(0.6) is a direct consequence of the latter inequality.

Remark. The more general statement

&
(3.9) wk(l/n,f)n,, sCnt {,21 . ‘Eﬁ"‘)(f)ﬂp} 1/n

where I =min(k, m+1), k=1, 2,..., and the constant is independent of n
=1,2,... and feH,(T), 0 < p < 1, immediately follows from (0.6) and the
inequality of Marchaud type

kzm+1

@™ N,
k=1,...,m

(3.10) Dpy 41 (2:17 f)fz,,,

270 LS 2 g

r=0

027 N, < C

where [ =0, 1,... The nontrivial part of (3.10) (ie, the case k=1,...,m)
results from the Jackson type inequality (0.2) for H,(D) and the correspond-
ing inverse inequalities for trigonometric approximation in L,(T) (cf. [5],
p. 89).

In the case p = 1 the above proof of the inverse inequality (0.6) does not

icm
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formally work because (1, 1, s)-atoms are not allowed in Proposition 1.
Moreover, (0.6) cannot be true in this form for p = 1. Suppose, on the contrary,
that (0.6) also holds with p=1. Considering any function g(t) + const
belonging to some S (T) (n> 1), it follows that

[ ('51 g)lll = 0(5"'-“)5 8 - 0.

It can be proved that this property is equivalent to g(NeH7*'(T) or
g™ (tye H} (T). But by a well-known theorem of F. and M. Riesz this means
that ¢™(t) should be absolutely continuous, which gives the desired
contradiction.

A correct version of the inverse theorem for spline approximation in
H,(T) (the direct estimate is contained in (0.3)-(04) for arbitrary m

=0,1,...) can be stated as

Pnommlcm 5. Let m=0,1,...,n=2,3,...

Then for 0 < h< C-n™' we have

, and g(t)eS™ (T) be given.

; 1, k=1,...,m (m>0)
A1 Ak C-(hn)t- ’ ’
311 [ldiglly, < C-(hn)* gl - In(hn), k=m+1,
with constants C independent of n, g(t), and h.
Thus, if feH(T) then
Zrk”.llEr(-M)(f)Hla k=1, RUN
(3.12) @ (1/m, )y, SC-n7*3 "
rZ:l’m'lﬂ(”/")'E.(fm)(f)nla k=m+1

with a constant indeperident of n and f (t).

Proof. It suffices to consider (3.11) (the other assertion is again a
standard corollary to the Bernstein type estimate). The case k= 1,...,m can
be handled as above (cf. the proof of (3.2) but use (1, o, 0)-atoms). The
details are left to the reader.

The idea in the case k=m+1 will be demonstrated if m=0; the

technical modifications for m > 0 are obvious. For estimating the H; norm

of 4,4 (1) the crucial point is to obtain an appropriate atomic decomposition
of

; 4, NP (1) = Ly = sy —
For this purpose we introduce special functions
AT (t, to, ) =
A~ (t, to, b

1|[’l+1"h~’l+1)'

2|[r0 =hto) 1|[ro.r0 +2h)»

) = 1|[r0— 2ht0) T 2][r0.r0+hb
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which are multiples of (1, co, 0)-atoms (with H;, norm < C-h) for arbitrary
toe T and h < 1/3. Clearly, we have

k
LNO@O =Y 27 AT (t, 5+ (2 =2 h, 27 h)+
j=1 .
k
+ Y27 At si4— (2= 1)h, 27 B+

j=1

27k(1 ’ —
+ (I[s,+(2"~2)h,s,~+(2k*l—zm) ”[s,-H—(zk*l«1>h.s,+1~«(z"~1m))

where for k = [|In(nh)[]+1 the last term is again a multiple of (1, co, 0)-atom
with support length < C-n™!. Thus, by Proposition 1,

k
4y NPl S C- 3 2792 )27k ™!
i=1

SC-h(k+1)<C-h|In(nh), O<h<1/2n.

This estimate immediately yields (3.11) (cf. (1.7)).
In the concluding part of this paper we state (without detailed proof)
two standard corollaries to the direct and inverse inequalities. Let

B}, (T) = {fe H,(T): ”fll,,;q
1
= [[f]l,,p+(£co,‘(t,f)1,”.rsq~1d[)l/q <o},

w.here 0<p<1,0<s<k 0<q< oo, be the spaces of Besov type defined
with Tespect to the scale of Hardy spaces (for g = oo the usual modified
definition will be used). By Proposition 3 it is also clear (cf. [8]) that B; ,(T)

is an intermediate space for real interpolation between two Hardy-Sobolev
spaces, i.e.,

Bya(T) = (Hy(T), Hy(T))s - g

From (0.5), (0.6) we immediately obtain

ProrosiTion 6, Let m=0, 1 0<p<l, and 0<y
) N PN ‘ s q < 0. Tha
F(@®)eH,(T) belongs to BS ,(T), 0<s <m+1, if and only-if

(3.13) A1l , =17l + (3 2 B 1, < 0
" r=0

where l|-[|5;'q is an equivalent quasi-norm in B3, (T) (modification if q = ©).

; 9(};;; the proof of a similar statement in the L, case (0 < p < 1) see [5],
N ' L

icm°
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The case g = co of Proposition 6 is essentially contained in the some-
what stronger

ProPOSITION 7. Let the function w(t) satisfy the conditions w(t) %0,
—m41), _ ; "
t w(t) ~ for t 0 and, in addition,

1
[Wd): 27D 41 = O (w(p)- (D),

1

(3.14) t-0.

Then for fe H,(T), 0 <p <1, the following two properties are equivalent:
(3.15) Ot (N, = O (W (D)),
(3.16) E(Nu, = 0(w(1/n),
Remark. In the L, case (0 < p < o) conditions of type (3.14) are
known to be also necessary for equivalence statements such as in Proposition

7 (cf. [5], [6]). However, in the H, case (0 < p < 1) it is not yet clear how to
construct the corresponding examples.

t—0,

n— 0.
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Note on differentiation of integrals and the halo conjecture
by

FERNANDO SORIA (Chicago, Illinois)

Abstract. In this paper several results on differentiation of integrals are obtained from
restricted weak type estimates of the maximal operator associated to certain differentiation bases in
R". The only tool used is a simple lemma in measure theory due to E. Stein and N. Weiss which
explains how functions add up in weak-L! (Lemma 5). In the process, we construct for each index m
2 0 a quasi-Banach function space which plays with respect to L(log* L)™ the same role as the
Lorentz class L{p, 1) does with respect to I, 1 < p < oo (see Theorems 2 and 3). We follow here
some ideas originated in Taibleson-Weiss [7).

The same methods are used to exhibit a weak type estimate for the maximal operator on the
partial sums of Fourier series and, as a consequence, ae. convergence a little bit beyond
Llog* Llog™ log™ L.

1. Introduction and statement of results. Let 7 be a differentiation basis in
R" and @ (u) its halo function; that is, @) =u if 0 <u<1 and, if u>1,

() = sup ‘|4 ! x: (My)(x) > l/u)]: A a msble. subset, |4| >0},

where M = M, denotes the maximal operator associated to 2, |A4| the
Lebesgue measure of the subset 4 and y, its characteristic function.

In the present work we give partial answers to the following question:
Assumning certain knowledge on the growth of &(u) at infinity, what can be
said about differentiation properties of the basis 4?. (For an introduction to the
subject, including some basic definitions, the reader is referred to de Guzmén
[1]) We will state now a first result in this direction.

TueoreM 1. Suppose that ®u) < cou(l+log* wy™ for some non-negative
constants m and co. Then # differentiates any function which is locally in
L(log™ L)"log™ log™ L.

L(log* L)"log™* log™* L is not, however, the appropriate class to fully
exploit the information given by such a behavior of the halo function and our
next step will be to introduce more adequate classes to deal with this kind of
problem, We will also show that, at least in one case, our results are best
possible (see Theorem 3).
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