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The decomposition of functions of
bounded x-variation into differences
of x-decreasing functions

by
DANIEL S. CYPHERT and JOHN A. KELINGOS (Nashville, Tenn.)

Abstract. The concept of variation of a function, first introduced by Camille Jordan a
century ago, has been generalized in many ways since then. However, Jordan's characterization
that functions of bounded variation are differences of two decreasing functions has, with one
single exception, failed to generalize. In 1975 B, Korenblum distorted the measurement of
intervals in the domain instead of the range space, as had been the common practice, to arrive
at the concept of x-variation. In this case functions of bounded x-variation can in fact be
characterized as the difference of two x-decreasing functions. We present in-this paper a careful
proof of this decomposition theorem, which in the piecewise linear case is constructive and
maximally efficient. A Helley-type selection theorem is also. provided.

1, Introduction. Just over a century ago Camille Jordan introduced the
concept of variation of a function and characterized functions of bounded
variation as differences of decreasing (increasing) functions. Some forty years
later N. Wiener [13] generalized the concept of variation of a function to
what he called its quadratic variation, in ‘which he distorts the measurements
of intervals in the range space by squaring their length. In 1936 L. C. Young
[14] used arbitrary positive powers to distort intervals and eventually people
began to fix a distortion function ¢, which is continuous and nondecreasing,
and proceeded to define the ¢-variation of a function (see e.g. [9] and [8]).
This idea was then generalized further by D. Waterman [117 and most
recently by M. Schramm [10] who consider a countable family of distortion,
functions in order to generalize the concept of variation of a function. All of
these efforts lead to results on existence of Riemann-Stieltjes integrals and to
convergence criteria for Fourier series. The price one pays in all these
generalizations is the loss of an effective decomposition of a function of
bounded variation into, hopefully, simpler functions, such as one has in the
case of Jordan’s original concept.

In 1975 while studying Poisson integral representations of certain classes
of harmonic functions in the unit disc of the complex plane, B. Korenblum
[4] was led in a natural way to consider a néw kind of variation for the


GUEST


186 D. S. Cyphert and J. A. Kelingos

boundary functions involved, called x-variation. This concept differs from
those mentioned above in that a distortion function » is introduced for
measuring intervals in the domain of the function, and not the range. One
advantage of this alternate approach over those above is that a function of
bounded x-variation can be decomposed into the difference of two x-
decreasing functions. (Korenblum introduces the expression x-bounded above
for this concept, which is appropriate when considering the premeasures
which generate these functions. For our purposes we feel that the term s-
decreasing is more graphic.)

The decomposition theorem for functions of bounded x-variation is
stated in [4], p. 206, Theorem 5 (for a particular function x) along with a
very brief outline of a proof. Because of the important connection between
these functions and complex function theory as demonstrated in [4]. (see also
(5], [2] and [3]), we present in this paper a careful proof of the decompo-
sition theorem (for a broad class of functions x). In the piecewise linear case
the proof is constructive and “maximally efficient” in a sense that will
become more clear later. The authors are indebted to Professor Korenblum
who in a private communication suggested an outline for this project.

Definitions and preliminary results. Throughout this paper we only
consider real functions defined on [0, 1]. All the results apply to functions f
on an arbitrary interval [a, b] by referring to the function foa defined on
[0, 1], where a(x) = (b—a)x+a. If I =[x, y] is an interval, we write f(I) for
J ) =f(x), and |I| for y—x. A partition P of [0, 1] shall denote, as usual, a
finite collection of intervals I, = [xi-y, ], i=1, ..., n, with xo =0, X, = 1.
We will write either P ={I,} or P ={x;} as convenience dictates.

We begin by fixing a distortion function : [0, 1] = [0, 1] which is
continuous, increasing, concave (down), % (0) = 0, %(1) = 1, and baving infinite
slope at the origin:

(1) tim % _ o
x=+0 X

We note that x is subadditive:
@ () < x(X) % ().

Important special cases for choices of » are %o(x) = x(1 —~log x), used by
Korenblum in [4], and x,(x) = x*, 0 < g < 1, referred to in the literature
now as the Gevrey case. ‘

DeFINmION 1. A real function S on [0, 1] is said to be of bounded
x-varigtion if there is a C >0 such that for every partition P=[I,] of

[o. 11.
3 TIS U < CEn(r)).
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Co =minC is called the total x-variation of f: Co = %V(f). The family of all
functions of bounded x-variation is denoted by % BV. As mentioned above, a
function f defined on an arbitrary interval [a, b] is of bounded x-variation if
the function f((b—a)x+a) is of bounded x-variation on [o, 17.

A number of observations follow immediately from (3). First of all, every
function of bounded variation in the classical sense is of bounded -
variation, and the total variation

] V(N < V()

since the subadditivity of » implies that the sum on the right-hand side of (3)
is always > 1. Also if f is monotone,

(8] xV () =V () =IfQ)-f(0),
since the trivial partition P = {0, 1} of [0, 1] is optimum in (3) for mono-
tone f.

Furthermore a function of bounded x-variation has left and right-hand
limits at each point of its domain; hence these functions have at most
countably many (jump) discontinuities, and are bounded. In fact,

(6 If ) < 1f O +3%V (),
which is easily shown from (3). To show the existence of these limits, suppose
for example that 0 < a <1, and that

A = liminf f (x) < limsup f (x) = B
as x—a+. Then for each (sufficiently large) positive integer n, one can
choose points x;, i =1, ..., n+1, such that a <x, < ... <X,y S a+1l/n

<1, and such that |f(x;+;)—f(x)| = (B—A4)2, i=1,...,n U.sing the par-
tition {0, x;, X, ..., Xp+1, 1} and the definition (3), one obtains

n(B—Ay2< z": 1f Ot ) =S G+ 1 () =S (O +1f ()= (s 1)l
i=1

< C[i #(%p4 1 = %)+ %)+ 3¢ (1 — X0 1)]
=1
< Cmx(1/m)+2].

Dividing by n and letting n — oo yields A = B. o

An example of a function of bounded x-variation. which is not of
bounded variation in the classical sense is given in Section 3.

DermniTion 2. A function f (on[0, 1]) is said to be x-decreasing with
constant C = 0 if for each interval I =[x, y], 0<x<y<]l,

U] Sy < Cx()).
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Note that every decreasing function is x-decreasing (with C = ().
Intuitively a function is »-decreasing if it is either decreasing or, at least
locally, not increasing any faster than some fixed multiple of » itself.

As a simple example we note that every function Holder continuous on
[0, 1] with exponent o, 0 <o <1, is »-decreasing (and x-increasing) with
%(x) = x*. Hence, for example, there exist continuous nowhere differentiable
functions which are x-decreasing, and therefore, by Theorem 1 below, of
bounded x-variation.

We observe that if f is x-decreasing, then f has at worst downward jump
discontinuities:

®) fla=)=f(@) = f(a+).

This follows by applying (7) to I =[x, y] with x < a < y and letting x and y
approach a,

TueoreM 1. If a function f is x-decreasing with constant C, then f is of
bounded x-variation and

©) ®V(f) S2C+|f (1)~ (0)).

This theorem is proved in [4], p. 204 in the case F () =1(0), but the
simple proof there can be easily adapted.

Not every function of bounded x-variation is n-decreasing, as one sees
with the function f(x) = (x)"/2. Here f is increasing and is therefore of
bounded x-variation, but since [f(x)—f (0)1/%(x—0) = %(x)" Y>> + o0 as
x— 0+, f cannot satisfy (7) for any C > 0.

In the proof of the decomposition theorem we make use of a Helly-type
selection theorem for u-decreasing functions. Of course, in conjunction with
the decomposition theorem, as in the classical case, one obtains a Helly-type
selection theorem for iunctions of bounded x-variation as well.

THEOREM 2. An arbitrary infinite family of functions defined on [0, 1]
which is both uniformly bounded and uniformly x-decreasing contains a sub-
sequence which converges at every point of [0, 1] to a x-decreasing function,

Proof. Denote the family by %. The hypotheses are taken to mean

that there exists a constant C > 0 such that for every f in & and every pair
0<sx<ys<l,

(10) fx<c
and
(11) SO = (%) < Cx(y—x).

Using (10) we can, by means of the standard Cantor diagonalization tech-
nique, find a sequence of functions Jx in & which converge pointwise at, say,
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each rational point of [0, 17, to a function ¢. Since each f, satisfies (11), so
does ¢, at least for rational x and y.
Next define ¢ at irrational points x by

12) @(x) = lim ¢(y), y rational.
yorx—
That this limit exists can be seen as follows. If 4 = liminfe(y)

< limsup@(y) = B as y —»x—, y rational, let y; and y; be two sequences of
rational points converging to x, arranged so that y, <yj <y, <y, < ...
...<x, and such that ¢(y)—4 and ¢(y)»B as i—cw. Then ¢(y)
—o(y) < Cx(y;—y). Taking limits yields B—A4 <0, and hence 4 = B.

Since ¢ satisfies (11) for pairs of rational points, it follows from< (12),
again by taking limits of rational points, that ¢ satisfies (11) for all pairs of
points, i.e. ¢ is %-decreasing with constant C on [0, 1]. By Theorem 1 ¢ is qf
bounded x-variation, and therefore has at most countably many disconti-
nuities, and hence by another Cantor diagonalization process a subsequence
of the functions f, can be found which converges at the points of discont-
inuity of .

The proof of the theorem will be complete if we show that f,‘.(x) — @ (x)
at each point of continuity of ¢. Assume 0 <a < 1 is such a point and let
£ >0 be given. Fix two rational points y; and y,, y; < a <y, such that

(13) lpGd—o(@l <of3;  Cxlyi—d) <e/3; i=1,2.
Since f, — ¢ at rational points, there exists N > 0 such that k > N implies

(14) d—eOl <e/3, i=1,2.

Now one can show ¢(a)—f,(a) <e for k> N by adding and substracting
from the left-hand side @ (y,) and £, (y;) and using (13), .»(14), and the faet that
the f, are uniformly x-decreasing. Similarly one obtains f; (a)— ¢(a) <e by
adding and subtracting ¢(y,) and f,(y,). The proof of Theorem 2 \1skno?v
complete, P ; N

3. Two ‘examples. In this section we present two ex?mples which give
some indication as to the flavor of the subject. The first is an ex'anllple of a
function of bounded x-variation which is not of bounded variation. The
second example shows that the total x-variation function:

(15) 1V (x) = %V (f, x) = xV(fou), O0<t<l,

namely the total x-variation of f on [Q,‘x/J, need not be ,ingrcaging ‘w?th. X,
a situation that certainly does not prevail in any of the concepts of variation
mentioned in the introduction. . o

We begin with a simple fact concerning functions with infinite slope at
the origin (see (1) of Section 2). - : .«

o(t) = xt,
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" LeMMA 1. There exists an infinite sequence {a;} of positive numbers such
that Ya;, =1 and Yx(a) = + 0.

Proof. Choose any sequence of positive numbers o, so that Za,,, =1.
Since x is concave down, it follows from (1) that (x)/x is increasing to + oo
as x—>0+. Hence for each m=1, 2, ...
small that x(b,)/b, > 1/, and so that a,/b, =k, is an integer.

Now choose the sequence {;} to be the numbers b,,, each b,, repeated
k,, times. Then

28 =Y knby =Yy =1,

and ‘
Y(a) = Zk,,,x(b,,,) 2 Yk bufat,, = 1= +o0.

ExampLe 1. For the ¢ of Lemma 1 set x, =0, X =a,+ ... +a,
i=1,2,... and define for 0 < x < 1

£09 = %(x—x),

and let f(1) = 0. Then S is not of bounded variation for the total variation
is clearly 2)%(a)= +co. However, f is x-decreasing and therefore of
bounded x-variation. To see this let 0 < x < y <1 be arbitrary. Then there
exist unique integers m < n such that Xp € X < Xppq and X, < y < X,,1,. But
TOI= () = % (=) —2(x = x,) < 5 (y=2x,) =% (x~%,) < % (y— x), where the
last inequality follows from (2), the subadditivity of ». Hence [ is x-decreasing
with constant ‘1, and by Theorem I, S is of bounded x-variation with
*V(f)< 2

Exampie 2. Fix 0<a<1 and 0<b<1. Let f be the continuous
function, linear on the intervals [0, a] and [a, 1], and such that f(0) =0,
fl@=1,71)=5. Tc compute the total x-variation of f, »xV(f), one must
maximize the competing ratios Y| f(,)|/ (/1)) over all partitions P = {I}
of [0,1]. But using the piecewise linearity of f and the concavity (and
therefore subadditivity) of x, it is elementary to show that the only partitions
that need be considered are {0, 1} and {0, a, 1}. The conclusion is

X% S€x<Xx4y, i=0,1,2,...,

(16) xV(f)-——max{b

2—b }

‘x(@+x(1—a)|
We make the following observations. First of all, if f()) =b =1, fis
increasing and as remarked earlier %2V (f) = V(f) = b. However, it follows

(by equating the two quantities in (16) and solving for b), that thére exists
a by, 0 < by < 1, namely

2

a - ‘ | bo = 1+x(a)+%(1—a)’

one can choose a positive b, so .
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such that'if by < b < 1, the total x-variation of f remains equal to b= f!
Finally we show the following. If $ <a <1, and if 0 <b < 1'is chosen
sufficiently close to 1, the total variation function

%V (x) =1 (x).
In other words, the variation function need not be increasing! In order to see
this, it follows from definition (15) that for each 0 < x < 1, V(%) = 2V (),
where f,(t) =f(xt), 0 <t < 1. Hence, if 0 < x < g, f+(t) is increasmg and so
wV(x) =V (f) =f(x).
Next if a < x <1 it follows from (16) and (17) that

) 2
L =16) A 102 s,

;{Vf(x) "‘-""%V(fx) = z_f(x) 2
i f) <,
Ha) 1+ H (a/x)

where H(x) = x(x)+x(1—x). Now » is concave and thercfore so is H.
Furthermore H is decreasing on < x < 1 and hence H (a/x) is concave for
a<x<1 provided $<a <1 Thus the function g(x)=2/1+H(a/x)) is
convex for a< x < 1. Since g(a) =1 =f(a) and g(1) < 1, it follows that if
b =f(1) is chosen so that g(1) <f(1) < 1, then the straight line f(x) domi-
nates g(x) for a <x <1 and therefore »V(x) =f(x) for'a <x <1 also.

4. The decomposition theorem,

THEOREM 3. Every function f of bounded x-variation, %V (f) = C, is the
difference of two x-decreasing functions: f=g—h,
(18)  g()—g(x) < Cx(y—x), h(y)~h(x) < Cx(y—x), 0<x <y <1,
If £(0) = f (1), then one can choose g and h to agree with f at 0 and 1, and in
this case C =4C. In general, C <3C. .

The proof of Theorem 3 is in three stages, Without loss of generality we
can assume f(0) = 0. Suppose first that the theorem has been_ proved for
functions that vanish also at x =1, and that f is now given with f(1) # 0.

Define f'(x) to be f(x) for 0< x <1 and f(1) =0.
If P= {x;} is a partition of [0, 1], then

2"3 17 e =T (xi- 1)l < lﬁl LS ey = (e )l LS (- 1)l
i=1 =

But fis bounded by 3 C (see (6)) and so the right-hand side above is bounded
by

C Y n(xi—x.)+C<3C Y n(x—%-y).
=1 i=1

Hence f is of bounded s-variation and xV(f) < 5C/2.

5 — Studia Mathematica LXXXL2
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It follows from our assumption that f= 7—h where 7 and k both vanish
at 0 and 1, and are x-decreasing with constant 5C/4. Now if f (1) < 0, define
gby g(x)=g(x), 0<x <1, g(l)=F(1) and set h=h If f(1) >0, set g=g
and define h by h(x) = h(x), 0 < x < 1, h(1) = —f(1). In either case f/ = g—~h.
To see that g and h are x-decreasing, consider, for example, g in the former
case. One need only show that (7) is valid for intervals I =[x, y] where
0< x<y=1. But then

g)=g(x) =g()+g(M—gx) </ D+5Cx(1-x) S FCx(1—x),

since f'(1) < 0. Similarly in the latter case h is x-decreasing with constant
5C/4.

/ The second stage of the proof proceeds as follows. Suppose Theorem 3
is true for continuous piecewise linear functions which vanish at x = 0 and .
Let f be an arbitrary function of bounded x-variation, xV'(f) = C, f(0) =0
= f(1). Enumerate the (countably many) points of discontinuity of f, and
choose a sequence P, of partitions of [0, 1] such that the mesh, |P,| — 0 as

n— 0, and being sure to include in P, the first n points of discontinuity of f

from the above list of discontinuities. Then if f, is the continuous piecewise
linear function which coincides with f at the points of P,, one easily shows
fo—f, 0<x < 1. By Theorem 3 of [4], p. 204, each f, is of bounded x-
variation and »V(f) <%V (f) =C. By our assumption each f, =g,~h,,
where g, and h, are all x-decreasing with constant C/2 and uniformly
bounded by 3C/2 (see Theorem 1 and (6)). Hence by the Helly-type selection
Theorem 2, there exist subsequences of g, and h, converging respectively to
functions g and h which are »-decreasing with constant C/2. But f, —f and
so f =g—h, which completes the proof.

The third and final stage of the proof is to prove Theorem 3 for
continuous piecewise linear functions which vanish at 0 and 1. Suppose then
that P: 0= xy < x; < ... <X, <X,4; =1 is a fixed partition of [0, 1] and
let f be a continuous function which is linear in each interval [x;_, x;], with
J(© =f(1)=0. Suppose f is of bounded x-variation, xV(f)= C. Then
inequality (3) is valid for each partition of [0, 1]. In particular, (3) is valid for

each subpartition of P. There are 2" such subpartitions (there being (7)

subpartitions containing i+ 2 points, 0 and | and i interior points). Thus we
have 2" inequalities of type (3) which we take as hypotheses.

The task at hand is to construct two functions g and h such that
S =g—h We want g and h to be continuous, to vanish at 0 and 1, to be
linear in each interval [x;_,, xJ, i=1, ..., n-+1, and to satisfy inequality (7)
with constant C/2 for every interval I [0, 1]. But using the piecewise
linearity of g and h and the concavity of x, it is easy to show that g and h
need satisfy inequality (7) only for intervals I =[x, x;], where x; < x; are
arbitrary points of the fixed partition P.
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Thus the problem becomes a finite-dimensional one. Find 2n numbers,
g(x;), h(x;), i =1, ..., n such that f(x,) =g(x))—h(x;) (f, g and h all vanish
at 0 and 1), and subject to the inequalities
Cglx)—glx) < 3Cx (x;—x;), h(x)—h(x) < $Cx (% =x;),

0<i<j<n+l.

By putting g(x;) =f(x;)+ h(x;) into these two sets of inequalities, we can
summarize the problem as follows.

Let P: 0 =xp<x; < .. <x,<X,,;=1bea fixed partition of [0, 1].
Let f(0)=f(1)=0 and let f(x), i = 1, ..., n, be n arbitrary real numbers
subject to 2" inequalities of type (3), one to each subpartition of P. Find
n numbers h(x)), i =1, ..., n, h(0) = h(1) =0, subject 10 the inequalities

h(x)—h(x) <$Cx(x;—x,)
hx)=h(x) < 3Cx(x;—x)~[f (x)—f (x:)],

0<i<j<n+1. Using the notation

a* =max(a,0), a  =max(—a,0),

we can combine the above two sets of inequalities to the one set

(19 h(x)—h(x) KFCx(x~x)-[f (x)~f (x)]*, O<i<j<n+l.

First of all, an admissible range for each h(x;) can be found by first
setting 0 =x; <x; <1 and then setting 0<x; < x;=1 into (19). The
result is :

(20)

The intervals

J(x)™ =4 Cx(1-x) < h(x) < $Cx(x)—f (x)*.

L =[f(x)" —3Cx(1 ~x), $Cx(x)) ~f(x)*],

i=1,...,n, are not empty. For if one writes down inequality (3) using the
partition {0, x;, 1}, the result is |1 (x)—f(O)+|/(1)~/ (x)| = 2| £ (x|
=2f(x)" +2f(x)” < Cx(x)+ Cx(l—x;), which implies the left endpoint of
I; is indeed to the left of the right endpoint. ,
We now define each h(x)) using the following recursive algorithm. Set

(21 h(x:) =4Cn(x)—f (x)",

and for each j =2, ..., n define
(22) h(xj) = ]T:llinj {'% Cue(x)) “f(xj)+, h(x.‘)‘f’%C%(xJ“xi)—[f(xj) "'f(xi)]+}"
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1t follows from the definition that each h(x;) satisfies (19). The construction
will be complete if we can show that each h(x)) satisﬁes (20_) as well, ie.
h(x;)el;. Since the first quantity in the bracls'et of (22) is the right endpoint
of I;, h(x;) automatically satisfies the right inequality of (20). The number
h(x;) will also satisfy the left inequality of (20) provided t!lat for each
i=1,...,j—1, the second quantity in the bracket of (22) is > the left
endpoint of I;: :

@3)  f)T =1 Cx(1—x) < h(0)+F Coe (x;— x) — Lf (x) =/ (x)] "

However, inequality (23) reduces exactly to inequality (3) for a certain
subpartition of P, that subpartition depending upon which choice of the
minima was made in (22) for each h(x;), i< j, that appears in (23). The details
can be easily verified by the reader. One needs to use the simple fact that for
any sequence of real numbers, 0 =ag, ay, ..., a4y, Uysq =0,

i=1

" 1 :
Yla—a-) +ay =% 3 lg—a_yl.
< i=1
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