On the pointwise ergodic theorems in L_p ($1 < p < \infty$)

by

R. EMILION (Paris*)

Abstract. Using M. A. Akcoglu's estimate [1] we show that

$$\sup_{\alpha > 1} \left\| \frac{1}{n} \alpha + \cdots + T^{n-1} f \right\|_p \leq \frac{p}{p-1} \left\| f \right\|_p$$

for any $f \in L_p$ ($1 < p < \infty$) and any positive operator T on L_p which verifies

$$\sup_{\alpha > 1} \left\| \frac{1}{n} \alpha + \cdots + T^{n-1} \right\|_p \leq 1$$

or more generally $\sup_{\alpha > 1} \left\| \frac{1}{n} \alpha + \cdots + T^{n-1} \right\|_p \leq 1$. For such operators (which are not necessarily contractions) we also obtain the pointwise ergodic theorem in L_p.

Introduction. Let (X, \mathcal{F}, μ) be a σ-finite measure space and T a positive operator on $L^1(X, \mathcal{F}, \mu) = L_p$, $1 < p < \infty$.

M. A. Akcoglu's powerful estimate [1] is

$$\sup_{\alpha > 1} \left\| \frac{1}{n} \alpha + \cdots + T^{n-1} f \right\|_p \leq \frac{p}{p-1} \left\| f \right\|_p$$

for any $f \in L_p$ and any positive contraction T on L_p.

A trivial example shows that a positive operator T on L_p ($1 < p < \infty$) which verifies

$$(*) \quad \sup_{\alpha > 1} \left\| \frac{1}{n} \alpha + \cdots + T^{n-1} \right\|_p \leq 1$$

is not necessarily a positive contraction on L_p ($1 < p < \infty$); take $X = \{1, 2\}$, $\mu[1] = \mu[2] = 1$ and $T = \begin{bmatrix} 0 & 1 + \varepsilon \\ 0 & 0 \end{bmatrix}$ with $\varepsilon > 0$ small enough.

Of course, the converse is true.

In this paper we show that M. A. Akcoglu's estimate [1] yields an

* Université Paris VI, Laboratoire de Probabilités, 4, Place Jussieu, 75210 PARIS CEDEX 05, France
estimate and the pointwise ergodic theorem for positive operators on $L_p (1 < p < +\infty)$ which verify (+) or more generally, \(\sup_{0 < k < 1} |\sum_{i=0}^{\infty} k^i T_i| \leq 1 \).

Acknowledgement. The problem of mean and pointwise ergodic convergence for mean-bounded positive operators on $L_p (1 < p < +\infty)$ has been introduced by Professor A. Brunel. The mean ergodic theorem is proved in [4]. I would like to express my gratitude to Professor A. Brunel for his interest in the present work.

1. We recall the

Definition. A resolvent on a vector space B is a family \((\lambda V_\lambda)_{\lambda > 0}\) of linear operators on B such that $V_\lambda - V_{\mu} = -(\lambda - \mu) V_\lambda V_{\mu}$ for all $\lambda, \mu > 0$.

Examples of resolvent are

\[V_\lambda = \sum_{k=0}^{\infty} \frac{T^k}{(\lambda + 1)^{k+1}} \text{ where } T \text{ is a linear operator on } B; \]

\[V_\lambda = \int_0^\infty e^{-\lambda s} T_\lambda ds \text{ where } (T_\lambda)_{\lambda > 0} \text{ is a semi-group of operators}. \]

Ergodic theorem for resolvents on L_1 were obtained by D. Feyel [2] and R. Sato [7], [8].

The following appears as a consequence of M. A. Akcoglu's estimate [1] and the Hille-Yosida theorem ([6], p. 261).

(1.1) **Theorem.** Let \(V = (\lambda V_\lambda)_{\lambda > 0} \) be a resolvent on $L_p (X, \mathcal{F}, \mu) (1 < p < +\infty)$ such that λV_λ is a positive contraction for any $\lambda > 0$.

Then, for any $f \in L_p$, one has

\[\frac{1}{k} \sum_{j=0}^{k-1} T_\lambda^{j+1} - \frac{1}{k} \sum_{j=0}^{k-1} T_\lambda^{j+1} f \leq \left(\frac{k}{2^{k+1}} \right) \int_0^\infty T_\lambda f du \]

for any $t = k2^{-n} \in D_\lambda$.

Hence M. A. Akcoglu's estimate [1] applied to $T_\lambda^{k2^{-n}}$ gives us

\[\left| \sup_{k \neq 0} \left(\frac{1}{k} \sum_{j=0}^{k-1} T_\lambda^{j+1} f \right) \right| \leq \frac{p}{p-1} \left| \frac{1}{2^{k+1}} \sum_{j=0}^{k-1} T_\lambda^{j+1} f \right| \]

This implies

\[\left| \sup_{k \neq 0} \left(\frac{1}{k} \sum_{j=0}^{k-1} T_\lambda^{j+1} f \right) \right| \leq \frac{p}{p-1} \left| \frac{1}{2^{k+1}} \sum_{j=0}^{k-1} T_\lambda^{j+1} f \right| \]

for any $f \in L_p$.
Thus, if \(f \in L_p^* \) and \(h = T_0 f \), one obtains
\[
\|\sup_{\lambda > 0} \lambda V_\lambda f\| = \|\sup_{\lambda > 0} \lambda V_\lambda (T_0 f)\| \leq \frac{p}{p-1} \|f\|.
\]
Hence, for any \(f \in L_p \), \(\|\sup_{\lambda > 0} \lambda V_\lambda f\| \leq \frac{p}{p-1} \|f\| \). This proves (1.2).

We now prove (1.3). Inequality (1.2) shows that the set \(C = \{f \in L_p : \lambda V_\lambda f \text{ exists a.e. on } X_\lambda \} \) is closed in the strong topology of \(L_p \).

Indeed, if \(x_n \) in \(C \), then, for any \(\varepsilon > 0 \) and \(f_n \in C \) such that \(\|f_n - f\| < \varepsilon \), we have
\[
\|\lim_{n \to \infty} \lambda V_\lambda f_n - \lambda V_\lambda f\| \leq \lim_{n \to \infty} \|\lambda V_\lambda (f_n - f)\| \leq \lim_{n \to \infty} \frac{2p}{p-1} \varepsilon.
\]
Hence \(f \in C \).

Now, \(L_p = \text{Inv} \oplus (I - \lambda V_\lambda^2)(L_p) \), where \(\text{Inv} V = \{f \in L_p : \lambda V_\lambda f = f \text{ for any } \lambda > 0 \} \) (see e.g. [4]). It is clear that \(\text{Inv} V \subseteq C \).

On the other hand, if \(f = (I - \lambda V_\lambda^2)(g) \) for some \(x > 0 \) and \(y \in L_p \) then
\[
\lambda V_\lambda f = \lambda V_\lambda (I - \lambda V_\lambda^2)(g) = \lambda V_\lambda (I - \lambda V_\lambda g) = \lambda V_\lambda g - \lambda^2 V_\lambda^2 g.
\]

Since \(\lambda V_\lambda g \in L_p \), \(\lambda V_\lambda f = 0 \) a.e. on \(X \) and since \(\sup_{\lambda > 0} \lambda V_\lambda (V_\lambda g) < +\infty \) a.e. on \(X \), one has \(\lambda V_\lambda f = 0 \) a.e. on \(X \). Therefore, \(\lambda V_\lambda f = 0 \) a.e. on \(X \) whenever \(f = (I - \lambda V_\lambda^2)(g) \).

Since \(C \) contains \(\text{Inv} V + (I - \lambda V_\lambda^2)(L_p) \), \(C \) is closed in the norm-topology of \(L_p \).

To prove (1.4) consider similarly the set \(C' = \{f \in L_p : \lambda V_\lambda f \text{ exists a.e. on } X_\lambda \} \) closed in the norm-topology of \(L_p \). Let \(f \in L_p \), \(f^* = T_0 f \), \(f^* \in L_p \). Then \(\lambda V_\lambda f \), \(\lambda V_\lambda f^* \) exists for each \(\lambda > 0 \) (the proof of (1.2)).

Therefore, to prove that \(f \in C' \), it suffices to show that \(f^* \in C' \) and since \(C' \) is closed, it also suffices to prove that \(\lambda V_\lambda f^* \in C' \) for each \(\mu > 0 \).

One has
\[
\lambda V_\lambda f = \lambda \lambda V_\lambda f^* = \frac{\lambda - \mu}{\lambda - \mu} \mu V_\lambda f^* - \frac{\mu}{\lambda - \mu} \mu V_\lambda f.
\]

Since \(\mu V_\lambda f \in L_p \), one has \(\mu V_\lambda f < +\infty \) a.e. on \(X \) and
\[
\lim_{\lambda \to \infty} \frac{1}{\lambda - \mu} \mu V_\lambda f = \mu V_\lambda f
\]
a.e. Since \(\sup_{\lambda > 0} |\lambda V_\lambda f| < +\infty \) a.e. (1.2), one has \(\lim_{\lambda \to \infty} \frac{1}{\lambda - \mu} \lambda V_\lambda f = 0 \) a.e.

Therefore \(\lim_{\lambda \to \infty} \lambda V_\lambda \mu V_\lambda f = \mu V_\lambda f \) a.e. on \(X \). Thus, \(\mu V_\lambda f \in C' \) and \(C' = L_p \).

Note that \(\lim_{\lambda \to \infty} \lambda V_\lambda f = T_0 f \) a.e. on \(X \).

Remark. In the proof of (1.1) one has seen that \(\lambda V_\lambda f = \lambda V_\lambda T_0 f \) if \(\lambda \in \mathbb{N} \), \(\lambda V_\lambda T_0 f \) where \(\lambda V_\lambda T_0 f \) is a strongly continuous semi-group of contractions on \(T_0(L_p) \). Note that \(\lambda V_\lambda T_0 f \) is a semi-group on \(L_p \).

Now, if \((U_{3k})_{k=0}^{\infty} \) is an arbitrary semi-group of \(L_p \)-positive contractions, (1.5) shows that
\[
\|\sup_{\lambda > 0} \lambda V_\lambda f\| \leq \frac{p}{p-1} \|f\| \quad \text{for any } f \in L_p.
\]

This implies (see [3])
\[
\lim_{t \to 0} \frac{1}{t} U_{3t} f = U_{0} f \quad \text{a.e. on } X.
\]

On the other hand, for any \(f \in L_p \), any \(t \geq 1 \), one has
\[
\frac{1}{n+1} \sum_{j=0}^{n} U_{0} f \leq \frac{1}{n} \sum_{j=0}^{n} U_{0} f \leq \frac{1}{n} \sum_{j=0}^{n} U_{0} f \quad \text{where } n = \lfloor t \rfloor.
\]

Since \(\lim_{n \to \infty} \sum_{j=0}^{n} U_{0} f \) exists and is finite a.e. on \(X \), one has
\[
\lim_{t \to \infty} \frac{1}{t} U_{0} f \quad \text{exists and is finite a.e. on } X.
\]

Note that (1.6) (resp. (1.7)) implies (1.4) (resp. (1.3)) (Abelian theorem [10], p. 197), and conversely (1.4) (resp. (1.3)) implies (1.6) (resp. (1.7)) (Tauberian theorem [10], p. 209).

2. We recall [4] that in any Banach space \(B \) a sequence \((a_n)_{n=1}^{\infty} \) which verifies \(M = \sup_{n=1}^{\infty} \sqrt{a_0 + \cdots + a_n} < +\infty \) necessarily verifies
\[
1 - k \leq \sum_{i=0}^{\infty} k^i a_i \quad \text{for any } k: 0 < k < 1
\]
and
\[
\sup_{0 < k < 1} \left(\prod_{i=0}^{\infty} k^i a_i \right) \leq M.
\]
(2.2) **Definition.** An operator \(T \) on \(B \) will be called a \(C \)-contraction (resp. \(A \)-contraction) if

\[
\sup_{n \in \mathbb{N}} \left(1 - k \right) \sum_{i=0}^{n} k^i T f_i \leq 1
\]

(resp. \(\sup_{0 < k < 1} \left(1 - k \right) \sum_{i=0}^{n} k^i T f_i \leq 1 \))

As we said, a \(C \)-contraction is necessarily an \(A \)-contraction (2.1), and a \(C \)-contraction on \(L_p \) (\(1 < p < \infty \)) is not necessarily a contraction (see the Introduction).

We can now state the dominated ergodic

(2.3) **Theorem.** Let \(T \) be a positive \(A \)-(or \(C \))-contraction on \(L_p \) (\(1 < p < \infty \)); then, for any \(f \in L_p \), one has

\[
\sup_{0 < k < 1} \left(1 - k \right) \sum_{i=0}^{n} k^i T f_i \leq \frac{p}{p-1} \| f \|
\]

(2.4)

(2.5)

\[
\sup_{n \in \mathbb{N}} \left(1 + \ldots + T^{n-1} \right) f \leq \varepsilon \frac{p}{p-1} \| f \|
\]

(2.6) \(f^*(x) = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=0}^{n-1} f \right) (x) \) exists and is finite a.e. on \(X \),

(2.7) \(\lim_{n \to \infty} T^n f = 0 \) a.e. on \(X \),

(2.8) strong-lim \(\frac{1}{n} \sum_{i=0}^{n-1} f \) exists and \(L_p = \text{Inv} \left(T \right) (L_p) \) [4].

Remarks.

- (2.4) generalizes a result of S. A. Mc. Grath [5].
- (2.5) and (2.6) generalize [1].
- \(\lim_{n \to \infty} \sum_{i=0}^{n-1} \| T_i f \| \) exists a.e. on \(X \) as \(k \to 1^- \) (1.3) or as \(k \to 0^+ \) (1.4).
- \(T f^* = f^* \).

Proof. (2.4) is a consequence of (1.3), (2.1) and (2.2). Indeed,

\[
\left(1 - k \right) \sum_{i=0}^{n} k^i T f_i = \lambda \sum_{i=0}^{n} \frac{T^i f}{(\lambda + 1)^{i+1}} \quad (\text{with } k = 1/(\lambda + 1))
\]

is a particular case of positive contractions resolvent (2.2) or (2.1).

(2.5) is an immediate consequence of (2.4). Indeed, for any \(n \in \mathbb{N}, \ n \geq 1 \),

any \(k: 0 < k < 1 \) and any \(f \in L_p \) one has

\[
\frac{1}{n} \sum_{i=0}^{n-1} k^i T f_i \leq \frac{1}{n k^{n-1}} \sum_{i=0}^{n-1} f_i
\]

\[
\leq \frac{1}{n k^{n-1} (1 - k)} \sum_{i=0}^{n-1} k^i T f_i
\]

\[
\leq \frac{1}{n k^{n-1} (1 - k)} \sum_{0 < k < 1} \sup_{i=0}^{n-1} k^i T f_i
\]

\[
\leq \varepsilon \sup_{0 < k < 1} (1 - k) \sum_{i=0}^{n-1} k^i T f_i \quad \text{(take } k = 1/n)\]

This inequality also appears in [2], p. 154, [5] and [3] (in the continuous case).

(2.6) is a consequence of (1.3). Indeed, for any \(f \in L_p \),

\[
\lim_{n \to \infty} \lambda \sum_{i=0}^{n} \frac{T f}{(\lambda + 1)^{i+1}} = \lim_{n \to \infty} \sum_{i=0}^{n} e^{-\mu T f}
\]

\[
\mu = \lim_{k \to 1^-} \left(1 - k \right) \sum_{i=0}^{n-1} k^i T f \quad \text{exists and is finite a.e. on } X \quad (1.3).
\]

Since \(T f \) is positive, the tauberian theorem [10] in the form given in [4] shows that

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f \quad \text{exists a.e. on } X \quad \text{for any } f \in L_p
\]

and thus for any \(f \in L_\infty \).

(2.7) is an immediate consequence of (2.6) as \(T f = \frac{1}{n} \sum_{i=0}^{n-1} f \) and thus for any \(f \in L_p \).

3. **Remarks.** Any positive \(C \)-contraction on \(L_1 \) (resp. \(L_\infty \)) is necessarily a contraction [4].

As we said in [4], any strongly continuous semi-group \((T_{h+0})_0 \) on a Banach space, such that \(\sup_{0}^{\infty} \| T_{h+0} \| \leq 1 \) is necessarily a contraction semi-group; (1.5) is an estimate for such semi-groups (if \(T \) is positive on \(L_p \)).

If \(p = 2 \) then \(T = \begin{bmatrix} 1 + e & 0 \\ 0 & 0 \end{bmatrix} \) is a \(C \)-contraction on \(L_2 \) if and only if

\(4e^2 + 8e - 5 \leq 0 \); the best value possible is \(T = \begin{bmatrix} 0 & 3/2 \\ 0 & 0 \end{bmatrix} \) and \(\| T \| = 3/2 > 1 \).

If \(T \) is a mean-bounded positive matrix then \(T \) is necessarily power-
bounded ([4], Theorem 4.2, and [9], p. 11, Prop. 3.4) and \(\lim_{n \to +\infty} T^n = \lim_{n \to +\infty} P^n \) where \(P = \lim_{n \to +\infty} \left(I + \cdots + T^{-1} \right)^n \) ([9], Lemma 3.3, p. 11); therefore one has \(\lim_{n \to +\infty} ||T^n|| \leq 1 \) for any positive C-contraction matrix.

References

Received November 11, 1983

Borel’s theorem for generalized functions

by

H. A. BIAGJONI (Campinas) and J. F. COLOMBEAU (Talence)*

Abstract. Generalized complex numbers and new generalized functions were introduced in order to give a meaning to both the value of any distribution at any point and to any finite product of distributions. In this paper we prove: Given any sequence \(\{c_n\} \) of generalized complex numbers, there is a generalized function \(f \) on \(\mathbb{R} \) such that \(f^{(n)}(0) = c_n \) for all \(n \). This result shows a coherence between generalized numbers and functions similar to that of the classical case.

Introduction. One of the authors introduced a generalized mathematical analysis in order to give a mathematical sense to any finite product of distributions and to classical heuristic computations done by physicists, see Colombeau [1], [2], [3], [4]. This generalized mathematical analysis deals with new generalized functions, more general than distributions, and with generalized complex numbers such that, if \(G \) is any generalized function on \(\Omega \subset \mathbb{R}^n \) open and if \(x \in \Omega \) then \(G(x) \) is defined as a generalized complex number.

In this paper we prove Borel’s theorem in this setting: given any family \(\{c_n\}_{n=0} \) of generalized complex numbers, there is a generalized function \(G \) on \(\mathbb{R}^n \) such that, for any \(x \in \mathbb{R}^n \),

\[
\frac{\partial^{d} G}{\partial x_1^{d_1} \cdots \partial x_n^{d_n}} (0) = c_x.
\]

This shows a deep connection between our generalized functions and our generalized complex numbers, similar to the classical case. The proof is more technical than the classical one given in Narasimhan [5], since we have to do more detailed computations and estimates.

We use the concepts of generalized functions and the terminology defined in Colombeau [3]. According to Colombeau [3], we consider an algebra \(C^{\infty} \) such that if \(G \in C^{\infty}(\Omega) \) and \(x \in \Omega \) then the value \(G(x) \) is defined as an element of \(C^{\infty} \).

* This work was done when the second-named author was visiting professor at the University of Sao Paulo, Brazil, in July–September 1983 thanks to financial support from FAPES P and IME USP.