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Banach spaces which are proper M-ideals
by
EHRHARD BEHRENDS and PETER HARMAND (Berlin)

Abstract. In the theory of Banach spaces certain subspaces J of Banach spaces X, the M-
ideals. have been investigated in great detail. M-summands, ie. subspaces J for which there exists
a subspace J* such that X =J@J* and [|j+jY| = max UG 74 for jed, j*eJ*, are special
examples of M-ideals, but there is an abundance of M-ideals which are not of this simple form.
They will be called proper M-ideals.

The more interesting examples of M-ideals are proper, and in the development of M-
structure theory it turned out that all these examples share some geometric properties. This
moltivated - the present investigations to give conditions concerning the geometry of a Banach
space J such that J can be a proper M-ideal in a suitable space X. The main results are the
following:

— if J can be a proper M-ideal, then J contains a copy of ¢q;

— il J satisfies a certain intersection property then J is never a proper M-ideal;

— J can be a proper M-ideal iff J contains a pseudoball which is not a ball (a pseudoball is a
closed convex subset B of diameter two such that for every finite collection x,, ..., x, of
elements with ||x| < | there is an xeB such that x+x,&B for every i).

1. Introduction. At first we recall some basic definitions from M-
structure theory. .

1.1. DeFmiTION, Let X be a (real or complex) Banach space, J a closed
subspace of X.

(iy J is called an L-summand (resp. M-summand) if there exists a sub-
space J* such that X =J@J* and [[j+j4 = [ljl+Ilj| (resp. [+
= max {||jli, I} for jeJ, jteJ*

(i) J is called an M-ideal if the annihilator J™ of J in X' is an
L-summand.

Note. It is easy to see that every M-summand is an M-ideal, M-ideals
which are not of this simple form will be called proper M-ideals in the sequel.

These notions play an important réle in the applications of M-structure
to approximation theory and the theory of I!-preduals (for references see [
or [9]).

If X is a given space it is often important to determine the collection of
M-ideals and M-summands of X. Here we are interested in the converse
problem: Given a Banach space J, can J be a proper M-ideal in a suitable
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space X? (Trivially every J can be an M-summand in a suitably chosen X.)
How can this be characterized by means of the geometry of J?

The second section deals with examples as well as some useful simple
characterizations. In section three we introduce pseudoballs (a definition
which is due to R. Evans): a pseudoball B in a Banach space J is a closed
convex subset of J with diameter two such that for xi, ..., x,€J with ||x]|
<1(i=1,..., n)there is an xe B with x+x;eB for every i. Every ball in J
with radius one is a pseudoball, and we show that J can be a proper M-ideal
iff there are pseudoballs which are not balls.

In section four we consider Banach spaces with the following intersection
property: for every ¢ > O there are xy, ..., x, in J with [|x]| <1 (i=1, ..., n)
such that ||x|| < ¢ if ||x—x;]| < 1 for every i (ie. the intersection of the balls
B(x;, 1) is contained in B(0, ¢)). We show that there are many classes of
Banach spaces which have this intersection property. One of our main results
is a theorem which states that Banach spaces with the intersection property
are never proper M-ideals. Using this fact, we are able to prove that every
space which can be a proper M-ideal contains an isomorphic copy of c,.

In the last section, in section five, we point out that the concepts we
dealt with all have a quantitative aspect. This gives rise to the definition of a
number associated with each Banach space J which measures how J fails to
have the intersection property or how complicated pseudoballs can be in J.

2. Examples and some preliminary results. The most well-known ex-
amples of proper M-ideals are c, (= the null sequences) in ¢ (= the conver-
gent sequences) and K (H) (= the compact operators on a Hilbert space H)
in L(H) (= the bounded operators). On the other hand, certain spaces never
occur as proper M-ideals, e.g. reflexive spaces (Prop. 2.2 in [1]). What are the
geometric properties which make it possible that ¢, and K (H) are proper M-
ideals, why are reflexive.spaces never proper M-ideals?

Clearly, the property “J can be a proper M-ideal” is invariant with
respect to isometric isomorphism, and simple counter-examples show that
invariance with respect to isomorphisms and hereditary results are not to be
expected. Given an M-ideal J in X several sufficient conditions are known
such that J is an M-summand. One of these results is applied in the next
proposition:

2.1. ProvosrTioN. Let J be a Banach space such that there is a norm one
projection from J" onto (the canonical image of ) J. Then J is never a proper
M-ideal.

Proof. Suppose that J is an M-ideal in a Banach space X; we will
show that J is in fact an M-summand.

By assumption, X’ splits into two L-summands X’ =J*@(J)* so that
X" splits into the M-summands X" =@ (IO ([1], Prop. L5). In
particular, there is a norm one projection P on X" with range (J®" If Q
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denotes any norm one projection from J” onto J then QPiy
i
x3x Ly gy

is a norm one projection from X onto J (here we identified (™™ with J”, and
ix: X — X" means the canonical embedding). Since M-ideals which admit
such projections are M-summands (cf, Prop. 2.1 in [7]), the proposition is
proved.

This proposition provides us at once with many classes of Banach
spaces which are never proper M-ideals, e.g. dual spaces or I!-spaces.

The following result is of technical nature. It states that the property of
never being a proper M-ideal can be checked by considering the case of
codimension one,

2.2. Lemma. Let J be a Banach space. Then the Jollowing are equivalent:

(i) J can be a proper M-ideal in a Banach space X,

(i) J can be a proper M-ideal in a Banach space X such that dim X/J = 1.

Proof. Independently A. Lima [8] and the first-named author (21
have observed that an M-ideal J in a Banach space X is an M-summand iff
the sets of best approximation Py(x):=1{y| yeJ, [Ix=yll = infllx~z||} are

zed

balls in J for every xeX. The lemma is an immediate consequence of this
fact.

3. Pseudoballs. Here we consider certain subsets of Banach spaces which
behave in some respects like balls.

3.1. Dermurion. Let B be a closed convex subset of a Banach space J of
diameter two. B is called a pseudoball if, for Xy, ..y Xy€d with x|l <1 (i
=1, ..., n) there is an x,eB such that x,+x&B for every i.

ExampLes. 1. Balls with radius one are obviously pseudoballs.

2. 4l (xpece, 0< x, < 2 for every n} is a pseudoball in Co; Mmore
generally, {(x,)| (x,)€co, a, < X, < a,+2) is a pseudoball in ¢o whenever (a,)
is a sequence such that lima, <0, limag, > —2.

3.2. PROPOSITION. Let B be a closed convex subset of a Banach space J of
diameter two. Then the following are equivalent:

() B is a pseudoball.

(ii) The weak*-closure of B in J" is a ball with radius one.

(i) For every subspace J, of J with dimJ/J, < co there is an [xoleJ /]y
such that int B([x,], 1) = w(B) = B([x,], 1) (where w: J - J/Jo denotes the
natural map; B([xo], 1) means the closed ball with center [x,] and radius one).

Proof. (i) = (iii): It is obvious that B:= e (B) = J/J, has the following
property: ‘ ) '

B is a convex subset of J/J, of diameter two, and Jor [x]eJ/J, with
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WDl <1 (=1, ..., n) there is an [x]eJ/Jo such that [x]+[x]eB for

every 1.
From this (iii) follows by a simple compactness argument (using the fact that
dim(J/J,) < c0). '

(i) = (ii): Let feJ’ be given. We consider the canonical map w,:
J — J/kerf, choose an x,eJ such that w,(x,) is the “midpoint“‘ of ".’f(B)
(ie. intB(ws(xp), 1) < wp(B) = Blwp(xy), 1) and deline  @(f)i=7(x));
note that this implies

(*) int B(®(f), /1) = f (B) = B(®(f), If1).

¢: J' - K is clearly well-defined and homogeneous. .
For the proof of the additivity of @ let f, yeJ’ be given, There is an
xeJ such that, in J/(kerf nkerg),

int B([x], 1) = w(B) = B([x], 1).

Since the following diagram (where the maps are the natural ones)

J >J/(ker  n ker g)

w
wr }
N Jker f
w
i J/ker g

- J/ker (f+g)

is commutative, we necessarily have
p(x) = ws{x),
This proves that
D(f+9) =([+9(Xr+) = (f+9)(x) =f () +4 (x) = P(f)+ P (g).
Since |® (1) <(su£)||xf|)|1f||, we have shown that deJ”,

wg(x) =wg(xg)1 wf+y(x) =wf+g(xf+”)~

Using (), it is easy to see that B < B(®,1) and consequently
B~ < B(®, 1), and the reverse inclusion is proved by the usual separation
techniques.

(i)=-(i): (This part of the proof is due to A. Lima). A moment’s
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reflection shows that we have to prove that
XBj)=(Bx ... xB)—dy,

where B,:=B(0, 1) and 4p:={(b, ..., b)| beB} = J" By the Tuckey—Klee~
Ellis theorem (see [S], p. 734) this is true if we verify that

(%) ByX ... xByc[(Bx ... xB)y—dz]~ I,

To prove this inclusion we first note that (as a consequence of the weak*-
continuity of (xy, ..., X,. X)>(x, ..., X,)—(x, ..., X))

B™x . xB™Y 4, (Bx ... x B—dy)~""

Since B™™ is a ball, the left-hand side contains Bj. x ... x By., the n-fold
product of the unit ball of J”, and thus B,x ... xB,. Consequently
supRe flg, x..xp, <1 for every fe(J") such that supRe f|Bx ... xB—
—dg £ 1. Now (xx) follows from the Hahn-Banach theorem.

The reason why we are interested in pseudoballs is the following
theorem which provides us with an internal characterization of Banach
spaces which can be proper M-ideals. The proof of this theorem is prepared
by

int(B; x ...

33. Lemma. For meN, 3,20, Y A, =1, and 6,eC with |6, =1 we
k=1

have

m

Y All-00< J2ve+2. /e
k=1

provided that [y 2 (1—0y)| < &.
Proof. We define
Ny:i= {kell, ..., m}|Reb, > 1— s},
Ny:=lkell,...,m}|Reb, < 1—. /e },
Ai= Y A, and we claim that
keNy
) 1-A< e,
(2 N—0,l <2 ¢ for every keN,.
ad (1): By assumption we have [1—z| <¢ and therefore Rez > 1—¢,
where z:=Y A, 0,. Let z;:= Y (4/A)0, and z;:= Y (A/(1—2))8. The con-

keNy keNo -
vexity of {w| weC, |w| <1, Rewsl——\/g} implies that Rez, <1—./s.
Hence
1—¢ < Rez = Re(Az; +(1—4)z5) S A+(1=D (1~ ¢),

and this gives 1-2< | /s.
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ad (2): For ke N, we have 1—-Ref, < \/; and thus
[1-6,% =2(1—Ref,) <2./e.
The lemma follows by combining (1) and (2):
YAull-6=Y /1,,|1-0,,|+kZN RIEN
eNy

keNy

V2 +(1-2<V2 e +2./5.

3.4. TueoreMm. For a Banach space J the following are equivalent:

(i) J can be a proper M-ideal,

(ii) J contains a pseudoball which is not a ball.

Proof. (i) =(ii): Using Lemma 2.2 we may suppose that J is a proper
M-ideal in a Banach space X and that dim(X/J) = 1. Choose x& X such that
d(x, J) (= the distance from x to J) =1 and define B:= P,(x):= {y| yeJ,
lly==x|| = d(x, J)}. Theorem 1.2 and Theorem 1.1(2) in [8] then show that B
is a pseudoball which is not a ball.

(ii) = (i): Let B be a pseudoball in J which is not a ball; we can and will
assume that 0eB. We identify J with J x {0} and embed J = J x {0} into
X:=JxK. X is provided with a norm by taking as the unit ball the set

K:=75o{(0b, 0)] 0cK, 6] =1, beB)

(closure with respect to the product topology).

To show that J is a proper M-ideal in X we proceed as follows:

(a) X is a Banach space, and the norm of X on J x {0} coincides with
the norm of J;

(b) Bx {0} = Py, 0;(0, —1) (=the set of best approximations in
J x {0} to (0, —1));

(c) J =J x {0} is an M-ideal in X which is not an M-summand.

ad (a) It is easy to see that K is absolutely convex and absorbing so
that ¢, the Minkowski functional associated with K, is a semi-norm, ¢ is in
fact a norm since B is a bounded set. Now suppose that we have shown that

(* K n({J x{0}) = B; x {0}.

Then (a) is proved sirice (intB,) x {0} = K n(J x{0}) is obviously valid so
that ¢ induces || || on J, and the completeness of (X, o) is a consequence of
the completeness of (J, || |). It thus remains to prove (), i.e. (x, 0) e K implies
lixll < 1. Let (x, 0)e K be given and ((x,, 7,)),ev 4 Sequence in

co{(6b, 0)| beB, |0] =1} * with . (x,, r,) —(x, 0).

Banach spaces which are proper M-ideals 165

We write (x,, r,) as

(JC,,, rn) = (Z'{k,n ek.n bk,m Z}'k.n ek.n)'

Choose 2,€[0, 1] and 6, with |6,) = 1 such that 0= A,r,+(1—1,) 6,. Since
r,—~0 we have A,-—1. Thus, for an arbitrary beB, the elements
Zni= An (X Ak Ounbim)+(1=4,)0,b converge to x.

We now observe: If B(y,, 1) is a ball with radius one in any space
Y, yieB(yo, 1), g scalars with Y 4, =0 and ¥ || <1, then I3 w oyl < 1.
Since the by,, b lie in such a ball (in J) it follows that 1) <1 and
consequently ||x|| < 1.

ad (b) We first note that d((x, r), J x{0}) = |r| for every (x,)eX so
that in particular P, 0,(0, —1) = {(x, 0)| (x, 1)eK}. It is therefore obvious
that B x [0} = P, 0,(0, —1). Conversely, let (x, 1)eK be given; we have to -
show that xeB. For a suitable sequence

(xm ) = (z /’Lk,n Hk,n bk,m Z /‘Lk,n ok,n)

in co{(6b, 0) beB,|0] =1} we have (x,r,)—(x,1). Since r,>1 the
preceding lemma implies that Y 4, ,11-6,,| — 0. Thus, with

bn L= Z )"k,n bk,n = Z A’h,n Gk,n bk,n+ Z lk,n(l - gk,n) bk,n

we have b, —»x and b,eB so that xeB.

ad (c) For arbitrary (x, r)e X we get from (b) that P, o,(x, ) = (~r(B
—x)) x {0}. But B—x is a pseudoball so that —r(B - x) satisfies the intersec-
tion property of Theorem 1.1 in [8]. Therefore J — {0} is an M-ideal. It is not
an M-summand since B is not a ball and P;,,(0, —1) = B x {0},

4. An intersection property. Here we will investigate an intersection
property which implies that the Banach space under consideration can never
occur as a proper M-ideal (Theorem 4.3). A space J has this intersection
property if, roughly speaking, the center of a ball can be arbitrarily well
approximated by the intersection of finitely many translates of this ball:
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More precisely: _ ' ‘
4.1. DeFiNiTION. A Banach space J is said to have the intersection

property if for every & >0 there are xq,...,x, in J with |lx] <1 (i
=1, ..., n) such that ||x—x;|| < 1 (for every i) always implies that ||x|| < & To
illustrate this definition by some examples one should observe that ¢, fails to
have the intersection property but every CK-space (K a compact Hausdorff
space) has it. Further examples are considered in the following proposition:

4.2. ProrosiTioN. Each of the following conditions implies that J has the
intersection property:

(i) the unit ball By of J is dentable,

(i) By has a strongly exposed point,

(iii) J has the Radon—Nikodym property,

(iv) J is reflexive,

(v) J is a separable dual space,

(vi) J contains a nontrivial IP-summand for some p with 1 € p < v,

(vii) there is an xeJ such that |p(x)] =1 for every extreme functional p.

Proof. (i) Suppose that J fails to have the intersection property. We will
show that there is an ¢ > 0 such that

xet (B\B(x, &)

for every xe By, ie. the unit ball is not dentable (see [47], p. 133).

Since J does not have the intersection property, there is an % > 0 such
that for every y in the open unit ball of J there is a zeJ with ||z|| > « and
ly£zl < 1. Define e:=«/2 and choose a sequence (r,) of real numbers such
that 1—¢ <r, <1, r,—1. Now, for given xeB,, choose z,eJ such that
llzll >« and ||, x £z, < 1. Since r, x = (1/2) ((rux+2,}+(r, x~2z,)) tends to x
and |[x—(r,x%z,)ll'> ¢ the claim is proved.

(i)~(v) These assertions are implied by (i); cf. Th.V.3.10, Th. VIL.3.3, Cor.
11.2.13, Th. II1.3.1 in [4].

(vi} Suppose that J = X@Y and that ||x+y||” = [|x||”+||}|* for xeX
and ye Y. We fix vectors xe X, ye Y with ||x|| =|y|| = 1 and choose, for given
&> 0, numbers §, §' > 0 such that

20'<ef,  1-(1=8y <8

We claim that ||z]| < ¢ whenever lz(1=0)x| <1, |lz£(1~8) yl| € 1. Let
such a z be given. We write z = z, +z,, where 2 €X, z;eY It follows that
llz £ (1 =0)xlI” = [[(zy (1= ) x)+2,)|” = I[zy £ (1= 8) x||P+ |z, ]|7 < 1

so that 2(1—45)——-”((1—5)x+z,)+((1—5)x—zx)| < 2(1 =||z/"? and con-
sequently ||z,||" < 1—(1—8) < &'. Similarly one obtains [|z4/]” < &’ so that
21 = llzy [P+ [lzall” < 26" < e,
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(vii) For ¢ >0 choose § >0 such that || < ¢ for every A€ K for which
[A£(1—=d)a] <1 for some ¢ with |o| = 1. With x as in the assumption it
follows that (|z|| <& for every z such that lz£(1—8)x|| <1 (note that
lIx[] = 1).

Note. The reader may have observed that the number n of Definition
4.1 can be chosen to be not greater than four in all examples of Proposition
4.2. We do not know whether this is accidental.

4.3, TueoreM. Let J bhe a Banach space with the intersection property.
Then J can never be a proper M-ideal.

Proof. Suppose that J can be a proper M-ideal. By Theorem 3.4 J
contains a pseudoball B which is not a ball. The weak*-closure of B in J” is
a ball B, (¢, 1) in J” by Proposition 3.4, and d(y, J) =:a > 0 since B is not
a ball and JnB,. (Y, 1)=B. We will show that J fails to satisfy the
property in Definition 4.1 for every ¢ < .

Let 0 <¢ <2z and a finite family x,, ..., x, in the open unit ball of J be
given; we will show that there is a zeJ with [jz]| > ¢ and llz—x]l <1 for
every i. We choose an # > 0 such that

(l+mmaxlix]| <1 and & <afl+n)?

The defining property of pseudoballs provides us with an xeJ such that
x+(1+nx;eB and thus |y —x—(1+n) x|l < 1. By the principle of local
reflexivity we get an operator T from span !y, x, x4, ..., X, =:E to J with
Tlgny = 1d and [[T|[, |77 < 147 so that | T(y ~ x)~(1+n) x| < 1 47 and
T () —x)| = a/(1 +n) (note that || —x]| > &). Hence z:= T () —x){(1 +n) has
the claimed properties.

It is an open problem whether the converse of the preceding theorem is
also true. In this connection it would be interesting to know whether dual
spaces have the intersection property (since dual spaces. are never proper M-
ideals) or whether C,-spaces which are not C-spaces can have pseudoballs
which are not balls (since these spaces obviously don't have the intersection
property).

4.4. THEOREM. A Banach space J which does not have the intersection
property contains a subspace isomorphic to c¢,.

Proof. From the assumption it easily follows that

(%) There is an o >0 such that for every finite family x,, ..., x, in the open
unit ball of J there exists z with ||zl| > o and ||z—x|| <1 for every i (we
may assume that |z|| < 1).

We define
k=2 t;=1,t,=-1if K=R and
k=8, t;=exp(2ni(j—1)8) for j=1,...,8 if K=C;
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m
note that then Y |a,| < oo for every sequence (a,) in K such that O rya), is
1

bounded whenever r,, r,, ... are in {t;, ..., }. Now a sequence (x,) in J

with

(*#) a<|xJl <1, l[rgxy+ ... +r,x,)| <1 for arbitrary ry, ...
T

can easily be constructed:

x, is chosen arbitrarily with o < ||x,|| < 1, and if x;, ..., x,, have already
been obtained, then an application of (x) to the finite family {r;x,+ ...
oo FrpXglrelty, ..., )} provides us with an element x,., such that
X1y ..y Xp+y behave as claimed.

By (#%) the sequence (x,) has the following two properties:

- i If(x) <o for every felt,
k=1

— Y x, does not converge.
Now the theorem follows from a result of Bessaga and Pelczyniski ([3])
which asserts that a space contains ¢, iff such a sequence exists.

4.5. CoroLLARY. Every Banach space which can be a proper M-ideal
contains a subspace isomorphic to cq.

Note. Since there are spaces J which are strictly convex and which are
proper M-ideals in their bidual (C(T)/A(T) is such a space) the corollary
cannot be strengthened by replacing “isomorphic” by “isometric”.

5. Grades of M-ideals and psendoballs. When analyzing the difference
between M-ideals and M-summands one is naturally led to introduce quan-
titative versions of the above-used notions. In the following we only quote
the definitions and some of the results and refer to [6] for proofs and a more
detailed discussion.

DEFINITION. (i) Let J be a (not necessarily proper) M-ideal in X, where
J & X. By the grade of J in X, g(J, X), we denote the characteristic of (J7)*
in X', ie. :

g, X):=max {a|a >0, By = (unit ball of IHH~ .

(i) Let B be a pseudoball in J. We define g(B), the grade of B, by
g(B):=1-suplele >0, B contains a ball with radius &. It is easy to
see that g(J, X) =0 iff J is an M-summand (cf. Prop. 22 in [1]) and that
g(B)=0 iff B is a ball so that the opposite limiting case, ie. g(J, X) =1
resp. g(B) = 1, describes in a certain sense the “extreme” proper M-ideals
resp. pseudoballs. It can be shown that

(i) there exists a pseudoball. B in J with g(B)= 1 iff there exists
a yeJ"\J such that J is an M-ideal in lin{y, J};
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(ii) if there is a pseudoball B in J with g(B) =1 then 0 is in the weak*-
closure of the extreme functionals;

(iii) g(B) =d(®, J), where B~ = B,.(®, 1) (cf. Proposition 3.2)

(iv) g(B)=g(J, X) (B, J, X as in Theorem 3.4).

It is not difficult to prove that for a proper M-ideal the grade can be
decreased: for a < g(J, X) there is a Banach space X, such that J is a proper
M-ideal in X, and g(J, X,) = 0.

One might suspect that, conversely, the grade can be increased if
g{J, X) <1. This is not true in general: The space J:= {(x,)|(x,)ec,
X;+2limx, = 0} can be a proper M-ideal (e.g. in ¢, ¢ provided with the
norm |x}:= max {||x|, [x; +2limx,|). But g(J, X)< 1/2 whenever J is an
M-ideal in X. It follows from (iv) that g(B) < 1/2 for every pseudoball
Bin J.
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