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The best constant in the Khintchine inequality for
complex Steinhaus variables, the case p =1 *

by
JERZY SAWA (Warszawa)

Abstract. It is shown that
2 2% \/..
1y z it, T, -
(5;) f J IEX aje ldty ...dt, > -—2_(12 a2yt
0 0
for arbitrary complex numbers aj, aj,...,a, and for n= 1,2,... The constant \/;/2 is the
largest possible.

L. Introduction. The main result of the present paper is
THEOREM A.
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0

Jor arbitrary complex numbers ay, ay,...,a, and for n=1,2,...
The constant \/E/Z is the largest possible because, by the central limit
theorem for independent complex variables, we have
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* The paper is a part of the Master's thesis of the author written under the supervnsmn of
Professor Stanistaw Kwapies.
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Our result is analogous to that of Szarek [6] (cf. also Haagerup [2]) where it
is shown that ¢ = ﬁ/Z is the largest possible constant in the Khintchine
inequality,

n
Average|y. & alzc a?)ii?
=1

for arbitrary real numbers aj,d,,...,a, and n=1,2,... Obviously the

analogue of the average over real signs,
n

Average| Y & aj,
i=1

ie, the average over all complex signs, is the integral

2r 2n

"1\ i it

(5’;) Izlajeﬂdtl.‘.dt
0 5 "

It is convenient for us to deal with the probabilistic interpretation of the
above integral. Let: C (resp. R) denote the field of complex (resp. real) scalars.
Let (2, F, P) be a probability space. Let ¢;:  — C denote complex Steinhaus
variables, ie., the sequence (o;) of mutually independent random variables
each distributed as the function t»e" for te[0, 2n]. We put Ef = [ f dP for

2

integrable f: Q — C.
Clearly, Theorem A is equivalent to
THEOREM B. For arbitrary complex numbers zl,...,z,, we have

B[S no| > \/“ o .

Since the variables (o)) and (a;0)) are equidistributed for an arbitrary
sequence (a;) of scalars of modulus one, it is enough to prove Theorem B for real
Ay, Agyeeny Oy

In the sequel the abbreviation r.v. stands for “random variable”. If ¢
=(¢,...,&,) is an rv. with values in R" then by ¢, we denote the
characteristic function of ¢, ie., the function in R" defined by

n
@sty,....t)y =Eexp{i- ¥ t;&}.
j=1
Let (R?| |) denote the linear space R* with the norm given by |(x], x,)|
n
=(x}+x3)'/%. To investigate the quantities E|Y a0 it is convenient to
i=1

introduce the following notion,

icm°
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Let (S;) denote the sequence of R*-valued mutually independent r.v. each
distributed as the function t(cost,sint) for te[0, 2n]. For fixed n
n

=1,2,... and real a;, 4,,...,a, we put S = Y 4;S;. Clearly we have
i=1

¢ E|Y ao|=El

2r 2n
1\ "
=<21r) J J\/ Y o8t (Z asin p)? dr1d12
3 i=1

0

In view of () Theorem B reduces to the following
TueoreM C. For n=1, 2,... we have

E|Z @S| = /)2

whenever a; > a, > ... 2 a, > 0 and Z af =1.

i=1
The proof of Theorem C splits into two cases, each treated in a separate
section.

2. Case 1: af < 5/8. The argument in this case is based upon the
analytic properties of the zero Bessel function,

1
Jo(t) = —
() 2chcos(tcosq;)dqa,

We shall also need the function

F(s) “7j = Jo )]t~ 2dt = j[l—l.]o(t/\/;)["]t'ldt.
0 0

‘ These functions are used via the following

ProrosmioN 1, Let § = ) )
Let § f;l a8 ’and l//s(t)=l[]1 Jo(a;t). Then

@ E|S) = I [1~ys®]t=2at
and
(22 ElS|> Y a?F (.

im 1
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Proof. We shall first show that if X = (X, X,) is a rotation invariant

n
: ; =[] Jo(a;t). From this and from (2.5), (2.6) i
rv, ie, UX and X are equidistributed for every rotation U: R* — R? then el=—l1 olai1) m m (2.5), (2.6) it follows that

(23) oy, (t) = EJo(1X]1), . 3
2.4 ox(ty, t2) = EJo (X (3 +13)12), E|S§] = -2-E|S1| = 6([1_%1 O]t 2ar
2
2.5 E|X,| =-E|X], 0 "
= T g H Jo(ay0)] ¢~ 2dt.
2 -
(2.6) E|X, =;f[1—¢x1(t)]t 2dr. This completes the proof of (2.1).
Next we shall show (2.2). It is well known that if Oy, Ug,.0.,0 are
Now we prove (23)(2.5). Let us observe that if X =(X;, X,) is a rotation positive numbers such that 3 @ =1 and if py, p,,..., p, are non-negative
invariant r.v. then X, is equidistributed with Xcos#, and t; X{+1t; X, is b " =1
equidistributed with |X|(t2+t3)*?cosn for t;eR, t,e R, where # is an r.v. numbers then
uniformly distributed in [0, 2x] and independent of X. Using this fact, the
symmetry of the rv.’s X;, t; X;+1, X, and the definition of J,, we get H Z Py
. 2% i=1 =1
1 s 2
Py, (1) = Ee'™ = Ecos Xt = E'j; .[ cos (| X|tcosn)dy ‘ Specifying o; = a?, p, = |Jo(a, 0]~ for i =1, .. B, We get
. 0 ) ‘
= EJ, (X1, VII To(ay)] < ,‘” Wola o)
and : Thus, taking into account (2.1), we obtain
ot =Eei('1x1+'2x2'=ECOSt X, +t X) o w "
oaltn,t) = BT O X +eXs) o ESI= 0T Jolat]e2de > §[1{[T Jola0f] -2 de
! AT A cosn)dn = EJo(|X /7T E) . o
=E— | cos(|X|./ti+t;cosn)dn=EJ, 5 +13), o
2“.[ ( e > ([1- Za,lJo (@) ]1‘2dt
0 0 im 1
n a..z n
moreover, =Y af [ [L—~[Jo(a )t 1t~2dt =Y af F(a?.
2x (=1 0 i=1
E|X,|=E —1~'[ | X|jcos n| dy =—2-E|X|. This completes the proof of Proposition 1.
2n T Let 4 = 2,4048... be the first positive zero of Jo (cf. Watson [3], p. 748).

(]

We hdve thus proved (2.3)(2.5).
For (2.6) see Haagerup [2], Lemma 1.2,

Next we prove some properties of J,.
Lemma 2. For 0Kt < p,

Since S,,...,S, are independent random variables, we have @7 0<J4(0) € exp( (t>2 1 (t):;)
. <J, ) =Z[=
" " : ‘ 2/ 4\2
es(ty, 1) = T Pags; (21, t2) = H Jo(ay (eF +13)'13). For u<t
i=1 i=1 =
The random variable S as the sum of rotation invariant r.v.’s is a rotation 28) 1ol < 1
invariant rv. If §=(S%, 8% then, using (23), we get ¢y (1) = ¢s(0, 1) ol 53
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Moreover, we have

* _ 1
(2.9) E JR3()t~2dt < o
and
8\ _ /7 B 2\/5
(2.10) F <§> = 5 and F(2) = w

Proof. We first prove that for 0 <t <y we have

1 2712
(2.11) 0< Tyl < [1—5@ J ,

Since 0 € Jo(t) for 0<t
We have, for real x,

< W, it is enough to show the right-hand inequality.

2 4

<i— x +x
CoSX RS
Hence from the definition of J, it follows that
2 2n ) .
1 (tcosm)* (tcos n)
Jo(t) =5 f cos(tcosn)dn < o J 1-—-—m~2, 5 dn
0 0

&0

This proves (2.11).
Now we shall prove (2.7). Using (2.11) and the inequality In(1 —x) € —x—
-—x2/2for0<x<1,wegetf0r0<t<y<2ﬁ .

e )
ol 46446

which ends the proof of (2.7).
Now we shall prove (2.8). Since J, is a real analytic function which satisfies
the differential equation

tdo(O)+Jo () +tJ5() =0
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and Jo(¢) = lim Jo(2) = 0, it suffices to show that if J5(t) = 0 then | J, HES X

tron

for ¢ > p>0. If Jo(r) = O then it follows from the differential equation that

2n

1
[Jo(®) = |J5 ()] = '—i—ijcoszr/-cos(tcosn)dn.
b

2n

1 1
< 2.0 : 2
<3 Jcos n |cos(tcosn)ldq<2nfcos ndn =
0 0

=1
7

which proves (2.8), ~
Proof of (2.9). Since 2\‘72 < u (cf. Watson [7], p. 748), it is enough to

show that | J3(1)t™%dr < 1/42.

247
We shall need the identities
(—1) rx
2.12) 1-J3() = ~;l 2 ( )(2) i
(213) T =R 2dt = /AP (@) = %_
0

For (2.12) cf. Watson [7], p. 32. To prove (2.13) observe that

1
(Sy+52)

E’ﬁ

. 2% 2x
1 1 - -
= (EE) :7_5 J J /(cos 1y +cos )% +(sinn, +sinn,)? dyy dn,
0o 0
2f

Hence, applying identity (2.1) for n=2 and for a4, = a, = 1/\/2, we get
(2.13). It follows from (2.12) that for a = 242
ff%(t)t"'"dtm j[l - J3 (t)]t"'zdt+_ft'"”dt~i

a[l—«J’(t)]t‘zdt-f-l—i
(j; 0 an

8 ~ Studia Mathematica 81,1
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By (2.12) we get

a

- 1 4] 1i+1 ; IZi—Z
J[l—J%(t)Jt'zdz ZLZ( i!;! G)(ﬁ) dt = A+B,
0

= —-\[—(2,23«\/5(-12-+T%>)

where

'
I
PN
- ?
i
—_

-l !
g ot
B

-
—
SN
N—
TN
[SYICN
N~
14
0
2
o »
[ 9

1 1 Pran/t\¥2 8i+2 (t 2"
p==3[2lan [ Q)G) () e
because for t <a and i>=3

8i+2 (t 2 >0
T@i+1)°\2

Hence
(2.14) { I3 2ar <A+l—i<l.
,, 42

Finally we shall prove (2.10). It is sufficient to show that F (8/5) > \/— n/2,
because from (2.13) it follows that F (2) = 2- \/_ /m. From (2.11) it follows that
for 0Kt <24 < pu=24048..., we have J, () < [1—%(t/2)%1% from which it
follows that for s >0 and 0<t< 24,

1/t\2 ) 2 @ (_1)i+1 g _t_ 2i~2
=@ eS0T

Since the series converges uniformly in [0: 2,4], we can integrate “term-by-
term”. We obtain for s > 0

1—|Jo@®ft™ 221

2,4
1 = 1)+l 20—-2
(219) j [~ 17T 2de > —S_Zlf(z,lfl (%) (g) a
0
_i @© (__1)1+1 % (1’2)2i—1 _
=X T (i) 5-1 ~AtE
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where

1 4 (_1)i+1 o (1,2 2i—1
A“_/'E 21 (l) 21"

_“1)|+1/2s (1 2)21 1
\/glz 2x+l i) 2i—1 °

For s =8/5 we get by direct computation

\/5 (—1)* 32\(12)2'~ > 0,5923.

2i+1 i} 2i—1
()<
1

B

For s = 8/5 and for i > 5 we have

\ 3,2 1 1
= e— > ———— =
9 26 1 0,72 2500

Since 4+ B > 0,5919, it follows from (2.15) that

2,4
(2.16) ﬁf [1—|Jo(O>67 = 2dt > 0,5919.
o

From the Holder inequality it follows that

\/g Jlfo(t)ll'ﬁt'zdts\/g(fﬁ 0 2dr) (fr 2dr)
2,4 2,4

4
Since from (2.14) it follows that

2,4

—0,0004.

j JiWrdr < | J%(t)t‘zdtsi
247
we have
5 162 _5___1__ 0,8 ___1___ 0,2,
2.17) ﬁf!]o(t)l t dts\/; o) 73 < 0,0334.

115

(?)l, 1/(2i—1) < 1/9. Hence
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50, 5 1

2 = > >03294.

ﬁf’ & /;2,4 o
2,4

Thus from (2.16), (2.17) and (2.18) we get

F(§)=/5f —|To@STt72dt > 0,5919—0,0334+0,3294 > §

Moreover, we have

(2.18)

8

This completes the proof of Lemma 2.
Recall that

s> 0.

l a0
=$![1-Ifo(t)f”]t'2dt,

Let us put

o o] ol o o

H(s)=2./s (f) =In[Jo@I 1o (O ™2 dt,

s>0,

I(s) = 4s/s [ Jo @) | Jo(OF t™2dt, s> 0.
; :
1t is not difficult to show that

@.19) F) =5 (HO-F()

(2.20) H'(s) = L(H (5)—1I(s)).

The following lemma will be used in the sequel:
LeMMA 3. For s = 2 we have

Jn 1 (1y-2
(221 F(s)>——2—+a(s>~zﬁs_(§> :
22 69>

1
20,/2s'

icm
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For 1,6 <5< 2 we have
2
(2.23) -{~+I(s) > H(s).

Proof. For a> 0 we have (cf. Dwight [1], p. 155)

Ty [ ) SO

From (2.7) it follows that, for 0 <t <
Thus

(2.24)

B [Jo@ < exp(—s(t/2) —%s(1/2)*).

TN I A

From (2.8) and (2.9) we get

[ t 2 -2 1 f s —2
eXP( (*) )*IJo(t)ls} di > J—Ilo(t)l dt

(2.25)

(2.26)

7

t{——:S

1 r 1
——— | | TP 2J2(0) ™ 2dt > — ( ) JE(@)t2dt

- 1 (1):—2‘ 1 S 1 (1):—2
= Js \2 27 40 Js\2)
Hence, using (2.24), (2.25) and (2.26), we obtain (2.21).
Now we shall show (2.22). From the definition of G (s) it follows that for
s=2
sz

2
Gls) = % f [CXP (—£;>~exp(~%—l—lgs-t“):|r2dt
° .

2.27)
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Using (2.27), and the inequalities 1—e™* 2 x—x%2 and [tSexp(—1%/2)dt
0

> 15f exp(—t%/2)dt for x >0, we get for s =2

m
. 2
(228 G(s)= ! J[ —exp(—-——t“)Jexp(—-Ez—)t"zdt
20
5 r 2
o) ool -5)
> 1—=——]| t*exp| ——= )dt.
16./2s 32sO 72

m
Since 1 —15/(32s) > 49/64 fors > 2 and [t*exp(—r*/2)dt > 1,09, we have for,
0

s=2
. 2
15 2 t
——— —_ = .
<1 32s>jt exp( 2>dt =08
0

From this and (2.28) it follows that G(s) > 1/(16ﬁs), which ends the proof of
(2.22).

Now we prove (2.23). We begin by establishing the inequalities

(229 4s /s 'j In? [ Jo (O] o (et~ 2 dt
1]

>2fj ~In|Jo ()| Jo ('t~ 2dt — /273,
(2.30) 4s \/ETIHZ{JO(tMI.Io(t)|‘t‘2dt >2./s j —In|Jo ()| Jo (Dt 2dt.

From (2.7) it follows that 0<J,(t) <exp(—(2/2)?) for 0 <t < u. Thus
In?|Jo (0] = (/2)* (—1n[ Jo (1)]) for O < ¢ < p. Hence for 8/5<s< 2,

|
231)  4s /s 'flnzj Jo®lJo(BFF t™2dt
0
>4s.f5 ’f(z/z)z(—lm To(O)To (0t~ 2 de
0

=25 z[s(z/z)zilj(—1n|Jo(t>|)|Jo(t)rr2dr+
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+2\/§z—-lnlJO(t)HJo(t)lst’zdt

%
>2./s g Ls(t/2 = 11(~In|Jo )]) | Jo (0)° ¢~ 2dt +

425 (-l oo 2dr.

Let us put f(x) = —x'Inx for 0 < x. Then f is an increasing function
for 0<x<exp(—1/s) and f(x)<1l/s for O<x. Since 0<J,(2)

<exp(—(t/2)) for 0<t<py thus f(Jo() <4t? for 0<t < /2/s and
FJoM) € 1s<e® for /2/s <t Hence —InJo(t)]Jo(t™2 <} for
0 <t < p Using this and (2.31), we get

4s /s ’flnz [To(0l] Jo(t)ri"’ dt
0
v2ls n
22./s [ (st32—D)kde+2./s [(=In|Jo (0] Jo (OF) e~ 2dt
0 o]

= V423 [(=InlTo 011 o) e,

which proves (229). It follows from (2.8) that for £<s and u<
45 /fsIn?|Jo (8] = 24/5 ( —lnlJO(t)l) Thus we get (230). Adding (2.29) to
(2.30), we get (2.23).

Now we can prove the following

THEOREM 4. If dl < /5/8, then E|S| = ﬁ/z.
Proof. We shall show that for s > 1,6

(232) F(s) = \/x/2.
We first prove (2.32) for s > 2. From Lemma 3, (2.21) and (2.22) we get

\/- 1 (1)*“Z NG 1 (1)"2
233) F 60-27G) P Tt A s
(233) F(s)2-5-+G(s) 20,/ \2 > +20\/55 40./s \2

el iG]

If f(s) = 1/4~/s/2(1/2)’, then f(2)=0 and f'(5) = (1/2¢ /s/2(In2—
—1/2s) > 0, from which it follows that f(s) > f(2) =0 for s > 2. Using this
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and (2.33), we have for s > 2

%, o

1
F(s) = 5 f
Now we shall show that for 8s/5 <2, F( s) \/— /2. From Lemma 2
(2.10) we have F(2 2\/ /mt and F(8/5) = \/r:/2 Assume to the contrary
that F(s) < \/_ /2 for some s€(8/5, 2). Then, by the continuity of F, the set
\/—/2 }(8/5,2) is non-empty. Let s, =sup {se(8/5, 2)|F(s)—'\/_/2.
Then F(Q—F(s;)=2./2/t—\/n/2. On the other hand, F(2)—F(s,)
=(2—s5,)F/(5) for some §e(s;, 2). Using this and (2.19), we get

(234 H@E) = F‘)+(2\[ \/—> F(’)+<2f f)
SNV

2

because F(3) > f /2.
Let s, =inf {se[8/5, 2]] F(s) =

F'(s;) = 0. Therefore from (2.20) it follows that
(235) H(sy) = F(s;) < \/n/2.

From the definition of s;, § and s, it follows that 2> § > 5 >5; 2 8/5.
Hence from (2.34) and (2.35), using (2.20), we get

(“f J}8<H® —H(s;) = F—5;) B'(s3)

=mmﬁww4w)

for some s; such that s, < s, <35 From this we get
(o< () 2
2

because 8/5 <

mf F(t)} Then F(s;) < ./n/2 and

— (H (s3) =1 (s3)),

53 <53 <§<2 So we have
2
< V2 \/_> 64+1(s5) < Hisy)

for some s; with 8/5 < s, <2, which contradicts Lemma 3 (the inequality
(2.23)), because (2./2/n—\/n/2) 64 > /23,

From (232) it follows that if a, <./5/8 then F(s%)> \/n/2. From

icm
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/5/8 then
E|S| > Za Flary = ZaZ\/— \/—

> /3R

Proof. We have just proved that if a, < . /5/8 then E|S| >
5/8 then E|S| > ,/5/8, because

Proposition 1, (2.2) it follows that if a, <

CoroLLARY 5. E|S]

J/2. 0 a

E|S| =%(E|a, S; + ¥ a,S,I-}-Elal S;—Y a4 S,~|)> a;
=2 i=2

3. Case 2: a}
2n

By () =§1;J‘w /a*+2a-xcoso+x2dp, x20,a>0.

9 .

Next define c,(a) by
e (a) = \/5/8, w-1(a)/1=a?) for

Clearly, 0<c,(@)<1, for n=1,2,...
“ Now we prove the following:

> 5/8. Let us put

n>1.

cu(@) = h,(c

LeMMaA 6. (a) For every a > 0 ithe Junction h, is strictly increasing and

convex in [0, o).
<1 then lim c,(a) > n/2.

b) If /58 <a<

Proof. If a>0 and x> 0 then
: . 2n
1 4ax
= — 1———sin?¢ do.
by (x) (a+x)2ﬂj / arE s e do
o

Let E(k) =—21;f 1—k?sin? @ do, where lk| < 1; then
0

(3.1)

1 m* 12 4 1232
(32) E() =1 <1+ TrtyigEm 224262m+ )

where m =%:——~—~—— /1 (cf. Dwight [1]). In partlcular if k% = dax/(a+x)?,

+./1-k?
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then m = min(a, x)/max(a, x). Using this and (3.1), (3.2), we get
1min®(a, x) 1*> min*(a, x) ]
4max®(a, x) 2*4* max*(a, x)

(3.3)  h,(x) =max(a, x) [1-{—

It follows from (3.3) that for each a > 0 the function A, is continuous and
strictly increasing. It is easy to see that for x > 0 and for x # a the second
derivative k) (x) exists, h(x) > 0, from which it follows that h, is a convex
function on the intervals [0, a) and (a, o). Since h, is continuous at a = x and
h.(a+) = hj(a—), we infer that h, is convex on the interval [0, o0), which ends
the proof of the first part of Lemma 6.

For ./5/8 <a<1 define f, by fu) =h,(x/1-a?)-x for 0<x< L.

a
From (3.3) it follows that if \/5/8 <a<1 and 0 < x <1 then

1/1— 2 12 1— 2\2
34 fo® =a[1+z<f—aTa—>X2+2—2a7<-;;—) x“+...:,—

Thus .f, is differentiable and

, 1/1—a® 1?2 (1-a®\* , 1232 [1-a*\* |
1+fn(x)=—2-<——;2——>x+§2—i( P X +2242626 P X"+ ...
1{/1-a? 1—a?\? 1—a?\?
A ) o
1=a\ (1=aV_ (1= _11-a _3
a? + a* + a® T 22471 4

because 0 <x <1 and ./5/8 <a< 1. Thus f, is strictly decreasing for
0<x<1.

Next we show that, for \/E/-S' <a<l,

3S]

X

b | =

(3.5) £.(/7/2) >0,
(3.6) L1<0

Indeed, from the definition of f, and from the Schwarz inequality we get

2n
L) = hy(/1=a%)—1 —_—-2%;[\/az-l-2a\/1—a2 cos p+1—a?dp—1
o]

2n
1/2

= l})‘%j(az-kZa«/l—azcos (p+1—a2)d¢:l ~1=0.

]
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Finally, from (3.4) it follows that, for ./5/8 <a <1,

J 1(1-a*\n 1*> (1-a*\*n? N
ﬁ(‘?)‘“[”z(‘“‘,z—)z*iﬁf(ﬁf‘) 3 +“]”T
NG

<a| 14X (1=a?) s Eo 1 — a2y |-
= 20 100 2

So, if we denote by g the function defined on [./5/8, 1] by

-+ 2 ~a2)2J—~f—"-

g(“)““[HZO( 100 2

then
3.7 Li(/m/2)=g@  for S8<a<l.

For\/__ <1, ¢(@>0 and g(,/5/8)> 0. Thus, for VB <a

< 1, using (3.7) and these inequalities, we get f, f /2) = g( \/%) > 0, which
ends the proof of (3.6).

Since f; is strictly decreasing on [0, 1] and continuous, it follows from

(3.5) and (3.6) that if /57 <a<1 then there exists exactly one c(4) with

V72 <c(@<1 such that f,(c(a) =0. From the definition of c,(a) it

follows that ¢, (a) = /5/8 < f /2.

Now we prove that

(3.8) c{a)<c(@ for n=1,2,.

- For n=1 this is true. For n > 2 we have, from the definition of ¢,(a), ¢,(a)

= hy(cp1(a) /1—a? ) Since h, is increasing, we infer that c,-,(a) < c(a);

then ¢,(a) = hy(c,- 1 (@)/1—a%) < hy(c(a) /1—a?) = c(@). This ends the
proof of (3.8).

Finally we show
(3.9) lim ¢i(a) = c(a) = \/n/2.

From the deﬁmtlon of ¢ (a), Jos c(a) (3.8) and the monotonicity of f, we

get iy (@) = by (ey(@) /1 —a?) =, (c, (@) + ¢, (@) = c,(a). From this inequality
and (3.8) it follows that lxmc (a) d(a) exists and c(a) > d(a) >-/5/8.

Moreover, from the definition of ¢,(a) it follows that d(a) = k,(d(a) /1 — —a?).
Thus £, (d(a)) = 0. Hence d(a) = c(a) because for 0 < x < 1 there exists exactly
one root of the equation f,(x) = 0. Thus we have shown that lim c,(a) = c(a)

> /n/2.
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Now we can prove the following:
THEOREM 7. If a, = ./5/8 then E|S| > \/1;/2.

Proof Let us demote by X =(X,, X,)=() acosé,
i=2

a; sin 5,'),
i= i=2 .

where &,, &,,...,¢&, are independent random variables uniformly distnbuted

on [0, 2r]. Let us observe that X =(X,, X,) and (X| cosné, | X|sin &) are

equidistributed, where #n is an r.v. uniformly distributed in [0, 2r] and

independent of X. Therefore
(3.100 E|S|=E|a; S, +X|

2r 2n

=E (-21—>2 f j ay cos Y +[X] cos &) +(ay siny +| X| sin &) dy d¢
T

0 0

2n
1
=E - f \Jat +2a | X[ cos n+|X]* dn = E (h,, (X]))-
]

From (3.10), Lemma 6 and from Jensen’s inequality it follows that
(3.11) E|S| = E(hy, (1X1)) > hy, (EIX]).

Now from Corollary 5 it follows that E|X| > \/375 /E|X|? = ¢;(a)/1—a?.

Using this and (3.11), we get for n > 1, E[S| > h,, (c,-1(a1) /1~ a) = c,(ay),

because h,, is an increasing function. Thus E|S| > c,(ay) for n=1,2,...

Using this and Lemma 6, we get E|S| > lim c,(a,) = c(a;) = ﬁ/Z because
-+ 00

a, > +/5/8. This completes the proofs of Theorem 7, and Theorem A.

4. Final remarks.
4.1. Theorem A implies that the one summing norm of the natural

injection of the complex I' into the complex I? equals 2/\/T_r (cf. Szarek [6]
for details).

4.2. Combining Theorem A with an argument of Orlicz [3] (cf. Szarek
[6] for details), one gets

CoroLrary 8. If X is a complex Banach space which is isometrically
isomorphic to a subspace of L, in particular if X is a Hilbert space, then

EI L ool > 4/m (L o)
= j=1

Jor arbitrary x,, x,,...,x, in X and for n = 1,2,...
4.3. Our main result is a step towards substantiating the Haagerup
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conjecture (cf. Pelczynski [8],‘ Section 4). Let us put

n=(z | [erermeni-o s )" =(r )"
/_ 0;"— " /. ( ) 1/, |
) Ne+1y2)
i rdx) = a(—2tDR) \F
dy (27: !'smx' x) ﬁ(ﬁ F((p+2)/2)>

Analysing the proof ~of Theorem A, one can show
Tueorem 8. There exists a 8 > 0 such that if [1—p| <5 then

n n
(E| X 4077 =9, (Y la)?)H
i=1 j=1
for arbitrary complex numbers ay, a,,...,a, and for n=1, 2,...

Obviously, the constant y, cannot be enlarged because, by the Central
Limit Theorem,

lim (B3, /7 /a7)” = .
n-+on j=1

On the other hand, using the asymptotic expansion for small p > 0, one
can show that there exists a 6 with 1 > 6 > 0 such that d, <y, for 0<p

< d. Note that
1 p\1/p
d‘,‘—:(E%(Ul'*‘G'z) ) .

Thus for 0 < p < § the best constant ¢, in the inequality

n

(E| Y a0f7)'r = cp( 3 laj)2
i=1 j=1
is less than y,.

Acknowledgement. The author would like to express his gratitude to
S. Kwapiet for suggesting the problem and the way of attacking it. He is
also indebted to A. Pelczyniski for his help in writing the final version of the
paper.

Added in proof. We can show the following theorem:

A. Let poe(0, 2) be the unique root of the equation

220 ((p+1)2) = Ju P ((p+2/20%; po = 0,47562....
Then for 22 p > p,
[Z a0l = I'(0+2/2)2 (3 aj?)
Jor arbitrary complex scalars a,, a,, ... The constant I'((p+2)/2)"* is the best possible.
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B. If p>2 then
IZ ol < I (p+2/2)"" (Zla)f)?

with arbitrary a;. The constant T'((p+2)/2)"/ is the best possible.
The proof of A is essentially a modification of the method used in the paper. The starting point
to prove B is the formula

E[Yaa ] =C, [(T] Jola=1)t™"""dt
0 i=1

where C, is some constant. The proofs will appear in Studia Math. (J. Sawa, Some remarks on the
Khintchine inequality for complex Steinhaus variables).
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