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The strong maximal function with respect to measures *
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Abstract. A classical result of Jessen, Marcinkiewicz and Zygmund [12] asserts that the
basis # = {R} of rectangles R in Euclidean space R" with sides parallel to the coordinate axis
differentiates the class L(log™ L)z (R". The quantitative version of this result is the following
estimate. Let |E| denote the Lebesgue measure of E. Associated with & we consider the strong
maximal operator

Mf (x) = suvi Jlf(y)l dy, xeR.
r IR
R

Then for each 1 >0
IMZ) ' [{xeR" Mf(x) >} < cj‘-f—i{)—’(lﬂog* Lj%{(jcl)“*‘dx.

Together with [|Mf} o < |Ifll w, (TMZ) obtains the boundedness of M in the I? (R”) spaces,
| <p<o,

It is our purpose to extend (JMZ) to the context of maximal operators with respect to
measures, including the study of maximal functions on “product basis” in R". Our approach
exhibits the close connection existing between iteration and induction techniques and allows us
to consider several applications, including a problem of Zygmund [12] recently solved by
Cérdoba [3], rearrangement inequalities [1] and covering results [5].

Introduction. A classical result of Jessen, Marcinkiewicz and Zygmund
[12] asserts that the basis # = {R} of rectangles R in Euclidean space R"
with sides parallel to the coordinate axis differentiates the class
L(log* L)tz *(R"). The quantitative version of this result -is the following
estimate. Let |E| denote the Lebesgue measure of E. Associated with # we
consider the strong maximal operator

Mf(x) = sup - ﬁf(y)ldy, xeR.
P
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Then for each 4 >0
. 1
(OMZ)  [{xeR" Mf(x)>l}!<cjl‘%ﬂ<1+log&?) dx.

Together with [|MfI], . < IS, ., IMZ) obtains the boundedness of M in the
L? (R") spaces, 1 <p < co. The basic idea in proving (JMZ) is to dominate
M by compositions, or iterates, of the better understood one-dimensional
Hardy-Littlewood maximal function. Recently Fava [6] proved a weak type
inequality for products of sublinear operators from which a simple proof of
(IMZ) follows. In addition to Fava's result the interest in this area was
revived by a new proof of (JMZ) due to Cérdoba and R. Fefferman [5].
Their proof relies on a deeper understanding of the geometry of rectangles
and uses induction. One of their main tools is a selection procedure for
families of rectangles, through the notion of sparseness, leading to sharp
covering results.

It is our purpose to extend (JMZ) to the context of maximal operators
with respect to measures, including the study of maximal functions on
“product basis” in R". Our approach exhibits the close connection existing
between the iteration and induction techniques and allows us to consider
several applications, including a problem of Zygmund recently solved by
Cérdoba [3], rearrangement irfequalities [1] and covering results [5].

To illustrate the character of our results let w be a positive locally
summable function in R" and put )

M, f() = sup;(%) ﬁf(yn wo)dy, xeR,
: R

where w(R) = [w(y)dy. Under very general conditions, namely that w be an

R
" admissible measure we show that for J > 0

n-1
(1) w({xeR: M,f(x)>4})<ec Jlf,({x)l (1+log+lfix)]) w(x)dx.
R. Fefferman [8] initiated the study of the boundedness properties of M,
and proved that if w is uniformly 4, in each variable, then

”MWfHL»'; < c”f”Lﬁ,’

An estimate similar to (1), but with the loss of a logarithm, holds for general
basis # = product of Buseman-Feller basis which differentiate I! functions.

Our presentation is organized as follows. In Section 1 we discuss the
notion of “admissible measure”, In Section 2 we prove a slight extension of
{1) and in Section 3 we discuss the result for the basis #. In Section 4 we

l1<p< o,
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cover the problem of Zygmund and we present applications to rearrange-
ment estimates, covering properties and the rest.

1. Admissible measures. A collection & = {B} of bounded, measurable
sets of positive Lebesgue measure in R" is said to be a differentiation basis if
for each xeR" there is a subfamily #(x) of # such that

(i) if Be #(x), then xeB;

(ii) each #(x) contains sets of arbitrarily small diameter.

@ is said to be a Buseman-Feller basis, or B-F basis if in addition

(iii) each B is open;

(iv) if xeB, then BeB(x).

Consider a finite number, say N, of B-F bases %, = %(R™ in R*,
1<i<N, and put w=n,+... +ny. The family #={B<R™ B=B, x ...
...xXBy, Bie#, i=1,..., N} is a B-F basis in R". & is called the product

N

basis of the #’s and is often denoted by By1x....xBy or [| #. We
i=1

identify points x in R™ with (x,, ..., X), x;€R™, and, when appropriate,

subsets of R™ with subsets of R" (by adding a number of coordinates 0) and

vice versa.

To each positive locally summable function w defined in R* we associate

the measure
w(E) = [xz(x)w(x)dx, E <R",
and the restriction measures Wy dxy ... d% ... dxy, i=1,..., N, given by .-
Wi (E) =w(x;, E) = [ag(xy, ..., %, ..oy xJW(X)dxy ... d%; ... dx,,
for EcR"

As customary, the check ~ denotes the fact that the corresponding

variable, or differential, is missing. Thus

dxy ...d% ...dx,=dx...dx;_{dx;,s ... dx,,

etc.

Similarly we define the restrictions w
notation w' for wy, e, <.

To subsets E of R" and to each x;eR™ 1<i<N, we assign the
sections E, < R"™™ given by

E, = {0, vves Koy ooy Xgdt (x4, -0, X)EE},

w. , etc. We reserve the

Fig¥ip? T Fiy¥ip¥iy

N
E,, is called the section of E at x;. One last notation. Let # =[] 8, N > 2.
i=1

For E = B,, Bed, we set
W(xia E: B) = w(x,-, E)/w(x,-, Bxl-)'


GUEST


264 ' B. Jawerth and A. Torchinsky

. We say that w is an admissible measure with respect to 2, or plainly that w is
an admissible measure, and we denote this by we 2(4), if there are constants
N

0 <y, 7 <1, such that to each B = I1 B; in # there corresponds an index i

j=1
=i(B), 1 <i< N such that for E < B,
esssupW(x;, E, B,) >y

xjeB;
implies

essinf W (x;, E, B,) >

x;eB;
The index i(B) is called an admissible direction at B. Arlalogously we
introduce a “higher order” variant of @(4), namely the class % (4). Let = be
a permutation of the set of N indices {1,..., N}. To 1 <s<*N—1 and

Ec J| B;=B

J#Er(1),..7(s)

K1)+ %re(s)
we associate .
W, E7 B) = W1y o¥n(s) E)/Wxn(l) ..... Xr(s) (Bx"“) ..... x"m)

We say that we Z(4) if there are constants 0 <y, 7 < 1 such that to each B
in 4 there corresponds a fixed permutation n = n(%) of {1, ..., N} such that
for each 1 <s<N-1 and E<B

Xn(1)r+r¥n(s)
esssup W(r, E, By = v
Xp(s)EBn(s)
implies
essinf W(n, E, B)> ¥
*n(s)Bn(s)
for almost all x,), ..., Xp-1y-

]_—[ W! l)’

i=1
oorrespondmg to product measures, are in %(%). However, if only w(x)
=u(x)v{xXy, ..., Xjy ...y X), 1 <j< N, then we 9(B).

The reader will observe that weights w of the form w(x) =

2. The strong maximal function with respect to measures. We start by
_considering a certain subfamily of #(R"). More specifically, for 1 <k <n
vand n=n;4 ... +n we let Z*(R") be the family of those R’s in % (R") such
© that the length of n; of its sides (we assume those corresponding to the first
. ny directions in R", otherwise we can rename the directions) are equal, the
*_mext n, are equal, and so on until the last n, side-lengths. We call the
directions corresponding to equal side-lengths blocks. %'(R”) is thus the
collection of cubes in R* and #"(R™ = &.
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For a positive locally summable function w we introduce the maximal
operator with respect to w and #*(R") by

My f (%) = SUP—-*ﬁf(y)IW(y)dy, xeR, Re #*(R".

Similarly, for v(x, ..., %, ..., %) defined on R"™" we set

MQ L f(x) = S@ﬁ flf(y)l v(y)dy, xeR, Re# '(R"™").
R

Finally for #(x) defined on RV we put

MP; f (x) = Sup%{*)ﬁf(y)lff(y)dy, xeR, Re R (RY),
e .

1 <j<k. MY; corresponds to the usual Hardy—Littlewood maximal func-
tion and as is well known, if 7 is merely doubling, the veak-type estimate
6] 7({xeR":

MP5f () > 2}) < Jlf(y)l oy)dy  A>0,

R"j
obtains.
As for the maximal operators MY, ,, for a fixed 1 < J <k, following
Jawerth [11] we say that v is a density weight (with respect to 2 1(R"Y)
if there is a function c¢(4) such that

V)] v({xeR"™™: M, ,1e(x) > A}) < c(A)v(E)

for each measurable set E = R and 0 < 4 < 1. This condition is satisfied
if, for instance, M2 , , is of restricted weak type (p, p) for some p < co. When
v=w, and 5= w9 (x;), 1 <j < k, are the restrictions of a fixed w defined on
R", we say that they are uniformly a density weight and of weak type (1, 1),
respectively, if the quantities ¢{1) in (2) and ¢ in (1) are independent of (almost
all) x; and Xy, ..., X;—y, Xj4q, .-+, Xy, I€SPECtively,

We can now state our first result.

TrHEOREM 2.1. Suppose that we 2(R¥) and that Wy, is a density weight, .
uniformly with respect to #~'(R"™ ™), 1 <j < k. Then there are constants c
and ¢, such that for all f and 1> 0

Ww({xeR" My, f(9> 1)) < % f;

M2, F(Ow(x)dx
J gl

(M@ 1wy f>r:1 2

Proof. Let @, = {xeR™ Mkwf(x >A}; 0, is an open set in R". If E is
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an arbitrary compact subset of ¢, there is a finite family of rectangles {R;},
0<i< M, such that

3 w(E) <w(UR)

and

(4) flf)Iw)dx > Aw(R), 0<is< M.
R;

Since we 2(RY the family o/ = {R;} can be divided into k disjoint subfam-
k

ilies ofy, of = () o, so that for rectangles in .7, the hth direction is
h=1

admissible. Clear]y,

k ko

O] wlUR)=w(U U R)< Y w( U Ry
h=1Riedy h=1  Riealy
The rest of the argument is symmetric in h, so to fix ideas we consider «,.
We first select a sparse subfamily {R;} of ¢, which satisfies
(6 w( U R)<ew(URy.
Riesd | J

The selection procedure and criteria of sparseness are as follows: since each
R;e #*(R"), the side lengths corresponding to the n, block are all equal. Let
Ry be an R; in o/, with largest sidelength in a direction in the n, block, the
ny direction say. If Ry, ..., R;_; have been chosen, let R; be a rectangle R
=Iix...xI; in o, with largest side length in the », direction such that

7>) w(xy, Rxl\hgj(Rh)xl) Z(1=)w(x, Ry)

obtains for almost all x, in I,.

We go on until o, is exhausted. Next we show that (6) holds. Let R*
denote the rectangle obtained from R by tripling the sides of R in the n,
block. We observe that
8 R, < {MP w. )=t
@® Rig{l W= 1 (XSJ(RJ),H) 7}

Indeed, if R; e o, is one of the R/’s, then (8) clearly holds. So assume R e o7,

is not one of the R/’s. Then R was discarded after Ro, ..., R -1 had been
selected, thus

o) {sidc length in n1}> fside length in n,
direction of R |~ |direction of Ry,

and j; is the smallest index with this property. By the selection procedure we
have

W(xh Rxl ﬁ(hyjo (Rh)xl)) = yw(x, Rx1)
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and consequently also
(7<) w(xs, Ry (’ U R¥:,)) = mw(x, Ry)
h<jo

for a set of x,’s in I, of positive measure.

Since
{side length in n, }> {side length in nl}

direction of R; -, direction of R

we readily see that

R, (U (R})x,) = fixed set independent of x, e1.
: j

From (7<) and the fact that the n, direction is admissible it thus follows that
w (%1, Ry 0 (U (R ))/w(xs, R,)=7 for almost all x; in R™.
i
Whence
Ml(cl—)l-wxl (XU(R;)H)(XZ: o X) Z2¥ 0 for (x,, ..., x)eR,, and xel,
and (8) obtains.

Moreover, since w,, is a density weight uniformly in x,, from (8) we get
that

W(xu U (Ri)xl) < W(xu {M;‘ll 1,w (XU(M,l) = 7})
Riest | *1 J
g C('J_)) W(xl; U (R}k)xl)
Integrating this inequality with respect to x; we see that

w( U R)<ew(UR.
Rijesly J

However, it is readily seen that w(|J R¥) < cw(U R)) since we @ (). We have
i J

thus proved (6). .
To complete the proof of our theorem, with M} Ly, O the right-hand
side, we will estimate ) w(R). Let {E;} be the disjoint sequence obtained
i
from the R;'s by ‘
Ej = Rj\(.U_Rl): Eo = R,.

i<j

Then |JE; = UR;. From (7>) we see that

W(xl’ (Ej)xl) = (l_y)w(xlz (RJ xl) for all J
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Now
(10) Z j‘ ]f(xlayZ:"'7.Vn)lwx1(y27"'5yn)dy2"‘dy"

7 Ry
< CZ(\W(X“ (EJ')x'x) inf Mil—)uwxi S (%10 Y20 s 1)
J

(3250000 y,.)E(Rj),;1

Sc) | Miiw, SO Yoo YWy (25 -os ya)dys - dy,

T By
=c [ M2y, X0 Y2 Y We B2 Y)Y, . dy,
UR)xy
< cedw(xy, U(R)y,)+
+c j. ' M};l—?l,wxlf(xlsyb'“! }’n)le()’zw--»J’n)de--'dy.,-

(M,‘}_’walfnu
Whence integrating (10) over R™ we see that
(11)
LIS OIw)dy < celw(UR) +c o 4
i Rj

, M2y, fG)w () dy.
(Mk_ l,wy1f>c“

Also from (4) it follows that

(12) wlUR)STwR)<ATY [If 0wy dy.

J Ry
Thus combining (11) and (12) and choosing ¢ so that cg < 1/2, and ¢, < 1/2¢
with ¢ the constant in (11), we obtain that

[4
(13) wUR) <+ f M2, fOIW () dy.
fMil—’Lw,lf”l“
Repeating this argument for each family .27,, and summing over h, from %)
and (13) we get
k

c -
149 wUR)S;Y ML, f ()0 (3)dx.
=4
i (Mk(j_)_l’wx‘jscl).)
J

Since the compact set E was arbitrary, by combining (3) and (14) our proof is
complete.

The above proof shows in fact that if w is such that each rectangle R in
Z*(R" has an admissible direction in the set {n},o,, J = {1, ..., k}, then the
sum which appears on the right-hand side of the conclusion of the theorem
has only to be extended over jeJ. Moreover, the reader can use Theorem 2.1

with w =1, and the Hardy-Littlewood theorem, to obtain (IMZ). More
generally, we may also deduce
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THEOREM 2.2. Suppose that we F(R¥, 1 < k <n, and that w is doubling
in each n; (block) direction uniformly. Then Jor A>0

(IMZ),,
PAC N

w({xeR" M,,, f(x) >i})<cp~]$cl(l+log+—1—) w(x)dx.

Proof. If it were true that we&(RY implied that each section
Wy, € G (R¥1),then we could use Theorem 2.1 repeatedly and at the final step
apply the weighted Hardy-Littlewood maximal theorem to obtain the result.
Unfortunately, it is not clear whether this property holds in general.
Nevertheless, we show next that this strategy almost works.
We begin by dividing #* into k! disjoint subfamilies %, one
corresponding to each permutation n of {1, ..., k}, in such a way that
k
48 only contains those rectangles B = I1 B; for which we have for each s,
j=1
l<s<k-l,and Ec [] B,
J#ER(1),.0,m(s)

esssup W(n, E, B) > y

Xn(s)=Br(s)

implies
essinf W(n, E, B) > 7.
Xn(s)€Br(s)

Here W(n, E, B) denotes the quantity introduced in Section 1.
Now for each = we introduce the auxiliary operators M;, and

1<s<k=-1, by

k—s'wxn(l)-'"-"n(s)’
1 n
M, f(x) =Supﬁﬁf(J’)IW(J/)dy, xeR, Re Z;(R).

R

and
1

S (x) = sup-
gy ()

k- "'wxn(l)vw»xn(s)

mewmmm

xer and r g R"™"nF @) o R for some Re 2% (R").
Since we ¥ (R*) we have

My, f(x) S Y Mio f ().

Fa(1l)r-rFn(s)

We now show that for Mf, the iteration argument described above works.
Indeed, for s <k—1, Mj,, - f(x), being majorized by a weighted

)
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Hafdy-Littlewood maximal operator, is of weak type (1,1). Successive appli-
cations of the proof of Theorem 2.1 yield

f>2)

- Xn(s)

M-
k—s l’w"n(l)
S >4}

(1) e (s — 1)

for 0< 3 < k~1. In this estimate we use X, = x and w, _ =w.

*r(0)
It is now easy to complete the argument along the lines of the iteration
argument described above; the details are left for the reader to complete.

The reader will also observe that in many cases the conclusion of
Theorem 2.2 follows at once from Theorem 2.1. This is the case when, for
instance, w is doubling in every direction and in addition every direction,

. except possibly one not depending on the rectangle, is admissible. In that
case the iteration argument works since we have the following result.

Proposirion 2.3. Let we 2(RY), k = 3. Suppose that each of the n; (block)
directions, 1 <i<k—1, are admissible at every R in %#*. Then Jor almost
every xy, Wy, has the property that the n-directions, 2 <i < k— 1, are admiss-
ible at every R in g*~1.

Proof. Let us show that, for instance, the n,-direction is admissible. For
&> 0 let r,(x;) be the cube in R™ with side length 2¢ and center x;. For w
the n,-direction is admissible. Thus there are constants 0 < Y, ¥ <1, such
that for every rectangle R, xR’ in *~! and every subset E < R’

esssupw(ra(xl), X2 E) w(re(xl)s X2, R’) = P
x9eRo

(15  implies
essinfw(re(xl), X2, E) W(rz(xi): X2, R’) > ’)7
x26R

for all x,.

Let now & tend to 0. By the (usual) Lebesgue differentiation theorem
w(r.(xy), xa, E)/(26)" tends to w(x, x,, E) for almost all x;. Similarly
Ww(re (%), x5, R)(2e)"" tends to w(xy, x5, R'), again for almost all x,.
Consequently (15) implies that for almost all x;, the statement of (15) holds
with r,(x;) replaced by x,; there. This is equivalent to saying that the n,-
direction is admissible for Wy, -

An important class of weights for which Proposition 2.3 holds, and
" consequently also (JMZ),, Theorem 2.1, and Theorem 22 hold, is the
collection of those weights w which are uniformly in A, in each variable
except possibly one in which they are merely doubling.
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3. Maximal functions on product basis with respect to measures. Iteration
techniques suffice to deal with the maximal function with respect to measures
in the general setting of B-F bases provided we are dealing with product
measures (cf. de Guzman [10]). In this section we discuss arbitrary measures.

To fix ideas and to simplify notations we restrict ourselves to the basis
B = %1 x %1, the product of (two) B~F bases %, (R™) and 4, (R"). Points
x in R", n=n;+n,, are denoted by x = (x,, X,), x,eR™. Let

1
My, f(x) = Supwjlf(y)lw(y)dy, xeB, B in 4.
J .

The maximal operators My, , and Mg, 5 are defined similarly. We can then
prove

THEOREM 3.1. Suppose that we @ (%) and that Wy, is a density weight
uniformly with respect to B,(R™), i =1,2. Then there are constants ¢ and ¢y
such that for 1 >0

w({xeR" Mg, [(x) > 1})

<3 ( f j My, May, S (9w (x)d+

(Mg'lywsz"”Zvalf >ecyd}

+ Mayoe, My, £ W(0) dx).
(szywlewl'wx2f>1:1}.)
Proof. Let 0, = {Mg,.,f > A}; then 0, is an open set in R". If E'is an

arbitrary compact subset of @, there is a (finite) family of {B;} < #(R") such
that )

(1) w(E) < ew(U)B)

and ’

¥)) JIf@lw(x)dx > iw(By), all i.
By

Since we% (%) the family o ={B;} can be divided into two disjoint
subfamilies, o/, and .o, say, so that for all rectanglés in <7, the ith direction
is admissible, i = 1, 2. We will consider the family s, the argument for <,
being similar is omitted. We first introduce a notion of sparseness and select
a subfamily {B;} of &/, = {B;} so that

3 w(UB) < ew(UB).

The selection procedure is as follows: choose B, to be the first B;. Once
Bo, ..., B;_; have been chosen let B; =B, xB;, be the first among the
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remaining B;’s with the following property: let y be the constant associated
to we2(4). If E;< B, is defined by
4>) E;={xeB;;: w(x, Bj‘z\‘U Bia) = iw(xy, B2},
i<j

then

(5>)  w(xy, E)>(1—9w(x,, B;;) for almost all x, in R"™.

We go on until the family 7, is exhausted. We now show that (3) holds for
o/,. Observe that

L "M,
(6) U Bl = l(xb Xz)ER . Mml,wxzx{M

Biesly

=¥}

=
;;az,wxl(xvﬂj,zd? 12}

= {Mﬂpwxz La =T}, say.

If B; is among the B;’s (6) clearly holds. If B; is not one of the B;s let jo~1
be the largest index smaller than that of B; so that Bj,-1 is among the Bjs.
Since B; was discarded we have that

(5<) w(xz, By \E) = yw(xy, By 1)
for a set of x,’s of positive measure in R"2.

Moreover, since B;e .o/, it follows that

W] w(xs, Bi1\E) 2 Jw (x5, B;;) for almost all x, in R"2.
But ]
8) B \E; = {xl €B;;: W(xu Bion( U Bi,Z)) >4w(x,, Bi,l)}
i<j0
S {xl EBI‘,I: Mfﬂz-“’xl (X ) > —li} = g]7’ say.
iEjOBi’z

Thus by .(7) and (8)

M, .., i X1) >3%  for almost all x,eB,, and x,&B,,.

This means that B; is contained in

©
{Mml,wxz (x{*1€B,;: for x,e4,,, Mm.wxl(x b x3) >4}, %) > 7).
n‘yjo h2 ‘
This proves (6), for the set in (9) only increases if we replace j, by the largest
J. Now (3) follows readily. Indeed,

w(x,, UBi,l) S c(F)w(x,, %)
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whence integrating over x, we obtain
wUB) < ew(UB).
Thus to complete our proof we only need estimate ZW(B;‘)- Put B;=B
= B; x B,. Notice that from (4>) and (5 >) we get th;t
By =Eu(B\E) and W(xu BZ\(‘L;J_Bi,Z)) >%W(x1a B;,)
for almost all x; in E and J

W(x2= E)>(1""}1)W(x2’Bl): or

for almost all x, in R"*. Therefore

w(x2, B{\E) < yw(%,, B,)

w(xz, By) = w(xz, E)+w(x,, B, \E) < w(xy, E)+yw(xy, By), or
(10)

1
w(x,, By) < ':,);w(xb E)
for almost all x, in R"2.

Consequently,
(11) j f Lf Gy, x2)l (g, ;) dx; dx,

By By

< _[ w(xz, By) inf M.«aal,wx I (s x)dx,
BZ )’1681 2 El

<=yt { w(xy, E) inf Mg, . fO1, x)dx,
By yieE 2

<c I _fMeal,wxzf(xb X)W (x1, X3)dx; dx,.
By E
Thus by (2) and (11) and with g = Mg,l,wxl f we see that

lf(xla x2)|W(xxs xz) dxz dx1

1
ZW(BJ)SIZ f
! Bj,2 Bj1
¢
SIZ f fg(xnxz)w(xuxz)dxzdxl

B2 Ey

1
= ZZ j f g(xy, X2)w(xy, X5)dxy dx,

Ej B2
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<ES gp (x)w(xs, By inf Mg, g(xi, x;)dx,
A J xzeBj 3 L

< %2 .”XEJ-(XJXBLZ(X:) szvwxl g(fu X2)W(%y, Xo) dx; dx,

¢
<= ij (%1, x2) Mﬂz.wxl g (%1, X)W (¥, x5)dx; dx,
UE;xBj, :

< 7 fJ-X 5 (%1, x2) Mﬁ‘*z'wxl Mwi,wxz Swdx, dx,
UBj,1 *Bj
5 31 %%5,2

c c .
SJW(LJJ Bj)‘f‘z Jf M ywey Maayow,, S (X)W (%) dx.
(M%:wxiMwl,wxzfni.;
Choose ¢ =3¢ to obtain the desired conclusion for o/,. As we said the

-argument for .of; follows along similar lines-and is therefore omitted. This
completes our proof.

One of the applications of Theorem 3.1 is to integral inequalities. First
some notations. To a Young’s function () satisfying the 4,-notation we
associate y*(t) defined by

tfw(;/s) ds =y*(t), t large.

Since ¥ (1)/t is non-decreasing, y*(r) is always at most of order (1) log*t.
Nevertheless, if there is a p > 1 so that y (£)/t” is non-decreasing, then actually
Y* (1) is of order y(z).

v Suppose Y, ‘are as above and Y are defined with ¢ =c;/2, ¢, the
constant of Theorem 3.1, i = 1,2. We then have

PropostrION 3.2, Suppose w is as in Theorem 3.1 and that for some & > 0
and all >0 . : :

W(XZ’ {Mﬂp“’xzf > )“}) <c¢ J\ l/’1 <l'£'(zx*gl")wxz(x1) dxl

{f1>22)
and '

h

w{xy, {Mauz,wxlf ><e f 2 ('”f—(%z)l>wx1 (xz)dx;.
{If] >e2)

icm

Strong maximal function 275
Then
2|f(x)|fecq A
w({Mpo />4 <c [ [ U¥(f /s dpr, () wx) dx+
) R 82

2|/(x)|jecy A

tef [ YIS N/sA) () w(x)dx,

RN &f2
where ¢y is the constant of Theorem 3.1.

Proof. By homogeneity we may assume that 4 = 1. Also by Theorem
3.1 it will suffice to estimate the integrals on the right-hand side of the
conclusion of the theorem. We only do

I =
‘Mv‘”mwleﬂl,wxszU

For t >0 put f* = 7f ‘when If| =t and O otherwise. Clearly
{Myﬂz,wxl Mﬂil.wxzf > t} = {Mgdz,wxl Mwl,wxzfr/z > t/2}

Mﬂz.wxl Mﬂﬂl.wxzf(x) W(X) dx.

Now

©
I< f .f Wxy ({Mmz,»vxl Mgal,wxzf'/z > t/2}) dtdx,

RrRM €1

o0
<cf ] (2 (Mg,l'wxzf'/t)wxl (x5) dx, dtdx,
rM c1/2 [Mwl‘wxzft>ul)

=c j. [ {Wz O] Wy, ({M”I’sz ff> 8[})+

Rr2 €1/2
o0
+ | w"z({Mml-szf! >sth)dpy(s)} drdx, =1, +1,, say.

Observe that

L<c f j f f'n/fl('{%)w,z(xodmdnﬁz(s)dzdx:.

Riz © 12 {74 >ast)

Since || < |f| and in the range that interests us ¢ < |fl/es and s < 2|f]/ec,
by Fubini’s theorem we get

2|f/aey |S|/es
Izscf f fv/l('f—‘jf’—')drdwz(s)w(xmx

§
Rn & e1/2
2|/f|seq

=°J j V(S (01/5) dra (5)w () dx.

L
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Similarly for I; we have

o0 o
e [ ]
R"2 ¢f/2 &2

w,,z({Mg,,l‘wx2 St> st})difry (s) dtdx,

2|f/ecq
<cf [ yr(fOl/s)dis(s)w(x)dx.
RM 2
Thus combining these estimates and since clearly a similar argument applies
to the other term, the desired conclusion follows.

4. The problem of Zygmund and other applications. Re # (R**?) is said
to be an a x b x @(a, b) rectangle if the sidelengths in the x; and x, directions
are arbitrary numbers a and b and the sidelength in the x; (k-dimensional)
block direction is ¢(a, b). Here ¢ is a function which is continuous at the
origin, ¢(a, 0) = ¢(0, b) =0, and monotone in each variable separately.

Let 2 be the B-F basis containing all such rectangles R. Recently
Cérdoba [3] answered affirmatively a problem of Zygmund by showing
that for

My f () =‘°‘“pr}€f f FOidy, xeR. Res,
R

the weak type estimate

{Maf > A} < c f Ui%‘-”-(ulog-* M-;ﬂ)dx
Rk+2
obtains. ‘

We open this chapter by considering a slight extension of this result to
the context” of weighted maximal functions.

In the results we discussed in Sections 2 and 3 it was possible to
establish an ordering of the rectangles considered. In fact the B-F basis
Z(R") is basically equivalent to the family of n-fold products of dyadic cubes
B and such cubes have the property:

(D) If BynB, # @, then either B, < B, or B, < B.
It is readily seen that for any B-F basis # for which (D) holds and
for any weight w, M, is of weak type (L,1). Consequently the results of
k
Section 2 remain true with %* there replaced by 4 = IT #; provided each
=1

%; 1s a B-F basis for which (D) holds. One way to co:lstruct such basis #;
is this: }et @1 (1), ..., @ (1) be a collection of monotone, continuous functions
of t20 with ¢,(0)=0, 1 <i<k, and let 2%, be the family of t x ¢ () x ...
X @(t) rectangles in Z#(R**1),

@ ©
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A more general setting in which the above remarks apply is as follows:
suppose # satisfies (D) and that ¢ is a set-valued mapping from 4 into
subsets of R" which verifies

() ¢(4) is a B-F basis verifying (D);

(ii) ¢ is monotone, ie., if B < B, then ©(B) = @(B') whenever B, B'c %.

It is then immediate to verify that Zx@(B)={Q=Bxop(B): Be B}
also satisfies (D) and that My s o 15 Of weak type (1,1) for any w. Out of
the many possible extensions of this result we consider that in the direction
of Zygmund’s problem. ‘

Let then #= o, x%, be a product of B-F bases each of which
satisfies (D) and consider the B-F basis 9 x ¢ (4). In this case condition (ii)
is equivalent to the function ¢ being monotone in each “variable” separately.

Let us introduce some notations. With B = B, X By xBye % x ¢(4) put

«4/1f(X)=SuII;W(B)“‘f inf |f(z, y;, y3)lw(z, By, By)dz,

By yaeBy,y3eB3
and ‘similarly
A2f (x)=supw(B)™* [ inf [|f(yy, z, ya)w(By, z, Bs)dz.
xeB , Bz y1eB1.y3eB3
Also let A3/ (x) be the supremum over B containing x of the expression
W(B)nlj inf |/ (1, 23, y3)l {J inf [f(zy, y2, y3)Iw(zy, 23, B3)dzl}dzz.

B yyeBy By y26By
y3eB3 1y3eB3

The weights w we consider satisfy some of the following properties:

© there are constants 0 <y, ¥ <1, such that for each B = B; xB, x¢(B;, B,)

(1) If E is a measurable subset of B, x ¢(B;, B,), then .
es§sup w(x,, E, B)/w(x(, X5, ¢(By, B))) >y for ae. x,
xaeBy
implies

essinf w(xy, E, B)/w(x, X2, @(By, By))>7 for ae. x;.
xqeby

(2) If E is a measurable subset of ¢(B;, B,), then

esssup w(xy, X5, E)/w(x;, X2, @(B;, By)) >y for ae. x,
xyeBy .

implies
essinf w(x, xp, E)Yw(xs, x5, 0(By, Bo))>7  for ae. x,.

xyeBy

6 ~ Studia Mathematica 80,3
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(3) If E is a measurable subset of B, x ¢(By, B,), then
esssup W(x,, E, B) >y implies essinf W(x,, E, B} > 7;
x1eBy x1eBy

(4) If E is a measurable subset of ¢(B,, B,), then

esssup w(x,, x,, E) >y for ae. x;

xpeB5
implies

essinf w(xy, x5, E) > 7 for ae. x;;

x9eBy
and finally there is a constant C such that

w(By, B,, B;) w(yy, vz, By) o
5 sup — 2 D0 dn B <o
) y{dpz w(yy, By, By) w(By, ¥y, By)

We can now prove
ProposiTION 4.1. Assume w satisfies. properties (3) and (4) above. Then

. ¢
WA > 2) < 7 M, A >0,

ie. 4"y maps LL(R" into weak L%, (R"). .
Sketch of the proof Let B, be a subfamily of % such that
4'1f> 4} =U B,. We will select a sparse subfamily {B;} of {B,} as follows:

a
order the B,'s according to decreasing x, side-length; by property (D)
this actually means by decreasing Lebesgue measure. Choose now inductively
those B/s which verify property (7 >) of Theorem 2.1, that is, after
By, ..., B;_; have been chosen let B; be a rectangle B, =B, xB,,
X @(By,1, B, o) such that it has largest sidelength in the ny direction and

(6) : W(Xl, Ba.l\’U. (Bh)xl) 2 (1 'V)W(xl 2 Bac,xl)
h < j

obtains for almost all x, in B,;. We follow this procedure until {B,] is
exhausted. By (3) it readily follows that if we put .

M$) f(x) = sup v(B)7 IS v(y)dy, B=B,xe(B,, By),
X B
" then

U] UB, s {M‘Z‘,Z.,xl (mys,) > 7}

By (4), 1\71‘2{1%1 is bounded operator on every L%, space, p > 1, cf. Section 2.
In particular

w(l) B,) < ew(UB,).

icm®

Moreover, if E; = BA\U B, then

i<j
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w(x, (Bj)xl) = w(xy, (Ej)xl.)
for a.e. x;. Consequently,

w(iA f>A)<ey w(B))
7

<IZ J inf

J _J’IE(Bj’xz'YZE(Bj)x:,

[f(x15 ¥2s y3)IW(x,, (Ejjxl)dxl

Bl

(
<§; ( Jf [f(x15 X3, X3)| W(x,. Xg, X3) dx, dx3)dx1

(Ejh,
¢
<= Jff | w,
LA .
which is what we wanted to show. Clearly a similar result holds for .4",.
In the spirit of Zygmund’s problem we can show
THEOREM 4.2. Let B =%, x B, x 0(B,, B,) and suppose that w satisfies
properties (1)~5). Then
W(lMaf> ) <c _f@(lﬂog*'f@)w(xmx.
Proof. We have just proved that 4", and .4, are operators of weak
type (1, 1) and by (5) we readily see that

N3 (X)) S ey f(x) N5 f(x).

Thus w({A4"3f > A}) < e [If|wdx.
It suffices to show that given any finite family {B,} in 4 it is possible to
extract a subfamily {B;} which verifies

® [exp(X 1, () w (x)dx < ¢ Y w(B)),
and
) w(UB,) <cTw(B).

Once (8) and (9) are established the conclusion follows readily by means
of Young’s inequality and the usual choice of {B,} with the property that

< w(IB‘,i jlflwdx for all a.

B,
By ren;ming the B,’s if necessary we may assume that the Lebesgue
measure of the nz-block is ordered in a non-decreasing fashion. For j = 0 let
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By, be the first B, and once By, ..., B;~; have been chosen let B; be the first
among the remaining B,’s such that

fexp( Y xs, (X)) w(x)dx < 100w (B)).

Bj k<j

Once {B,} is exhausted we are left with our family {B;}. That (8) holds can
be readily. checked. Indeed, suppose 0 <j < N, then

N
F= - exp(Y xs;(x)w(x)dx
ji=0

Bj

e Z

=0

N-1 N-1
=e fexp() xej(x))w(x)cix+ [ exp( ) xgj(x))w(x) dx
By .j=0 N—-1 J=0
(jl__JOBj)\BN
N-1 i
<100ew(By+ [ exp(}, x,,j(x))w(x)dx.
N—1 i=0
. jgij
By repeated use of this argument we get
N
# < 100e 3. w(B),

j=0
which is precisely (8). As for (9) we may assume that B, is not contained
N
in {J B;. Let jo be the (smallest) index such that
j=0

fexp( X x5 (x)w(x)dx > 100w (B,).

By i<io Y,
The collection {B,}j‘;_o1 can be divided into two disjoint subfamilies: in the
first family we collect all those B;’s with the x;-side containing the x,-side of
B,; the remaining B;’s form the second family. By the monotonicity prop-
erties of ¢ the x,-side of the B/s in the second family contains the x,-side of
B,. Let I={j: B, is in the first family}, similarly IT = [j: B, is in the second
family}. We write

fexp( Y xaj(x))w(x) dx = } exp(} s, (x)w(x)dx+
By J<jo By n(jLéIIBj\jg"Bj) Jel
+ ) exp(, 15, (x)) w(x) dx+
PGy PGPy e
+ [ exp( Y xa, () w(x)dx
Ba,n(jLEJlBj) r\(jg"l!j) J<jg

=51+ I+ 5,5, say.
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We consider each ., k=1, 2, 3, separately. As far as .#, is concerned, on

B, the expression ) B; is independent of x; and x; since the sides in those

Jel . .
directions of each Bj;, jel, contain the corresponding sides of B, (the
projections actually have this property). Thus if B, =B, ; xB, , xB,; we
have

‘ﬁl = J ll'lf CXP (Z xﬁj(xls X2, X3))W(X2, B/z,la Bz,3)dx2

By, o ¥1€By, 1,%3€By 3 Jjel

<w(B) inf A3 (exp(3 1a). )
Yeby

Jel

Similarly .
F2 < w(B,) inf Ay (exp (T xa,)> ).

yeBy Jell

As for the last term, we have

gy = exp( 15, exp (3, ) w(x)dx

Byn(UB)n( U B)) Jjel Jell
Y = B =

< w(B) inf A, (exp (X 28), 7)-
yeB, i

Consequently

i}
N w

UB, {y: &% (exp(Zx,,j), y)>1}

k=1

and

w(JB,) < é} w({y: Hilexp (gxla,.), y)>1})

< cjexp(Zxﬂj(x))w(x) dx < ¢100e) w(B)).
J j

This is precisely what we wanted to show.

In the context of weighed measures the LZ(R") version of Theorem 4.2
for p>1 is also of interest. In this case the assumptions on w can be
considerably relaxed. Indeed, let w satisfy the following property: there are
constants 0 <y, ¥ <1 such that for B = B; xB; x@(By, B)),

(10) If E is a measurable subset of B,, then

esssup  W(xy, E, x3)w(xy, By, X3) >y

x1eB{,x3e0(By,B))
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for ae. x,, implies

ess inf w(xy, E, x3)/w(xy, By, x3) >F

xyeBy.x3ep(B1.By)
for ae. x,, and
(11) If E is a measurable subset of B,, then

esssup w(E, x5, x3)/w(By, X5, x3) >y for ae. x,,
x3ep(B1,87)
implies
essinf w(E, x,, X3)/w(By, x5, x3) > 5 for ae. x,.

x3ep(B1.8)
In this case we have
THEOREM 4.3. Assume that # is as before, that 1 < p < oo and that w
verifies properties (10) and (11). Then
1My fller, < €l ez
Proof. We only sketch a proof here. As usual
w({M.ﬂ.wf > }“}) X W(U Ba)a

where (B,} is a family in # such that
w(B,)™! [ IfIwdy > A,
Bll

Using the selection procedure as in Theorem 3.1 with (x;, x;) here in place
of the admissible x,-direction there and with

- 1 .
M2 f(x;, x3) = SUPB"(“B] ﬁf (15 yall oy, y3)dy, dys,
B

(*1, x3)eB, B =B, x(By, B,), B, e %,, By e 4,,
we can find a subfamily {B;} < {B,} so that

f
(12) UB. = (sz-th,x's X*M‘I«fz"uﬂ,?”” > 7).
In addition {B;} satisfies a sparseness property.

As a consequence of (11) and Theorem 2.2 (that is to say, of a similar
argument involving M.;? instead of the strong maximal function: observe
that we don't need doubling since 4, satisfies property (D)), ML? is

X

b}?unded on Li, p > 1. Also sz'le x is of weak type (1,1). By (12) we have
that ' '

w(U B,) < ew(|) B).

icm
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As in the proof of Theorem 3.1 it follows that the sparseness of the (B}
implies that
w(U By)

< M3 M,;az,wxl,x3f(Y1y Y2, y3)wW(p1, Y2, ¥3)dy, dy, dys.

Wiy

~ie

713 .
‘MWXZM”Z’W-H»-’C}'I >2f

Consequently a similar inequality holds with w({M,,,, f > 1}) in the left-
hand side. Multiplying both sides of this new inequality by pi~! and
integrating yields
- AT
WMo fllg < CINELE Magy, - Slizg.

sz

The boundedness in L?, of 1\71“‘,;32 and M"”Z'Wn-xs readily gives us the desired
estimate.

Remark 44. Conditions (10) and (11) are not symmetric in the vari-
ables involved. Nevertheless, they can be relaxed in the direction of the
definition of D to overcome this point.

While the proof of Theorem 4.2 does not seem to generalize to, for
instance, basis # = #; x ... x B, x ¢(4#,, ..., AB,), this generalization is im-
mediate for Theorem 4.3. We point out here one such instance. Suppose that
@(S1, ..., Sp)8; 2 0,i =1, ..., n,is acontinuous function, monotone in each var-
iable separately and satisfying the conditions @ (sy, .-+, Si—1, 0, Sjx 15 ++-» Sp) =0,
i=1,...,n and @(sy,...,5,) = ¢(2sq, ..., 2s,). Consider the basis # of
Sy X ... X8, x(sy, ..., S,) rectangles and a weight w which' satisfies

(13) There are constants 0 <7, 7<1 such that for each Be# and
measurable E = B, |E|/|B| >y implies w(E)/w(B) > 7.

We then have that My, is bounded in L%, p>1. A few comments
about the proof of this result. First, by letting s, »0 we find that

esSSuUp Wi,y (EYWsy,, (B)>7

xjeB;
° Xp+ 1€P(B1,-By)
implies ‘

essinfl Wy, (E)Wys,,, B)> %

where B=B, x ... XxB,Xx@(By, ..., B).

The proof of Theorem 4.3 carries over almost unchanged in this setting.
Nevertheless, since # does not necessarily verify (D) we must bring in
doubling at some point. Property (13) does not seem to imply doubling in
each direction. It is clear, however, that (13) implies

w(B*) < cw(B),
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where B* is the rectangle with same center as B but with x,, ,-side length

twice as large and with other sidelengths < ¢, - the corresponding sidelengths *

of B. Here c¢; depends on the constant appearing in the relation
@(Sgs -evy S) = @(254, ..., 25,). It then follows that

w(UB) S ew(UBY) < cY w(B)).

This inequality replaces w(|) B,) < ew(|) B;) in Theorem 2.1 and it is suffi-
cient to complete the rest of the proof as in that theorem.

To close the paper we briefly mention some applications to various
topics. In the first place we would like to discuss the relation between
maximal functions and rearrangements, in this context see Bagby [17].
Theorem 2.1 gives

N
(Mo (0 < (T MLy, 1100
Jj=1

Similarly Theorem 3.1 gives
(M%,wf)*(’) < c((M'”l‘wxz Mzﬂz.wxl + MMZ‘le Mwl”"xz)f')** (l)

These estimates can be used to obtain mapping properties of the maximal
operators on rearrangement invariant spaces (of index > 1), for instance.

In another direction Cérdoba and R. Fefferman [5] have observed that
continuity properties of maximal operators can often be stated in terms of
coverings. The same observation applies to our concext. For instance,
Proposition 3.2 can be thought of as an extension to the case of product
basis of Cérdoba’s result concerning the equivalénce between maximal
theorems and coverings.
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