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Orthogonal scalar products on von Neumann algebras
. o

STANISLAW GOLDSTEIN (L6d%)

Abatract. Let ¢, -> be a scalar product on a von Neumann algebra 4, such that {p, >
=0 for any pair of mutually orthogonal projections p, geA. It is shown that, for a large class
of von Neumann algebras, the general form of such a scalar product is given by the formula

%y = x+xy*)+o(y* x—xy¥l/2,  x,yed,

where pe A, @eAl and —p < @ < p. This result is applied to orthogonally scattered Gleason
measures.

~ Introduction. In the paper, orthogonal scalar products on von Neumann
algebras are considered. A scalar product (-, -) on a von Neumann algebra
A is called orthogonal if {p, ¢) = 0 for any pair p, g of mutually orthogonal .
projections from A. Scalar products of the above type were investigated
because of their strong conmnection with orthogonally scattered Gleason
measures (see [4] and Section 5). Namely, every orthogonally scattered
Gleason measure gives rise to an orthogonal scalar product and the problem
of finding the general form of the “correlation function” of such a measure is
essentially equivalent to that of finding the gemeral form of the scalar
product. The theorem giving the general form of the correlation function of
an orthogonally scattered Gleason measure on the full algebra L(H), where H
is'a separable Hilbert space of dimension >3, was proved by Jajte and
Paszkiewicz in [5]. In the language of scalar products it states that for any
orthogonal scalar product ¢, > on L{H) there exist two trace-class operators
m;, m, on H such that, for each x, yeL(H),

‘ Cx, yy = tr (my y* x+m; xy*).
The above formula may be rewritten in the following equivalent form:
(%) x, yy = [py* x+xy%)+ @ (r* x—xy*))/2,

where p is a positive normal functional and ¢ a hermitian normal functional
such that —p < ¢ < u. The main result of the present paper is the following

TuEOREM. Let A be a von Neumann algebra without a direct summand of
type 11,. If A has separable predual or is a factor, then, for any orthogonal
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scalar product {:, ) on A, there exist pe Ay and pe Ak,
that formula (*) holds.

The conclusion of the theorem remains valid for an arbitrary approximately
finite-dimensional von Neumann algebra (cf. Cor. 2.8) and some other cases
(cf. Prop. 2.7, Cor. 3.11, Prop. 4.1, Cor. 4.2, Cor. 4.3).

Here are some comments on the content of each particular section:
Section 1 contains all necessary definitions and some basic facts about
orthogonal scalar. products. The finite-dimensional and approximately finite-
dimensional cases of the theorem are dealt with in Section 2. Also, the results
in this section are formulated for the more general case of orthogonal
sesquilinear forms. Since the original proof of the theorem for 4 = L(H),
with H separable and of dimension > 3, presented in [5] was quite long and
complicated, a new simpler proof, including also the case of factors of type
I, is given here. Sections 3 and 4 are mainly devoted to investigating
properly infinite von Neumann algebras. The following result of Pasz-
kiewicz [6] is used to prove the respective part of the theorem: Every
positive Gleason measure on a von Neumann algebra with separable predual
(and not having a factor of type I, as a direct summand) or on a factor (not
of type I,) extends to a normal linear functional on the algebra (or the
factor). Finally, in Section 5 the results obtamed are applied to orthogonally
scattered Gleason measures.

The notation used in the present paper is standard (see [7] and 9.
For the survey of results on Gleason measures the reader is referred to [37].
Other different approaches to the problem treated here can be found in [2]
and [4].

1. Definitions and fundamental properties of OSF-, OSHF- and OSP-
algebras.

DermirioN 1.1. We call a sesthnear form ¢, > on a von Neumann
algebra A orthogonal if

() <p, q> =0 for p,qeProj 4, p Lq;

—US Q< p, such

(b) the applications x> {x, y> and xr——»(y, x) are ultraweakly continu- ‘

ous on 4 for every yed.
We say orthogonal scalar product instead of orthogonal positive sesqui-

linear form. We write OSF (resp. OSHF, OSP) in ‘place of orthagonal

sesquilinear form (resp. orthogonal sesquilinear hermitian Sform, orthogonal
scalar product).

Proposimion 1.2, Let u, pe A, . The formula
(%) 6 v> =[u* x+xy*) +o(y* x—xy*)]/2  for

defines an OSF on A. If p, pe A", then the form is hermitian. If pe A} and
— U< Q< u, we obtain an OSP on A. .

x, ye A

icm®
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Proof. It is obvious.

Derinition 1.3. If, for some p, p e A%, an OSF (-, -> is given by ( *), the
pair (u, @) is said to determine the form. OSF- (resp. OSHF-; OSP-) algebra
is a von Neumann algebra 4 such that an arbitrary OSF (resp. OSHF ; OSP)
on A is determined by a pair (u, @) of functionals such that Hs @eA, (resp.
uopedl; ped) and —u< o< p).

Prorosirion 14. If both (u, ¢) .and (¢, ¢') determine an OSF ¢, ->, then
u=u"t x><x, 15, so that peA,. Moreover, if {, > is OSHF, then ueAl
and if (-, > is OSP, then yEA+

Proof. As pu(p) =<p, p> ={(p, 1) for every peProj 4, the proposi-
tion follows directly from the Spectral Theorem.

In the sequel, <, -> is always an OSF, and p is given by u(x) =
for xeA.

ProposiTiON 1.5. (a) If x, ye 4 are normal and xy = yx, then

{x, 1)

ie)) x, ¥ = p(y* x).

- B Ifx,yedandrexrey=reyrex, reximy= im y re x, 1mxrey
=reyim x and im x im y =im y im x, then formula (1) holds. :
(©) If x,yed and 1(x) I(y) =1(x) r(y) =7r(x) 1(y) = r(x) r(y) =0 (where
I(x) and r(x) are resp. left and right supports of x), then {x, y) =0.
(d) For any xeA,

@ Cx, X+ (¥, x*) = p(x* x+xx*).

Proof. Since (b) is a consequence of (a), and (c} is a consequence of (d),
it is enough to show (a) and (d).

(a): If p,qeProj A and pg=gqp, then {p, g> = u(pq) by the ortho-
gonality of {-,->. Now, we obtain formula (1) in a standard way using
the Spectral Theorem.

(d): Using (1), we get

{x, x4 (x*, x*> =2({re x, re x)+ {im x, im x))
= 2p((re x)*>+(im x)) = p(x* x+xx*).

ProposiTiON 1.6. The form (-, -) is determined by a pair (1, ¢) iff any one
of the following conditions holds :

(a) {x, Xy =[p(x*x+xx*)+ @ (x*x+xx*)]/2 for xeAd;

(b) {x, xp—{x*, x*> = @(x* x—xx*) for  xeA;

(© $x, y>—<y, x> = @ (yx—xy) Jor  x,yedy;

(d) <p> 4544, p> = ¢(qp—pa) for  p,qeProj 4.

Proof. By easy calculations, using formula (2), the polarization formulae
and standard limit procedures.
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ProrosiTioN 1.7. If (u, @) determines (>, then (u, '), where
@O = @41, —~1,+it3—ity (the U's being finite traces on A), also determines
&, > Conversely, if both (4, @) am! (u, @) determine (-, ->, and

(a) 4 is a factor of type 1, (n<0), then ¢ — ¢’ = az, for some aeC (t,, is
here the normalized trace on A); or

(b) A is a factor of type 1,
then ¢ = ¢'.

Proof. The first part of the proposition is evident. Now, if both (y, )
and (y, ¢) determine ¢, >, then

(p— @) (x* x) = (p— ') (xx*)  for
We may suppose that 9—¢'e A% If 4 is a factor of type I, (n < o0), then, for
some zeL'(A4, 1,) = A,

(p— @) (x) =1,(zx) for

xeA.

xeA.
Hence
xe€Ad,,

o~V (x) < llzllta{x) for

and the functional ¢ —¢'+|z||z, is positive, therefore it is a trace and the
desired result follows. A similar reasoning shows that we must have ¢ = ¢’
in the I, case.

ProposiTioN 1.8. (a) If a von Neumann algebra A is an OSF- (resp.
OSHF-, OSP-) algebra, then every von Neumann algebra B isomorphic to A is
also an OSF- (resp. OSHF-, OSP-) algebra,

(b) Every abelian von Neumann algebra is an OSF-, OSHF- and OSP-
algebra.

n, are all OSF- (resp. OSHF-)
algebras, then A = @ 4; is also an OSE- (resp. OSHF-) algebra.

(c) If von Neumann algebras 4;,i=1,...,

(d) If von Neumann algebras A;, ieJ (arbitrary), are all OSP- algebras

_then (—B A; is also an OSP-algebra.

Proof (a): It is enough to observe that the orthogonality of projections
is preserved under isomorphisms of von Neumann algebras.

(b): In an abelian von Neumann algebra, any ¢ will do in the pair
(1, @).

(c): This is a consequence of Prop. 1.5 (c).

(d): Let (1, @;) be pairs determining <:, ->; in 4,, where -, 5 = ( A4y x

x A;. It is easy to see that p = A, for every ieJ (,u(x)»—(x 1>,
“".(x <x 1)) As ||@)l <l for ieJ, we have

Z lloll < Z sl = Z w1y =
iel iel ie)

icm
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and it is possible to define

((x- isl) £ Z @; (x;).

‘Now we easﬂy check condltlon (b) of Prop 1.6 for the pair (u, @), using

Prop. 1.5 (¢).
2. Finite-dimensional and approximately finite-dimensional cases.
Tueorem 2.1. B(C?) is an OSF-algebra.

Proof. Let (-, -> be an OSF on B(C?. If we treat the matrices in B(C?%
as vectors .from - C*, the mapping (x, y)—<x, y> can be considered as a
sesquilinear form on  C*. Therefore there exists an operator Ae B(C*), A
= [apljx=1,..4, Such that

s

x, ¥y =(d4x, y) =

Z Qjie X;

hk=1

x=|:xl sz and y=[Y1 )’2J‘ ~

' X3 X Y3 Ja

From now on, we shall write elements of B(C?) as if they were vectors from
C*, for example, the above x would be written as x = [x,, X,, X3, X,]. Now,
for any ¢, seR and §eC, c*+s*> =1, || = 1, the operator pe B(C? of the
form

for

p=1[c? csb, csb, s7]

is a one-dimensional orthogonal projection, the pro_;ectlon pt =1—p being
equal to

pt =[s% —csh, —csb, ¢2].
Then ‘ )
p, Py =5 (a1 — a2, —a33 +a4,) +
+01c? s (a4 —ays)+es5* (@z; —as3)]+
+0[c®s(a3a—ay2)+cs®(as; — ag5)]+
+etag st ay —0%c? 52 a3 —02 ¢ st ay,.

The above expression is zero for any choice of the parameters ¢, s and 6.
Hence (among others)

Q24013 = Oy — 043 = A34— 013 = 03y — 04y

=014 = gy = Gy3 = dj; = 0.
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Using the above, we easily calculate
$x, X —Kx*, x*) = (ay1 = a13) (X X5 + X3 X4~ X X3 — X3 ) +

(@12 = d31) (%g Xp+ X3 X4 — Xy X3 — X5 %4)+
+(a33—a22)(lx3lzwlx2[é).

Since, for x =[x, x,, x5, x,], we have

x* x—xx* = [|x3)2 = |x5l2, Xy %+ %y x4 — g %3~ X3 Xy,
Xy Xg 4 X3 Xy — Xy X3 — X3 Xy, %)% —|x3]7],
the desired functional ¢ may be defined by
O([x15 X, X3, X4]) = Q33 %1+ (31— a13) X5 +(ay 3~ da1) X3+ a3 %,

TreCREM 2.2. B(C®) is an OSF-algebra.
Proof. The proof can be carried out essentially in the same way as that
.of Th. 2.1, but this time the calculations are tedious and will be omitted.
Turorem 2.3. Factors of type 1, (n < o) are all OSF-algebras.
Proof. We use induction on n. For n =1, 2, 3, the theorem is true by
Prop. 1.8 (b) and Th. 2.1, Th. 2.2, Assume that it is true for k <n (n > 4). We
shall show that B(C") is an OSF-algebra. Let (-, > be an OSF on B(C"), and
{es, ..., e,} an orthonormal basis in C" Put

[P ~ ~ ~
Ayt = @t 48 ) BCYE + .. +8,),

where & denotes the one-dimensional orthogonal projection in the direction

of e. Now, define functionals ¢, and ¥ so that the pair (uA;, -1, ¢1)
should determine <', -> on A4, _,_, and (44, m¥)on A, . By Prop. 1.7,
@1~y =at on A, , g for some aeC(r is the normalized trace on B(C").
Further, let us put @, = +a1|4,,_,. Now ¢y =¢, on A, .. By Prop,
1.7, we may choose functionals ¢, on At n (k =2, ..., n—1) so that the pair
(WA kn ) should determine ¢-,-> on Ayin and that @.(8) = @, (&)
= ¢,(&). Then ¢, = ¢, on 4,, and ¢, = ¢, on Ay for k=2,..., n~1.
Now we define the desired linear functional @ on B(C") by giving its
values on partial isometries Uy, ,j=1,...,n where ufju; =& and Uy ul

=éi:

el =< o,w) for i,j=2, .. n

r%zq’l(“u) for i,j=1,...,n~1;
d
Lo wy) for i=1,j=nori=nj=1.

It is obvious that gld; .,-1 =@, ¢ld;. =0, and @ld,,,=q, for
k=2,...,n—1. We shall show that. the pair (u, @) determines ¢, ->. By
Prop. 1.6 (b) and the additivity argument, it is enough to check that

Orthogonal scalar products 7

3 Sy, ulm.> = thym, ;) = @ (uf, Usj— Uy Uy

for any quadruple (i,j, L m), i,j;Lm=1,...,n I il i#m, j#I and
J # m, then, by Prop. 1.5 (c), the left-hand side of (3) is zero; of course, so is
the right-hand side of (3). If any two of the indices coincide, uuﬁ and wu,,,
belong to one of the algebras 4, , ;, As_, OF Apgn k=2,...,n-1).

Thus, for some k (k=1, ..., n), i

,,,,,,,,,

iy Upm ) — (Ui, U5 = @ (uf, Ugj— s u,)

and so (3) holds. This completes the proof of the theorem.

THEOREM 2.4. Factors of type 1, (n < c0) are all OSHF-algebras.

Proof. Let 4 be a factor of type I, and ¢, -> an OSHF on A. Choose
a one-dimensional peProj A and a pair (4, ¢) determining <, ->, so that
@(p) =0 (this is possible by virtue of Prop. 1.7 and Th. 2.3). Then, for any _
one-dimensional geProj 4 we have

0(@) = ¢(a) = 0(p) = Cu, up—Cu*, u*deR

(here ueA is such that u*u =g, yu* = p), and consequently, pe 4.
TueoreM 2.5. Factors of type 1, (n < o) are all OSP-algebras.

Proof. Consider an n-dimensional Hilbert space H and the algebra

" A = B(H) with an OSP (-, '>. Let he A, be the density of u with respect

to the normalized trace 7 on 4, ie. u(x) = t(hx) for xe A. Denote by f the
least eigenvalue of the operator h. Then p—pre A and u—pr is not faithful.
Let peProj A be one-dimensional and such that (u~ ft)(p) = 0. Select pedl
so that the pair (4, ) should determine <-,*> and that ¢@(p) =0 (this is
possible by virtue of Th. 2.4 dnd Prop. 1.7). Define {{:,->) to be the OSP
on A determined by (u— ft, ¢). Now, let g be an arbitrary one-dimensional
projection. from A, and ue4 the partial isometry with initial projection p
and final projection g. Then

@) — @) = 1<<u, ud>—<<uk, u*))|
< Ly w))+ u, w*d)y = (u—pr) (p+9)-
Hence |¢(g)| < (u—pr)(g), which completes the proof.
THEOREM 2.6. Finite-dimensional von Neumann algebras are all OSF-,
OSHF- and OSP-algebras. :
Proof. Any such algebra is a finite direct sum of factors of type I, (n
<o), so it is enough to apply Ths. 2.3, 2.4, 2.5 and Prop. 1.8 (c).

ProrosiTion 2.7. The ultraweak closure of an ascending sequence of OSP-
algebras is an OSP-algebra.
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Proof. Let A be the ultraweak closure of U A,, where (4,) is an

n=1
ascending sequence of OSP-algebras. Let ', > be an OSP on 4, and put
<y on = s DA, x 4,. Choose pairs (u,, @,) determining the OSP’s <-, >, so

that —p, < ¢, < py. Clearly, p, = yl4,. As 0 < ¢,+ p, < 2u,, by the Radon—

Nikodym-type theorem of Sakai (see [7], Prop. 1.24.4), there exists an h,e 4,,,
0< h, <1 such that ’

(@n+ o) (x) = p, (hyx+xh,) for xeAd,.
Put

(p,,(x)i—r-u(h,,x+xh,,)~—u(x) for xegA.
Then, for xeA,, ’
@a (0 < () + 26 (B2 n(x®)? < )+ 21172 e (x2)H2,

Therefore, if p,eProj A for k=1, 2... and p, |0 as k — o0, then @y (pe)
~0as k — co uniformly with respect to n. It is also clear from the inequality
that [|@,]| < 3|lull. Thus, the set {@,},=1,,. is relatively o (A4,, A)-compact
and consequently, relatively sequentially compact by virtue of Eberlein-

Smuljan theorem (see {9], Th. III. 5.4). Hence there exist a subsequence (k,) -

of positive integers and a functional ¢ € 4,, such that B, (x) = @ (x) for every
xeA. It is easy to check that

=0 =9ty for x,ye(( A

By the contimfity of ¢ and ¢, -}, the above equality holds for x, yE A,
and by Prop. 1.6 (c), the pair (4, ¢) determines ¢, >, It is clear that
AL AN :

CoroLLARY 2.8. Approximately finite-dimensional von Neumann algebras
are all OSP-algebras.

3. Semifinite properly infinite case. A

Prorosition 3.1. Let <, *> be an OSP on a von Neumann algebra A.
Suppose there exists a functional @&A, such that, for any p, qe Proj A with
p~qgand plg,

P(P)— @ (q) = u, u)—Cu*, u*),

where ue A is a partial isometry with initial projection p and final projection q.
i Then the pair (i, ¢) determines <y .

Proof. By Prop. 1.6 (d), it is enough to show that
@ P, 9>—<4, P> =0(pg—gp) for

‘ p, geProj A.
Now, if p, geProj 4, then there exist D1, P2, 41, 42€Proj A such that p

icm
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;)%ﬁpz, 9=41%92, P29 = 4P, P42 =42 p and p; ~ q; (see [9], pp. 306-

Thus it suffices to establish (4) for pairs of equivalent projections from A. -
Now, if p ~ g, then there exist sequences (p,), (¢,) of projections from A, such
that |lp,—p|| =0 and |ig,—gl| =0 as n— cc, and that, for every n, the von
Neumann algebra generated by p, and g, is a (finite) direct sum of Sactors of
type I, (see [6]). Suppose that, for every n,

<pm qn>_<qn’ pn> = (p(qnpn_pnqn)
It is clear that ¢(q,p,—Pp.4,) — ¢(@p—pg) as n—oc. On the other hand,

< [ule—p)*)]" 2 [u(@)]">+
+rE1? [1(@—ad)] "> =0 as

since (p—p,)* - 0 ultraweakly as n— oo. Hence equality (4) holds for the
pair p, g. Now it is clear from the above that it suffices to prove (4) for pairs
D, q of projections from 4 such that the von Neumann algebra E generated
by p and g is a factor of type I,. ‘

Let yeE, be such that the pair (4E, ) determines ¢, -)ExE. If
reProj E is one-dimensional and rt = 1;—7, then, by (5),

P =) =y )=y ().
Using the same method as in the proof of Th. 2.1, we get
xeC

n— oo,

V—¢|lE=atr for some

(z is the normalized trace on E) and equality (4) follows.

THEOREM 3.2. Let A be a o-finite semifinite properly infinite von Neumann
algebra, and let {,-) be an OSP on A. Then there exists a unique real
Gleason measure @ on Proj A, such that, for any p, geProj A with p ~ g and
plg, @

P (P)—(q) = <u, uy—u*, u*),
where ue A is a partial isometry with initial projection p and final projection q.
Moreover, |p(p)| < u(p) for any peProj A.

To prove the theorem, we need some technical lemmas. The assumptions
on A and {, ) are those of Th. 3.2.

LemMA 3.3. If p,qeProj A, pLq and p = u*u = v*0, ¢ = uu* = vv* for
some u,veA, then {u, u) = v, v).

Proof. As uv =vu =0, the elements u-v* are normal. By Prop. 1.5
(a), we obtain

Cudo*, ukv*) = p((u* o)t v*) = p(p+q).
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Adding the above two equalities, we get
u, up+ 0%, v*) = u(p+9),

and by Prop. 1.5 (d), <u, u) = <v, v). .
Lemma 3.3 assures the correctness of the following definition.
DerivitioN 34. For any p, geProj A with p~¢ and pLg,

df
py = <u’ u>'— <u*7 u*>1
where ue 4 is such that u*u = p and uu* = q.

Lemma 3.5. If p,q,reProj A, p~q ~vr, and p, q,r aremutually or-
thogonal, then ‘ .

Opy gy = Uy

Proof. Let u, veA4 be such that u*u = p, uu* = v*v = ¢ and vv* =r.
Then the elements &; u+¢e,v+&; (vu)*, where g, = +1 for k =1, 2, 3, are all
normal. As in Lemma 3.3, we check that

ey u+ez v+es(vu)*, ey u-+ey v+e; (VU)*> = u(p+q+r).
Adding the above eight equalities, we obtain

Suty u)+ <o, v+ {(ou*, (V*> = u(p+q+r).
By symmetry,
s u*y+ (o*, v* )+ (ou, vud = p(p+q+r),
which gives the desired result.
Lemma 3.6. Let p, g, roeProj A(n=1,2,..) with p=gq, =r, finite,
;;h :nq,, ~r, for every n,q, mutually orthogonal and r, mutually orthogonal.

(6) [0tpg, = %pr,| >0 a5  n-ox,
and (%py,) s @ Cauchy sequence.

Proof. Observeh that, by 1.5 (d), Jap,| < u(p+4¢). To show that (otpy,) 18
a Qauchy sequence, it now suffices to apply Lemma 3.5. As for (6), take an
arbxtra;y £ >0. Let n be so large that u(g,) <& and u(r,) <e. Choose an
seProj A so that s ~p, sLpvg,vr, and pu(s) <e. Then '
Ups = Upg, +0 s and  a, = L+ O
and thus
|apq"'—apr,,l < Iaqnsl +|ar".~xl <d4e.

The correctness of the definition given below follows immediately from
Lemma 3.6.

icm
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DeriniTioN 3.7. For a finite pe Proj 4,
df .
o(p) = lim «,, ,
n-roo

where (g,) is any sequence of mutually orthogonal and equivalent projections
from A, such that g, =p.

Lemma 3.8. (a) For any finite peProj A, o (p) < u(p).
(b) For finite and orthogonal p, ge Proj 4, @ (p+4q) = ¢(p)+ ¢ (9)-
(c) Let p,eProj A(n=1,2,...) be finite and p,Too. Then (¢(py) is a
Cauchy sequence.
(d) Let v, p,, q,€ Proj A with p, and q, finite (n=1, 2...) and such that
paTrs g, 7r. Then . ‘
lo)—e@) >0 as

Proof. (a): Let (g,) be as in Def. 3.7. Then
lo(p)l = lim oy | < lim sup p(p+4q,) = p(p)-

n—oo.

(b): Let (r,) be a sequence of mutually orthogonal and equivalent
projections from 4, such that r; = p+4q. It is now possible to build se-

- quences (p,) and (g,) in such a way that p,+gq,=r, for every n, p; =p,

q; =4, p, are mutyally orthogonal and equivalent and so are g,. Using
Prop. 1.5 (c), it is easy to demonstrate that

Appy Ty, = Aptgry:,

Letting n — o in the above equality yields the desired resuit.

(c): Follows from (a).

(d): Take an arbitrary £ > 0. Let n be large enough so that u(r—p,) <e
and u(r—gq,) <e. Put r,=p, v g,. Then, by (a) and (b),

I(P(Pn)"q)(%)l = |(p(rn_pn)_¢(rn"—‘Qn)l
< plr—p)+plr—q,) < 2e.
Parts (c) and (d) of Lemma 3.8 give the correctness of the following

definition.
DeriNiTION 3.9. For peProj 4,

o= lim ¢ (p,),

where p,eProj A are finite and p,1p.

Proof of Theorem 3.2. Let ¢:Proj A — R be the functional of
Def. 3.9. The verification of the additivity of ¢ and the inequality |@ (p)| < u(p)
for peProj A is routine. They both, taken together, imply the countable
additivity of ¢, so that ¢ is a real Gleason measure.
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Now we must show that, for p, geProj A with p~¢ and p 14, g
= ¢(p)—@(q). This is easily seen for finite p, q. If p, ¢ are arbitrary, we
choose finite p,, g, so that p,Tp, 4,7 and p, ~¢,. Let u, u,cA(n=1, 2, ..)
be partial isometries such that u*u = p, uu* =gq, ufu, = p,, u,u* =gq,. It
suffices to establish the convergence

thny thy) = <ttt Uy = u udp—u*, ¥y as

‘But since u, —u ultrastrongly as n— oo, the above can be shown in exactly
the same way as (5) in Prop. 3.1. The uniqueness of the Gleason measure is
evident.

h— 0.

Remark. Theorem 3.2 remains valid if we assume that 4 is an
arbitrary, not necessarily o-finite, factdr of type I, or II,,. Then the above
proof requires only slight modifications.

Denote by GM(4) the set of all positive Gleason measures on an
algebra 4 and by EGM (4) the set of those positive Gleason measures on A4
which can be extended to a normal positive linear functional on A.

COoROLLARY 3.10. There is a one-to-one correspondence between the set of all
OSP's on A and a-set of pairs (u, @) with pe Ay and ¢ being a real Gleason
measure such that | (p) < u(p) for peProj A (if ¢+ y|Proj Ac EGM (A), then
(1, ¢) corresponds to some OSP on A). The above set of pairs (u, @) is unique.

Proof. By virtue of Props. 1.2 and 1.5 (d), it is sufficient to show that, if
two OSP’s, (-, ->; and ¢, ->,, give the same real Gleason measure @, then

Cx, X1 = (¥, x*)y = G XD = x%, x%y,  for xed
or, which is equivalent by Prop. 1.7, that

P, 4144, p>1 =<, 4>2—<q, p>, for

But the proof of this is essentially the same as that of Prop. 3.1.

p, geProj A.

CoroLLarY 3.11. Every semifinite properly infinite von Neumann algebra
A which is o-finite or a factor and such that EGM(A) = GM (4} is an OSP-
algebra. In particular, semifinite properly infinite JSactors, and semifinite properly
infinite algebras with separable preduals are all OSP-algebras, )

Proof. The first part of the corollary results at once from Prop. 3.1 and
Th. 3.2 together with the remark. The second part follows from the first one
by the theorem of Paszkiewicz quoted in the Introduction.

4. Algebras of type I, II, and HI.

ProrosiTion 4.1, If A4 is _an OSP-algebra and B a commutative von
Neumann algebra, then C = A®B is an OSP-algebra.

Proof. Let ¢, ) be an OSP on C. Put (x, yd, = (x®p, y@p} for

icm
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x, yeA and peProj B. Then (-, »§p is an OSP on A so that there exists a
functional y,€ A% such that

6 ¥0p= s X0y =Y, (yx—xy)  for x,yed,
Let D be the linear subspace of C, algebraically spanned by elements of the
form x®p, where xe A and pe Proj B. Put o (x®p) £ ¥,(x) and extend ¢ in
an obvious way to D. Using the commutativity of B, we easily check that ¢
is well defined and linear on D. If u =) x,®p, with x,€A.,, then
k

lo ) < ; Wy, ()] < ;Hpk (x) = ; (% ®pis 1®p:>
= Z (% ®pe, 1) ZZ'C: u(x®p) = p(w),
k

so that ¢ is ultraweakly continuous on D. Since D is ultraweakly dense in C,
¢ can be uniquely extended to a functional pe 4. such that —u < @ < p.

We shall now show that (u, §) determines (-, ->. Let u=2 X ®py, v
k

=3 y;®q; with x,, y;eA,, p, g;€ Proj B. By Prop. 1.5 (c),
i
u, vy—{v, uy = Z (<xk®pkqj’ yj®pkqj>_<YJ®pkqj3 X, ®pcq;7)
k,j :

=Y Vo, %= % 3)) = @ (uo—vu)
kj

and the proof is done.
CorOLLARY 4.2. Every rype 1 von Neumann algebra is an OSP-algebra.
Proof. This is a direct consequence of Prop. 4.1. and Cor. 3.11.
CoroLLARY 4.3. Each subalgebra of the hyperfinite factor R of Murray
and von Neumann is gn OSP-algebra (see [2], p. 73).
THeoREM 44. If A is a type 11 von Neumann algebra with separable
predual or a type III factor, then A is an OSP-algebra.

Proof. Let peProj A be such that c(p)=c(l—p)=1, where c(p)
denotes the central support of p. Then there exists a sequence (p,) of
mutually orthogonal and equivalent projectors of 4 with p = p,. Let (u,) be a
sequence of partial isometries such that u}u, =p and u,u} =p,. For any

q&Proj (pAp) we put g, = u} qu, and ©,(q) £ lim 0l4q, (compare this with
n—+on

Def. 3.4). Note that Lemmas 3.3, 3.5 and the second part of Lemma 3.6 are

still valid in the case considered, so that ¢,(g) is well defined. The mapping

@, is a real Gleason measure on pAp (cf. parts (a) and (b) of Lemma 3.8) such
that

e@—o(r) = Sy, up—u*, u*)
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for g, re Proj (pAp) with ¢ ~r and g Lr, where u*u = g, uu* = r. By Prop.
3.1, the extension of ¢, to a functional (zpe(pAp)',; is such that the pair
(upAp, @,) determines (-, > on pAp. Choose now r,eProj A with c(r,)
=c¢(l-r,) =1 so that r, 11. It is clear that U (ryAr,) is ultraweakly dense

in 4, and that, for every n, —u < @,, < p. To end the proof of the theorem

it suffices now- to apply Prop. 2.7.

5. Correlation function of orthogonally scattered Gleason measure. Let 4
be a factor von Neumann algebra acting in a separable Hilbert space, and H
a (complex) Hilbert space of dimension > 3. An orthogonally scattered
Gleason measure (or OSG-measure for short) was defined in [5], [3] as an
H-valued Gleason measure ¢: Proj 4 — H such that (¢(p), £(g)) =0 for
p Lg. By the above-mentioned theorem of Paszkiewicz [6], ¢ extends to an
ultraweakly continuous operator ¢: A — H (H with the weak topology), so
that we may define

Cx, 9> £ E ), E).

It can easily be seen that ¢, -> is an OSP on A. The results of Sections 2, 3
and 4 now yield the general form of the “correlation function” (p, g)
—(&(p), £(g)) of the OSG-measure ¢: there exists a pair (4, ¢) with pe A,
ped), and. —pu < @ <y, such that

U] (&) ¢(@) = Lulgp+ pa)+ ¢ (ap— pg))/2.

The above formula is proved in the paper for any factor which is not of type

I1,, and for the hyperfinite factor R of Murray and von Neumann. One is

tempted to believe that it remains valid for arbitrary factors of type II,.
Formula (7) may be rewritten in the following way:

(8) (&), (@) = ¥1(ap)+¥2(pg),

where Y, = (u+¢)/2 and ¥, = (u—@)/2. If A is of type I, (3 <

then

n <o) orl,,

Y= tr (my)
where m;, mye A are positive trace-class operators, and we get the formula
from [5]:

9 € @) =

If A is of type II,, we can still write formula (8) in the form (9) with tr
replaced by 7, the normalized trace on 4, but now the operators
my, myel!, (A, 7) may not be bounded (see [81, [9]).

and Y =tr (my),

tr (my gp)+tr (m; pq).
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