On normal inertia
by
A. WINTNER (Baltimore)

The object of this note is to extend to the case of non-
singular bounded normal matrices the inertia theorem, previously
proved by the writer in the particular hermitian case.

Definitions. In what follows, all capitals 4, 7,... will
denote infinite matrices which are bounded in the sense of Hil-
bert and are non-singular, that is to say such as to have unique
bounded reciprocal matrices A7, T7,.... Denoting by an asterisk
the transition to the transposed matrix of the conjugate complex
elements, the properties which define a hermitian H, aunitary U
and a normal N are H*=H, Ur=U"" and N*N=NN*
respectively. The definition of an N may be expressed in terms
of either of the more particular types H, U. In fact, it is
easily verified that an arbitrary A is an N if and only if
i(A—A¥) (A+ A% is an H, and also if and only if A+ A isa U.

Denoting by £ the unit matrix and by % any point in the
complex plane, the spectrum of any A is defined as the set of
those 7 for which 2E— A is not non-singular. The spectrum of
A~ consists of the reciprocal values of the numbers contained in
the spectrum of A. The spectrum of any A is a set which is closed,
bounded and not empty?). Conversely, any given set having these
three properties is the spectrum of a suitable 4, which may, as
a fact, be chosen as an N. Furthermore, an Nis a U or an H if
and only if the spectrum lies on the boundary of the unit circle
or on the real axis respectively. If an A is an H and only con-
tains positive 2 in its spectrum, then A is called positive definite
and will be denoted by P.

" A. Wintner, Math. Ztschr. 30 (1929), § 2.
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Polar decomposition. The basis of the following con-
siderations is a result ) which, apparently, can only be proved by
means of the transcendental tool of HuBerr’s spectral resolution,
and states that for a given P there exists3) exactly one Q which
is again a P and has the property that QQ == Q” is the given P;
and that this unique Q, which will be denoted by P is com-
mutable with every A which is commutable with Q= P itself.

Now, the unique existence of Q implies*) that there exists
for every A exactly one P and exactly one U such that 4 = PU.
This theorem, which holds with restriction to the real field also,
is an extension to Hilbert's space of a fact well known in the
kinematics of continua, the linear deformation defined by an arbi-
trary non-singular A being decomposed ?) into a unique rotation U
and a unique dilatation P. Correspondingly, the unique P and
unique U may be called the polar components of A4, and will be
denoted by |A| and exp i{A} respectively.

There also exist for every A a unique P and a unique U/
such that A= UP (instead of A= PU). However, one then can
write A= (UPU YU, so that, since TP clearly is a P, the
uniqueness of the decomposition A==PU implies that U= U,
while P=U" PU. ltis also seen that P=P if and only if UP=PU.
Since A == PU, this condition is satisfied if and only if A A*=—=A*4,
In other words, an arbitrary A is an N if and only if |A4] and
exp {4} are commutable, that is, if and only if in the unique
polar decompositions PU, UP of A one not only has U=U
but also P=P. This implies that an N is an H if and only if
U=-exp i{N} is an H. In fact, the product of two A is again
an A if and only if the two given A are commutable.

Transformations. If A, and A, are equivalent, that is,
it A\ =T*4,T for asuitable T, write A R4, If A and A, are
similar, that is, if 4,=77"4, for a suitable 7, write A, ~ 4,.

% Loc. cit. '), § 7.

%) It should be mentioned that what is ntranscendental® in this result is
the uniqueness, and not the existence, of Q (Toeplitz). Cf.also F. J. Wecken,
Math. Annalen 110 (1935).

*) A. Wintner, Amer. Journ. of Math, 54 (1932).

%) For finite matrices, the uniqueness of the polar decomposition has
implicitly been proved by L. Autonne (1902). Cf. A. Wintner, Annali di
Mat., ser, IV, 3 (1934) p. 108, footnote.
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Finally, if A, and A, are unitarily equivalent, that is, if both con-
ditions 4, =T*4,T, A, =T"'A,T may be satisfied by the same
T(=U), write A;>~A4,. 1t is easily verified from the formal rules
of Heruncer and ToepLitz that any of these three notions is a class
notion; that is, one has

(A= 4,) = (A | 4), (4,1 4,))—(4,1A4),
(‘41 :t Az and Az I 3) - (Alt As),

where | is any of the three signs =, ~, =, and the arrow de-
notes implication.

If A ~ A, then A and A, have the same spectrum. If
A = B, where B denotes any of the four letters N, U, H, P,
then 4 also is a B. If AR C, where C denotes either of the
letters H, P, then A also is a C. On the other hand, if 4% U,
then A need not be unitary (and not even normal). Actually,

two unitary matrices cannot be equivalent unless they are unita-

rily equivalent. This fact, which will be needed later on, may be
proved as follows:

Let VV and U be unitary and T*UT =V for some 7. Put
T'= WP, where W is unitary and P positive definite. Then
PW*UWP="V. This may be written in the form

PW*WU) = VPV HV.
But P and VPV ™! are positive definite; while W*UW and VV

are unitary, since so are U, I, W. It follows, therefore, from
the uniqueness of a polar decomposition that W* UW=V; q. e. d.

The problem of equivalence. If x, u,... denote points
of the complex Hilbert space and A(x, 7) the bilinear form which
belongs to a matrix A4, the conjugate complex, cogredient linear
substitutions x=Tu, _17=Tz7 transform A(x, ) into a bilinear
form in u and ¥ which has the matrix T*A 7, since 4 (x, ) =y*4x.
If, in particular, A is an H and the Hilkert space is replaced by
a vector space with a finite number of dimensions, the question
as to the complete system of invariants of an 4 under the trans-
formation group of equivalence is answered-by the signature cri-
terion of the classical inertia theorem of Jacobi-Sylvester. It was
recently shown %) that the same criterion holds in case of Hilbert’s

9 A. Wintner, Math. Ztschr. 37 (1933).
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space also, although A may then have a continuous spectrum.
This is not a contradiction, since the spectrum of an A is inva-
riant under similarity, but not under equivalence, transformations
of A. In other words, while the usual proofs of the Jacobi-Sylvester
theorem break down in case of Hilbert’s space, the theorem itself
is valid in this case also.

There now arises the question as to the complete system
of invariants of an A4 under the iransformation group of equiva-
lence, if 4 is not restricted to be an H. Apparently, this problem
has never been attacked even in the case of finite matrices. It
will, however, be shown that, also in case of Hilbert’s space, the
problem can completely be solved if the A are restricted to be
normal. In, fact, it will turn out that the problem of equivalence
can then be reduced to the unitary equivalence of unitary ma-
trices. Now, while, the latter problem depends on the structure
of the spectra which are, in general, continuous, it is known?)
that the problem as to the complete system of the unitary invar-
riants of a U may be reduced to the problem as to the complete
system of unitary invariants of an /. But the latter problem has
been solved by HeiuincerS). Accordingly, the equivalence pro-
blem of the NV is completely solved by the following theorem:

Two bounded non-singular normal maitrices N,, N, are equi-
valent if and only if their unitary polar components exp i{N,},
exp i{N,} are unitarily equivalent. .

The signature criterion ®) mentioned above, is a particular

case of this theorem. In fact, if NV}, hence also N,(X N,), is an H,

then so are their unitary components (cf. above). Hence, the
spectra of both unitary components lie on the boundary of the
unit circle and also on the real axis. Consequenily, the unitary
components cannot have continuous spectra, and are unitarily
equivalent if and only if they are unitarily equivalent to one
and the same diagonal matrix, in which all diagonal elements
are + 1.

It is similarly shown that the non-existence!) of invariants of
equivalency for real skew-symmetric A also is a corollary. In fact,
the general theorem and its proof are valid in the real field also.

%} Loe. cit. '), § 8.
f) E. Hellinger, Dissertation, Géttingen 1907,
) A. Wintner Proc. Edinburgh Math. Soc. 1937.
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The known cases of a (real or complex) A = /H* and a (real
or complex) S=iH present two essential simplifications. For in
case of a general &V, which may be real or complex,

(1) the problem of equivalence can only be solved by means
of a Hellinger analysis of the continuous spectra (which never
oceur if N=H or N=S==iH);

(I) it is no longer true that 7*N7 is an N for every T.

Proof of the theorem. The theorem announced before
states that

N, - N, if and only if exp i {NV}}} = exp i{N,}.

1/

But it was proved above that if U and V are unitary and U = V, then
U=V. On the other hand, it is obvious that if {/ =V, then UZT.
Consequently, the theorem to be proved is equivalent to the sta-
tement that

N, 2 N, if and only if exp i {/V,} = exp i {V,}.

Since the symbol = has the class properties of consistency, sym-
metry and transitivity, it follows that the theorem to be proved
is equivalent to the statement that

N, R exp i{N,} and N, - exp i{N,}.

In other words, one has merely to show that N - exp i{N}
for any V.

Now, the polar components | N|, exp i{/N} of any N were
seen to be commutable. Furthermore, it was pointed out that P
is, for any P, commutable with any A which is commutable
with P. Placing P=|N| and A=-expi{/N}, it follows that
the polar decomposition N==|N|exp i{/N} may be written as
N=|N|"*(exp i {N})|N|" But |N|" is positive definite, hence
hermitian. Thus, the condition N==T*(exp i{N})T for NZexpi{/N}
is satisfied by 7=|N|™

Remark. On replacing the problem of equivalence, treated
above, by the corresponding problem of similarity, one might
expect that

N, = N, whenever N, ~ N,.
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Actually, this is known to be true in the particular cases V= H,,
N,=H, and N,=U,, N,=U, only, in which cases it may be
proved by above methods 1°). In case of an arbitrary pair N,= P, U,,
where k=1, 2, there arises a difficulty, although P U = U P,
by assumption. In case of finite matrices, it follows, of course, by
transformation to the diagonal form, that similar normal matrices
are unitarily equivalent.

19) Loe. cit. ).

(Recu par la Rédaction le 26. 8. 1936).





