Sur les problèmes réguliers du calcul des variations de la forme

\[I[\delta] = \int_{\Omega} F(p) \, d(x) = \text{minimum} \]

par

P. GILLIS (Bruxelles).

Introduction. Considérons un problème du calcul des variations du type

\[I[\delta] = \int_{\Omega} F(p) \, d(x) = \text{minimum} \]

(1)

\[\left\{ i = 1, 2, \ldots, n; \quad p_i = \frac{\partial \delta}{\partial x^i}; \quad d(x) = dx^1 \, dx^2 \ldots dx^n \right\}, \]

où \(\Omega \) représente un domaine à \(n \) dimensions de l'espace euclidien à \(n \) dimensions, dont nous désignons la frontière — multiplicité à \(n-1 \) dimensions — par \(\partial \Omega = \), et \(F \) une fonction définie et continue, ainsi que ses dérivées partielles jusqu'au second ordre, pour tout système de valeurs réelles des \(p_i \). Nous supposons le problème "régulier", c'est-à-dire la forme quadratique

(2)

\[F_{\delta_i \delta_j} \delta^i \delta^j \quad \left(F_{\delta_i \delta_j} = \frac{\partial^2 F}{\partial p_i \partial p_j} \right) \]

definie positive.

Nous nous proposons, dans ce qui suit, d'établir, sous certaines conditions imposées au domaine et aux données, un théorème d'existence pour (1). Ce théorème est l'extension, au cas de \(n \) variables, de la proposition bien connue, démontrée par A. HÄNNI \(^1\), relative à l'intégrale double

\[\int_{\Omega} \int F \left(\frac{\partial \delta}{\partial x}, \frac{\partial \delta}{\partial y} \right) \, dx \, dy. \]

Le principe de la méthode directe que nous utilisons est dû à M. T. RADÓ \(^1\). Avant d'aborder le théorème d'existence, nous démontrons deux lemmes. Le premier, relatif à la semi-continuité de l'intégrale, peut s'établir pour un problème "régulier" tout à fait général. Le second est la généralisation d'une proposition démontrée, pour le cas de deux variables indépendantes, par M. T. RADÓ \(^1\).

Pour abréger l'écriture nous faisons usage des expressions suivantes. Nous disons que:

— une fonction est de classe \(C^\alpha \), lorsque ses dérivées \(q \)èmes sont continues,

— une fonction est de classe \(L^\alpha \), lorsque ses dérivées \(q \)èmes vérifient une condition de Lipschitz,

— une fonction est de classe \(L^\alpha \), lorsque ses dérivées \(q \)èmes vérifient une condition de Lipschitz à constante \(J \).

En particulier, une fonction de classe \(C^{\alpha} \) sera continue, une fonction de classe \(L^\alpha \), lipschitzienne.

1. Considérons le problème

\[I[\delta] = \int_{\Omega} F(x^1, \delta^1; \delta^2; \ldots; \delta^m) \, d(x) = \text{minimum}, \]

(1)

\[\left\{ i, i_1, \ldots, i_q = 1, 2, \ldots, n; \quad \alpha = 1, 2, \ldots, m; \quad \delta^i, \ldots, \delta^m \right\}, \]

\(F \) étant une fonction, définie en tout point de \(D \), et pour tout système de valeurs réelles des \(\delta^1, \delta^2, \ldots, \delta^m \) supposée continue ainsi que ses dérivées partielles jusqu'au second ordre. Nous disons que le problème est "régulier", lorsque la forme quadratique

nous avons \(\frac{d^2 f}{d \theta^2} > 0 \) et par conséquent
\[
f(0) > f(0) + 0 f'(0), \quad f(0) < (1 - \theta) f(0) + 0 f(1),
\]
les différences \(u - v \) et celles de leurs dérivées jusqu'à l'ordre \(q \) étant supposées non toutes nulles dans \(D_n \). De la première inégalité résulte que, si le système de fonctions \(g^i(x') \) annule la variation première de l'intégrale (1) et si nous désignons par \(g^i(x') \) des fonctions de classe \(L^{q-1} \), s'annulant ainsi que leurs dérivées jusqu'à l'ordre \(q - 1 \) sur \(D_n \) et non identiquement nulles dans \(D_n \), l'on a
\[
I[\hat{g}] < I[\hat{g} + \hat{v}].
\]
De la seconde inégalité, on déduit immédiatement la propriété d'unicité.

2. **Lemme II.** Soit \(g(x') \) une fonction continue dans un domaine \(D_n \), supposé convexe. Désignons par \(T \) l'image, dans l'espace à \(n + 1 \) dimensions \((x', y)\), des valeurs prises par \(g(x') \) sur \(D_n \). Si la fonction satisfait aux conditions :

a) la pente de tout hyperplan \(^g\) contenant au moins \(n + 1 \) points de \(T \) est inférieure à une constante finie, \(J \);

b) \(g(x') - (a_1 x'^1 + a_1) \) est monotone, au sens de M. Lebesgue, dans \(D_n \), pour tout choix des constantes \(a_1, a_2 \);

c) \(D_n \) étant le domaine se déduisant de \(D_n \) par une translation de vecteur de composantes \(h_1, g(x') - (x' - h_1) \) est monotone \(^g\) dans le domaine partiel commun à \(D_n \) et \(D_n \)' que soient les \(h_1 \);

de l'est de classe \(L^{q-1} \).

Considérons, en effet, un point quelconque de \(T \), \(P^{q}_n \), et \(n - 1 \) suites déterminées de points distincts de \(T \),

\[
P^{q}_1, P^{q}_2, \ldots, P^{q}_{n-1}
\]

we appelons pente de l'hyperplan d'équation \(\hat{g} = a_1 x'^1 + a_1 \), l'expression \(\sqrt{(a_1)^2} \).

\(^g\) Une fonction \(f(x') \) est monotone, au sens de M. Lebesgue, dans un domaine \(D_n \), lorsque la condition suivante est remplie : si sur la frontière d'un domaine partiel quelconque de \(D_n \), on a \(A < f(x') < B \) (\(A \) et \(B \) étant des constantes), ces inégalités valent dans tout le domaine \(D_n \).
tendant simultanément vers \(P_0 \); les plans \(P_k \), passant par \(P_0, P_1, \ldots, P_{n-1}, P_n \), tendront, lorsque \(k \to \infty \), vers une position limite déterminée, \(P_0 \). Observons que \(P_0 \) est le seul point commun à \(p \) et \(T \). Supposons, en effet, que le plan \(P_0 \) contienne un point \(T \) dont la projection sur l'hyperplan \((x', x', \ldots, x') \) se trouve dans \(D_n \) ou sur sa frontière. Désignons par \(Q_1, Q_1', \ldots, Q_{n-1}, S, S' \) et \(T, T' \) respectivement les projections de \(P_0, P_1, \ldots, P_{n-1}, P_n \), en vertu de l'hypothèse sur la convexité du domaine. Abaissons de \(M \) la perpendiculaire sur \(q^k \) ; soit \(M^k \) le pied de cette perpendiculaire. Lorsque \(k \to \infty \), \(M^k \to M \). Donc pour \(k \) suffisamment grand, les points \(M^k \) seront intérieurs à \(D_n \). Comme les points intérieurs à \(D_n \), \(q^k \) convergent, pour \(k \to \infty \), vers le point \(Q_0 \) et non vers un point tel que \(M \), la propriété en résulte.

Si \(H \) désigne un hyperplan quelconque passant par \(P_0 \) et dont la pente est supérieure à \(\alpha \), \(P_0 \) est le seul point commun à \(H \) et \(T \). Car, si un tel point \(T \) existe, il ne peut se trouver dans \(P_0 \). Nous pouvons considérer alors \(H \) comme la position limite des hyperplans \(H^k \) passant par \(P_0, P_1, \ldots, P_{n-1}, P_n \), en vertu de \(\alpha \), la pente des \(H^k \) est \(\alpha \) ; donc la pente de \(H \) sera \(\alpha \), et du contraire.

Démontrons, à présent, que si \((X_1') \) et \((Y_1') \) sont deux points quelconques de \(D_n \), nous avons

\[
|h(X_1') - h(Y_1')| < \alpha((X_1' - Y_1')^2)^{1/2} \quad (i = 1, 2, \ldots, n).
\]

Supposons d'abord un des points, \((X_1') \) par exemple, sur \(D_{n-1} \). Soit \(H \) l'hyperplan passant par \(p(X_1') \) et \((Y_1') \), et supposons que l'inégalité (1) ne soit pas remplie ; dans ces conditions, la pente de \(H \) est supérieure à \(\alpha \). Si nous faisons pivoter \(H \) autour de \(p(X_1') \) de telle manière que la pente reste supérieure à \(\alpha \), d'après ce qui précède, \((X_1') \) sera le seul point commun à \(H \) et aux hyperplans ainsi obtenus. Supposons, pour fixer les idées, \(H \) situé en-dessous de \(H \). Nous pouvons alors procéder de telle sorte, qu'après une rotation de \(H \) autour de \(p(X_1') \), conservant à ce plan une pente supérieure à \(\alpha \), le point \((Y_1') \) soit situé au-dessus

\[\hat{h}(x') = (x' + a)^0 + \hat{a}(\cdot) + \hat{b}(\cdot) + \hat{c}(\cdot) + \hat{d}(\cdot) + \hat{e}(\cdot)
\]

de ce plan. Par conséquent, si \(\hat{h} = a' x' + a' \) est l'équation de \(H \) après rotation, la différence \(\hat{h}(x') - \hat{a}(x') + \hat{a}(\cdot) \) sera inférieure ou égale à zéro sur \(D_{n-1} \) et supérieure à zéro en \(Y_1' \), résultant en contradiction avec l'hypothèse \(\alpha \).

Si \((X_1') \) et \((Y_1') \) sont intérieurs à \(D_n \), nous posons \(X_1' - Y_1' = h_1 \), et nous désignons par \(D_n^1 \) le transformé du domaine \(D_n \) par la translation de vecteur \((h_1) \). Puisque \((Y_1') \) est intérieur au domaine \(D_n \), \(D_n^1 \) en vertu de \(\alpha \), nous savons que sur la frontière de \(D_n \), \(D_n^1 \) existe un point \((Z') \), tel que

\[|\hat{h}(Z') - \hat{h}(Z' - h_1)| \geq |\hat{a}(Y_1') - \hat{h}(Y_1' - h_1)|.
\]

\(Z'\) étant sur la frontière de \(D_n \), \(D_n^1 \), un au moins des points \((Z_1') \), \((Z_1' - h_1) \) se trouve sur \(D_{n-1} \). En vertu du premier cas considéré, nous pouvons écrire

\[|\hat{h}(Z') - \hat{h}(Z_1' - h_1)| < \alpha((h_1)^2)^{1/2}
\]

De (2) et (3) résulte la propriété à démontrer.

3. Théorème. Soit l'intégrale

\[I[\hat{h}] = \int_{D_n} F(p) \, d\hat{h} \quad (i = 1, 2, \ldots, n),
\]

\(\hat{h}(x')\) étant une fonction de classe \(L^0 \), \(F \) une fonction définie et continue, ainsi que ses dérivées partielles jusqu'au second ordre, pour tout système de valeurs réelles des \(p_i \). Nous faisons les hypothèses suivantes :

- la forme quadratique

\[F(p_1, p_2, \ldots, p_n) = \sum_{i=1}^{n} p_i^2 + \sum_{i<j} F_{ij}\]

est définie positive ;

- le domaine \(D_n \) est convexe ;

- en désignant par \(T \) l'ensemble, dans l'espace à \(n + 1 \) dimensions \((x'; \hat{h}) \), des valeurs données, a priori, pour \(\hat{h}(x') \) sur \(D_{n-1} \), nous supposons :

1) qu'il existe au moins une fonction, \(f(x') \), de classe \(L^0 \) dans \(D_n \), passant par \(T \);

2) que la pente de tout hyperplan contenant au moins \(n + 1 \) points de \(T \) est inférieure à une constante \(\alpha \).
Dans ces conditions, il existe une fonction, $\hat{g}(x')$, de classe L^0_ω dans D_n et prenant sur D_{n-1} les valeurs données, réalisant le minimum absolu de (1) relativement à l'ensemble des fonctions de classe L^0_ω dans D_n, passant par Γ.

En effet, soit N la constante de Lipschitz relative à la fonction $f(x')$; désignons par M un nombre supérieur ou égal à N et $\omega + 1$. Considérons l'ensemble des fonctions de classe L^0_M

$$(E) \quad \{ u(x') \}$$

passant par Γ. Comme leurs dérivées premières existent presque partout et sont, en valeur absolue, inférieures à M, l'ensemble des valeurs que prend l'intégrale (1) pour de telles fonctions admet une limite inférieure que nous désignerons par l. Si cette valeur l n'est pas atteinte pour une fonction de l'ensemble (E), nous pouvons en extraire une suite $u_k(x')$ ($k = 1, 2, \ldots$), telle que

$$\lim_{k \to \infty} \int_{D_n} F \left(\frac{\partial u_k}{\partial x} \right) d(x') = l.$$

Nous pouvons choisir, en vertu du théorème d'Ascoli-Arzela, la suite $u_k(x')$ de telle manière qu'elle converge uniformément vers une fonction limite, $\hat{g}(x')$. La fonction $\hat{g}(x')$ appartient à l'ensemble (E), puisqu'elle est de classe L^0_M et passe par Γ. Il en résulte que

$$\int_{D_n} F(p) \, d(x') \geq l.$$

D'autre part, en vertu du lemme I, il vient

$$\int_{D_n} F(p) \, d(x') < l,$$

donc

$$\int_{D_n} F(p) \, d(x') = l.$$

La fonction $\hat{g}(x')$ ainsi obtenue, fournit, par conséquent, le minimum absolu de (1) relativement à l'ensemble (E). Nous proposons de montrer qu'elle fournit aussi le minimum absolu de (1) relativement à l'ensemble des fonctions de classe L^0_ω, passant par Γ, c'est-à-dire que

$$(3) \quad I[\hat{g}] < I[v],$$

pour toute fonction $v(x')$, de classe L^0_ω, non identique à $\hat{g}(x')$ dans D_n, et prenant sur D_{n-1} les valeurs données à priori.

La chose sera aisée lorsque nous aurons montré que la fonction $\hat{g}(x')$, que nous venons de construire, est de classe L^0_M, avec $M < M$. En effet, posons $\Phi(0) = I[\hat{g} + \theta(v - \hat{g})]$, ($0 \leq \theta \leq 1$); la fonction $\Phi(0)$ possède au point $\theta = 0$ un minimum relatif, puisque pour θ suffisamment petit, $\hat{g} + \theta(v - \hat{g})$ est de classe L^0_M.

Or, de (2) nous déduisons $d\Phi > 0$. Il en résulte que le point $\theta = 0$ est un minimum absolu pour $\Phi(0)$; en particulier, nous avons $\Phi(0) < \Phi(1)$, c'est-à-dire (3).

Par conséquent, pour achever la démonstration du théorème, il nous suffira de montrer que $\hat{g}(x')$ est de classe L^0_M, ou, en vertu du lemme II et des hypothèses faites ci-dessus, que cette fonction vérifie les conditions β et γ du § 2.

β) Prouver que $\hat{g}(x') - (a' x' + a^0)$ est monotone dans D_n, revient à montrer qu'un hyperplan quelconque, d'équation $\hat{g} - a' x' + a^0$, ne peut couper la surface $\hat{g}(x')$ suivant un contour fermé dont la projection est dans D_n. Nous pouvons le démontrer comme suit. Supposons, en effet, qu'il existe un domaine partiel de D_n, Δ, sur le contour duquel $\hat{g}(x') = a' x' + a^0$, et à l'intérieur duquel $\hat{g}(x') \neq a' x' + a^0$. Considérons la fonction

$$\varphi(x') = \begin{cases} \hat{g}(x'), & \text{dans } D_n - \Delta, \\ a' x' + a^0, & \text{dans } \Delta. \end{cases}$$

$\varphi(x')$ satisfait évidemment aux conditions définies, et est de classe L^0_M. En effet, l'inégalité

$$(4) \quad |\varphi(P) - \varphi(Q)| \leq \varphi_0 = M \cdot \overline{PQ},$$

est remplie lorsque P et Q appartiennent à $D_n - \Delta$. Il en est de même lorsque P et Q appartiennent à la fermeture de Δ, puisqu'alors
P. Gillis.

\[\frac{|\varphi(P) - \varphi(Q)|}{PQ} = \frac{|\varphi(P') - \varphi(Q')|}{P'Q'}, \]

\(P'\) et \(Q'\) étant les points d’intersection (ou deux de ces points) de la droite passant par \(P\) et \(Q\) avec la frontière de \(\partial\). Enfin, si \(P\) appartient à \(D_n - \partial\) et \(Q \in \partial\), en désignant par \(R\) le point d’intersection (ou un de ces points) de la droite \(PQ\) avec la frontière de \(\partial\), nous pouvons écrire

\[|\varphi(P) - \varphi(R)| \leq M \cdot PR, \quad |\varphi(R) - \varphi(Q)| \leq M \cdot RQ, \]

d’où, par addition, (4).

Nous avons

\[F(p) = F \left(\frac{\partial \varphi}{\partial x^1} \right) + F_n \left(\frac{\partial \varphi}{\partial x^2} \right) + \rho \cdot \frac{\partial \varphi}{\partial x^2} + V, \]

où \(V\) représente une quantité positive, en vertu de l’hypothèse a).

Comme

\[\int_{\partial_n} \left(\frac{\partial \varphi}{\partial x^1} \right) F_n \left(\frac{\partial \varphi}{\partial x^2} \right) d(x') = 0, \]

il en résulte

\[\int_{\partial_n} F(p) d(x') > \int_{\partial_n} \left(\frac{\partial \varphi}{\partial x^1} \right) F_n d(x'), \]

d’où contradiction.

1°) Que la différence \(\tilde{g}(x') - \tilde{g}(x' - h')\) soit monotone dans la partie commune, que nous désignerons par \(\partial_n\), à \(D_n\) et \(D_{n}'\), ressort des remarques suivantes:

1°) Si \(\tilde{g}(x')\) est une extrémale \((D_n, L_M^0)\) et si \(\partial_n\) désigne un domaine partiel quelconque de \(D_n\), \(\tilde{g}(x')\) est aussi une extrémale \((\partial_n, L_M^0)\). Sinon, il existerait une fonction \(\tilde{g}(x')\), de classe \(L_M^0\) dans \(\partial_n\), coïncidant avec \(\tilde{g}(x')\) sur la frontière de \(\partial_n\), et telle que \(I[\tilde{g}'] < I[\tilde{g}]\), les intégrales étant rapportées au domaine \(\partial_n\). Il en résulterait que la fonction de classe \(L_M^0\)

\[\varphi(x') = \begin{cases} \tilde{g}(x'), & \text{dans } D_n - \partial_n, \\ \tilde{g}(x'), & \text{dans } d_n, \end{cases} \]

2°) Il est évident que, si \(\tilde{g}(x')\) est une extrémale pour (1), \(\tilde{g}(x') + \text{constante} \) jouit de la même propriété. De même, si \(\tilde{g}(x')\) est une extrémale \((D_n, L_M^0), \tilde{g}(x' - h')\) est une extrémale \((D_n', L_M^0)\).

Par conséquent, si \(\tilde{g}(x') - \tilde{g}(x' - h')\) n’était pas monotone dans \(\partial_n\), il existerait un domaine partiel dans \(\partial_n\), tel que le long de la frontière on ait \(A < \tilde{g}(x') - \tilde{g}(x' - h') < B\), \((A\) et \(B\) désignant des constantes), et, en un point intérieur, \(\tilde{g}(x') - \tilde{g}(x' - h') > B\), par exemple. Soit \(d_n\) l’ensemble des points de \(\partial_n\), tel que

\[\tilde{g}(x') - \tilde{g}(x' - h') = B, \quad \text{sur la frontière de } d_n, \]

\[\tilde{g}(x') - \tilde{g}(x' - h') > B, \quad \text{dans } d_n. \]

Puisque \(d_n\) appartient à \(D_n\) et \(D_{n}'\), nous savons, en vertu des 1°) et 2°) que \(\tilde{g}(x') - B\) et \(\tilde{g}(x' - h')\) sont des extrémales \((d_n, L_M^0)\). Étant égales sur la frontière de \(d_n\), elles coïncident dans \(d_n\), résultat en contradiction avec la formule (5).

* En vertu de l’unicité de la solution: cf. § 1, remarque 2°).

(Reçu par la Rédaction le 14. 5. 1938.)