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Banach S-algebras and conditional basic
sequences in non-Montel Fréchet spaces
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STEVEN F. BELLENOT®* (Tallahassee, Fla)

. Abstract. A non-associative multiplication is defined on Banach spaces with symmetric
basis. This multiplication is continuous exactly when each basic sequence generated by one
vector is equivalent to the original basis. Upper and lower I-estimates are proved for such
algebra norms. As an application, these results are combined. with the techniques of Figiel,
Lindenstrauss and Milman to produce conditional basic sequences in a large class of non-
Montel Fréchet spaces. This class includes subspaces of [,-K&the sequence spaces and subspaces
of products of superreflective spaces. This partially answers a question of Pelczynski,

Altshuler, in [1], studied the class of Banach spaces X with a symmetric
basis {x,} which have the further property that each basic sequence gen-
erated by one vector is equivalent to {x,}. We show (Proposition 3.1) that
such spaces X are exactly those which can be re-normed into a Banach §-
algebra; that is, there is a (non-associative) multiplication which singles out
this class of Banach spaces with a symmetric basis. The algebra norm of a
Banach S-algebra must satisfy some [-estimates (Theorem 3.2). In fact, for
each such X there is a.p with 1 < p < o0, so that for each g > p there is a
constant C, so that

Co( ) > [t > (£ "

for any scalar sequence {a,}. (The lower estimate is essentially in Altshuler
(11 '

Thus a Banach S-algebra can replace some J, and still preserve the
ordering (as sets of sequence spaces) of the l-spaces. In Section 2, such
spaces are defined to have index q. The techniques of Figiel, Lindenstrauss
and Milman [8] applied to spaces of index ¢ < oo, yield “nearly” the same
Dvoretzky-type results as obtained for /, in Example 3.1 of [8] (Propo-
sition 2.7).

In Section 4, these results are combined to affirmatively answer the
following question of Pelezyfiski [13] for “most™ non-Montel spaces:

* Author supported in part by NSF.
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18 S. F. Bellenot

QuEsTiION. Does each non-nuclear Fréchet space have a conditional
basic sequence?

This collection of “most” non-Montel spaces includes all subspaces of
1,-K&the sequence spaces and all subspaces of a product of a collection of
super-reflexive Banach spaces. Previous known results have answered the
question in the affirmative for the special cases Banach spaces [14], /,-K&the
sequence spaces [19], and Hilbertian spaces [14] and [19].

1. Notation and preliminaries. A Fréchet space is a complete metrizable
locally convex topological vector space. The continuous dual of a space X
will be denoted X'. A Fréchet space X is Montel if each o (X, X')-convergent
sequence converges in the original (strong) topology.

We will write {x,} for {x,}2,, { {x,,“ for {x,}k_;, [x,]% for span {x,}¥ and
[x,] for the closed linear span of {x,}. If {«,} and {B,} are positive scalar
sequences, o, ~ B, will denote that o,/f, is bounded and bounded away from
zero.

Let I, 1
norm

< p < oo be the Banach space of scalar sequences [¢,} with

Wl = (R 1EP)17 < o0

Let 1, (respectively cg) be the Banach space of bounded (respectively null)
scalar sequences {£,] with norm ||€,]| ., = sup, |&,|. The spaces &, ¢k are the k-
dimensional spaces of sequences {£,}%, with norm |||l || 'llo. K1 <p < o0,
let p’ be the number so that (1/p)+(1/p) =1, hence if p < 0, I, = I,. If {X,}
is a sequence of Banach spaces, the ¢o-sum of X; D X, ® ... s the Banach
space of sequences, {£,}, so that ¢,eX,, for each n, and lim,||&,)| = 0, with
norm [[{&, | =sup,ll&l. f 1 <p< oo, and {4,} is a non-increasing null
sequence of positive reals with ) a, = co, then the Lorentz sequence space,
d(a,, p), is defined to be the Banach space of all scalar sequences {¢,} with
norm

1all = supg (3 @ €l < o0,

where n ranges over all permutations of the integers.

A sequence {x,} contained in the Fréchet space X is said to be a hasis
for X if for each xeX there is a unique scalar sequence {«,} with Y o,x,
= x. A sequence x is a basic sequence if it is a basis for [x,]. A basis {x,} is
unconditional if for each permutation of the integers =, {x,,} is also a basis;
otherwise the basis is said to be conditional.

The basic sequence {x,} is normalized if it is bounded and bounded
away from the origin (ie., there is a neighborhood of the origin U, with
x,¢ U for each n). Note that this is not the usuval definition for Banach
spaces. The basic sequence {x,} dominates the basic sequence {y,} if the
convergence of Y a,x, implies the convergence of Y o, y,. The basic sequ-
ences {x,; and {y,} are equivalent if each dominates the other.
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If {x,} is a sequence contained in X and ||-]| is a semi-norm on X, so
that
(1) ”Z‘; Dgn anxn(n)“ <

is true for all integers p, g, scalars {a,}, scalars {f,} with |8, <1 and
permutations of the integers =, we will say {x,} is K-symmetric with respect to
[[-Il. If (1) is true under the same conditions except = is fixed to be the
identity on the integers, we will say [x,} is K-unconditional with respect to
II-Il. If (1) is true under the same conditions except = is the identity and g,
=1 for each n, we will say {x,} is K-basic with respect to ||-|.

If X and Y are two isomorphic Banach spaces, the Banach-Mazur
distance is defined to be:

d(X,Y)=inf {|T)| IT"Y: T: X > Y an isomorphism}.

The Banach space X is said to be finitely-representable in the Banach space Y
if for each ¢ > 0 and finite-dimensional subspace X, of X there is a subspace
Yo of Y with d(X,, Yp) < 1+¢. A Banach space X is super-reflexive if only
reflexive Banach spaces are finitely-representable in X.

For general references, we use [10] for Banach spaces and [10] and [18]
for bases in Banach spaces. Although there is no reference for bases in
Fréchet spaces, correctly restated results about bases in Banach spaces are
true for Fréchet spaces.

Finally, we need the following equivalent condition for the statement,
{x,} is an unconditional basic sequénce in the Fréchet space X, where the
topology of X is defined by the sequence of semi-norms {J|-|[;}:

For each k, there are j and M, so that, for each finite subsets of integers
F and G, with F = G,

“Zné[‘ ay, x"”k

is true for any scalar sequence {a,}.

MHZnEG“ s

2. Banach spaces with index. A normalized basic sequence {x,} in a
Banach space is said to have index p (1 € p < o0) if the following are true:

(i) g <p and {a,} €l, implies Y a,x,e[x,], and

(i1) ¢ > p and Za,,xne[x,,] implies {a,}€l,.

If ||-]| is the norm on [x,], the closed graph theorem implies that
“having index p” is.equivalent to “for all ¢, r, with ¢ < p <r, there are
constants K, and K, 50 that for each finite scalar sequence {o,},

() K, (5 o) < IS 2 %] < K (5l
For a symmetric basis {x,}, having index p is equivalent to (%) being true for
each finite sequence {a,} with «, = 1 (Proposition 2.5).

Our main interest in Banach spaces with index p, p < o0, is that the
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techniques of Figiel, Lindenstranss and Milman [8] yield “large” finite-
dimensional Hilbert subspaces in [x,]%. This in turn will allow construction
of conditional basic sequences in certain Fréchet spaces. Many examples of
Banach spaces with index are given in the next section.

It seems that having index is independent of most global properties a
space may have. For instance, it is possible to construct uniformly convex
Lorentz sequence spaces without index. Other examples are given in the
remarks after Theorem 3.2.

Lemma 2.1 is given for later reference. The results are easy consequences

of the closed graph theorem and standard facts about duality and I,-spaces.

Lemma 2.1, If {x,} is a normalized basis for a Banach space and {x,} are
the coefficient functionals, then

(a) {o,}el, implies } a, x,&[x,] (respectively, ¥ a,x,€[x,]) if and only if

(b) ¥ 2,x,€[x,] (respectively, ¥ a,x,e[x,]) implies {a,}€l,.

We now consider the case when {x,} is a symmetric basis. Suppose |||
is a l-symmetric norm on {x,}, define

An) =T i x|, &(n) = logA(n)/logn,

S =lmsupé(n) and I =Iliminfé(n).

Later, we will need to consider sequences of 1-symmetric norms {||*||} on
{x,}, in this case, we will distinguish the various A(n), £(n), § and I, by use
of sub or superscripts (e, A*(n) = |35 x||s, etc).

If the sequence {A(n+1)~A(n)} is non-increasing, we will say that ||-|| is
a concave l-symmetric norm. Although, it is not the case that each I-
symmetric norm ||| is concave, there is always an equivalent concave 1-
symmetric |||y satisfying ||-]| < ||-llo < 2{-|| ([11], p. 119). As we will be
dealing only with isomorphic properties of the Banach space and with
asymptotical results about the sequences {A(n)} and {&(n)}, without loss of
generality, we will assume that our 1-symmetric norms are concave.

If |-}l is a concave 1-symmetric norm on {x,}, define @, =1 and [
= A(n+1)—A4(n) for n> 1. The sequence {a,} is non-increasing and if [x,} is
not equivalent to the usual basis of I, or ¢, then lima, = 0 and Y a,= 0.
In this case, we define the associated Lorentz norm [-] on span{x,} to be
the norm of the Lorentz sequence space d({a,}, 1), superpositioned onto the

{x,]. Note that if {«,} is a finite sequence of scalars,

(x4 [E o] < [E oa,]-

To see this, by symmetry it is enough to show (*#) when oy >y > ... = 0.
And '

HZT% Xn“ = ”Z:l”_:l (n—0py 1)2}': 1 -xj”
S YO~ t- ) A = YT, (A(m)— A (n—1)) = [T 7w, x,].
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The following lemma is elementary and its proof is omitted.

Lemma 2.2. If {x,} is a symmetric basis with 1-symmetric norm ||-||, then
(i) = (ii) = (iii) and (i') = (ii") = (iii"), where

() [16>S8 [0 <II;

(i) [(i"] There is a constant K so that for each n,

A(n) < Kn®[A(n) = Kn®];

(i) [(i)] 6 =S8 <1].

LemMaA 23. If {x,} is a symmetric basic with 1-symmetric norm ||-|| and if
8>S with1 < p=1/8 <0, then there is a constant K so that for each finite
scalar sequence {a,},

I aa ] < K ).

Proof. Since the result is true if {x,} is equivalent to the usual basis of
Iy or cy, it suffices to prove the lemma when the associated Lorentz norm
[-T=1"ll. Let ¢ > p with 1/g > S. Since na, < A(n) < Cn'/4, g, < Cn~ 14" If
oy =y = ... 20, then

Eax]=Ya,a,<CY a,n 2,

By Holder’s inequality for p and p'
I[Z o, xn:[] <C (Z Ia"lp)l/p(z n- p’/q')llp'_

But p'/q’ > 1, so that K = C (Y. n™ ") < co will satisfy the conclusion of
the lemma, and the proof is complete.

If ||-]] is 1-symmetric on {x,} and ||‘||' is the dual norm on the
coefficient functionals {x,}, then A(n)A’(n) = n([11], p. 118). Thus by duality,
Lemmas 2.1 and 2.3, and the obvious relations between S’ and I, we have the
following lemma.

LemMa 24. If {x,} is a symmetric basic with 1-symmetric norm ||-|| and if
6 <Iwithl <p=1/§ <, then there is a constant K so that for each finite
scalar sequence {u,}, '

12 2wl | = K ([} P
ProrosITION 2.5. The symmetric basis {x,} has index p if and only if S
=I=1/p.
Proof. If §=1=1/p, then Lemmas 23 and 24 show that {x,} has

index p. The converse follows easily from the upper and lower [ -estimates in
(+) and Lemma 2.2.

Remark. If {x,} is a symmetric basis with index p and ¢, is not finitely
representable in [x,], then I, is block finitely represented (see [17]) in {x,}.
This follows from Theorem 3.3 of [17].
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The following lemma, although ungainly, will prove to be the key to our
results on conditional basic sequences.

Lemma 2.6. Suppose ||| is a concave 1-symmetric norm on {x,} and
suppose there is a B so that for each j, N, there is an n = N with &(m) < B for
n<m<n; then for each p, 1 < p < 1/B, there is a constant C so that for
each & > 0, there are infinitely many | with the property that for each scalar
sequence [,

I e <

Proof. Since the result is true if {x,,} is equivalent to the usual basis of
I, or ¢, it suffices to prove the lemma when the associated Lorentz norm
A=1
L] Let p < 1/B be given and choose j so that J > Bfj. Let N be given,
choose n = N so that g“(m) < B, for n<m<n and let I =n'. The condition
on &(m) implies Sa;<n® and a, < mP™1, for n < m < I Thus if the scalar
sequence {a,}} satisfies oy =0, = > o= O,

[le Ay xn]] = le a,%, = Z’l’ a; ai+zfl+ 1 ai &

< 1 (The om0 (S o)
< (L JotyPY2 2 (1B (3 B 09" 119)
which completes the proof since Bfj <d and (B—1)p' < —1.
The results of Figiel, Lindenstrauss and Milman [8] will be applied next.

We need some notation, which generally follows that of [8]. Let || be the I,-
norm and let {u,} be the usual basis of I,. Let E; = [4;]%, Sy-; = {x€E,: |x|

< CP(X o).

=1} and g, be the normalized rotational invariant measure on S,_,. For |

any norm ||-||, defined on span{w}, let b(k), M (k) be defined so that:
(1) b(k) is the smallest number with ||x|| < b(k)|x], for xeE,, and

@ -1 {x €8k~ 1 lIxll = M(K)} = 1/2,
p-1{xeSe- g [Ixl] < M(K)} = 1/2.
If ||| is the l-norm, 1< p< oo, Example 3.1 of [8] shows that:

(3) b(k) = k*, where o =p ™ '—2"" for pg2 and a =0 for p>

(4) M (k) ~ k*, where o = p~*—2"1,

Formula (4), for p > 2, is not explicitly stated; but it follows easily from
the fact that the estimates in Example 3.1 of [8] are best possible. Suppose
|| | is such that {u,} has finite index p. Since ||*||, < K||*||; implies that

b, (k) < Kb, (k) and M, (k) < KM, (k), for each & >0 there are constants
A and B so that
(5) A" k=0 g

2, and

M(k) < Ak**?, where o =p~1~2"1, and
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(6) BT kK < b(k) <
B=y—25 (p<2)

Thus (5), (6) and an application of Theorem 2.6 of [8] yields:

ProposiTioN 2.7. If || || is a norm so that {u,} has index p < co and ¢ > 0,
then there is a constant C so that E, has an n-dimensional subspace Y with
d(Y, 15) < 2, where n = Ck* and o = 1 —¢ for p < 2 and o = (2/p)—¢ for p = 2.

The following proposition is needed for the proof of Theorem 4.1.

ProrosiTiON 2.8. For each v, 1 <1 < 2, there is a constant K, so that if
Hlly <2 < ... <|*l|y are norms on span {w,} and {u,} has index p(i) < o0
in the norm ||-|;, 1 <i <N, and if p(1)/p(N) <, then

7) for each M >0, there is {y;}] < span{w,} with {y;}i K-basic with
respect to |||}, 1 <i< N, with the further property that there is a scalar
sequence {a;}t and Fc<{l,2,...,n} so that |[Yoyly=1bu
HZIGF oyl > M. .

Proof. Since t < 2, choose f# so that 1 > 28 > 7 > t—1. Then there is
6 >0 so that

®) (1/p(D)~(1/p(N))+26/p(1) > 36 if p(1) > 2, or

©) (/p()=(1/p(N)+B>36 if p(1) <2

To see (9), use p(l) <t and for p(1) =t use p(1) < tp(N).

Since f < 1/2, by [19, Lemma 3.3, p. 86], there are positive constants
T, S and bases 1}’,}1 for /% so that the basis constant of {y;}] is < Tbut there
are scalars {o;}; and F < {1, 2, ..., n} so that

(10 oyl =1 and [Sra;y]>sr.

By the remarks at the end of Section 7 of [8], there is a constant C so
that if

Bk?, where B=9=0(p>2) and y =p~*—27"'+,

n=Ck minlsisN(Mi (k)/bi(k))z,

then there is an n-dimeénsional subspace Y of E, with:
(11 27V < MT(R)IX; <2|d  for  xeY, 1Ki<N.
From Lemma 2.1 (i), p(1) = p(2) > = p(N), thus (from (5) and (6)) the
minimum is attained at i = 1. That is n = Ck*"%, where y =1, p(1) <2 or y
=2/p(1) for p(1) = 2.

Let {y;} be the basis for Y given above. From (11), {y;}] is 4Tbasic
with respect to ||*|l;, 1 <i< N. Now, from (10) and (11)

”str aijHI/HZ ajyjHN = (1/4) M, (k) My ' (k)SnP.
From (5) .and substituting for n: > (constant) k", where

v=(1/p(1))—(1/2) =6~ ((1/p(N))— (1/2)+ )+ B(y —5).
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Since B < 1/2, and by the way y is defined, either (8) or (9) imply v > 0. Thus
for large enough k, this number is > M. This completes the proof.

Our final result of this section is an improvement on Proposition 2.8
when each of the norms is 1-symmetric on {u,}. The proposition and its
proof use the notation defined after Lemma 2.1.

ProposiTioN 29. Let t=9/8; there is a constant K so that if
h <ll-ll2< ... <"y are each concave 1-symmetric norms on {w,} and
Iy< 1, with I,/I; <t and if |||y satisfies the property:

(12) for each B > 1, and positive integers j and m, there is an n = M so
that EN(m)< B, for n<m<n,

Then the conclusion of Proposition 2.8 (i.e. (7)) holds.

Proof. We will show how to modify the proof of Proposition 2.8 to
handle this case as well. First note, by Lemma 2.4, the lower estimates on
M; (k) and b; (k) in (5) and (6) are still valid with p(i) = 1/I,. (Note that I, # 0
by hypothesis.) We now use Lemma 2.6 and (12) to provide a type of upper
estimate on My(k) and by(k) (and hence on each M (k) and b;(k)).

For each B>1I, and 0 >0, there are infinitely many k so that
IVllw < 4K%|I¥llyp, for ye[wlt, where [“llys is the I,p-norm. Thus for
infinitely many k, My(k) < Ak* M (k) and by (k) < Ak?b(k), where M (k) and
b(k) are those given for the I, p-norm in (3) and (4). Therefore, for each
6 > 0, there is a constant A so that the following estimates hold for infinitely
many K:

AT < M (k), where r=1I,—(1/2)-5;
(13) My (k) < Ak, where s =1,~(1/2)+3;
by() < AK,  where t=0if I,<1/2 and

t=sif I, >1/2.

Proceeding as in the proof of Proposition 2.8, for infinitely many k, we
obtain an n-dimensional subspace Y of [u,]¢ with

n 2 Chkminy ¢; < (M, (k)/b; (k)* = Ck (M (k)/b(k)) -
If we let B =1/4, then § > 0 can be chosen so that
Ii—I 4281, >46 if 1,<1/2,
or
A+28)I,—~I ) +B >46 if I, 1/2.

Thus substitution of the estimates in (13) into the proof of Proposition 2.8
again yields that v >0 and so the conclusion holds.

3. Banach and Fréchet S-algebras. If {«,} and {8,} are scalar sequences,
define {a,,} *{Bn}, the cut-Cauchy product of {x,} and {B,}, to be the sequence
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{ya}, where y,=o;B; if n=2"1(i+j)(i+j~1)+i. The name cut-Cauchy
comes from the fact that {y,} are the coefficients. of the formal power series
(o x')(3_ B; ) arranged in increasing degree with terms of the same degree
arranged in increasing degree in x. The fact that * is non-associative is not
important for the sequel.

A symmetric basis {x,} of the Banach space X with 1-symmetric norm
Il is a Banach S-algebra and the norm is an S-algebra norm if x =Y 4,x,
and y =3 B,x, are elements of X and if {y,} = {o,}  {8,} imply that xxy
=Zy,,x,,eX and |[x=*y|| <|{|x]|-|lyll. That is, X is a Banach algebra with
respect to the cut-Cauchy product. Although * is non-commutative, we have
[l * y|| = |ly *x|| because of the symmetric norm. This fact and its variations
will be used in the. sequel without further reference.

If {x,} is a symmetric basis for X, « =Y a,x,e X and k: NxN—-Nisa
1-1 function, let u} = Xmp, =1, 2, ... The sequence {u%} was called
the basic sequence generated by « in [1]. If « % 0, it is easy to see that {u}
is a symmetric basic sequence of X which dominates {x,}.

ProrosiTION 3.1. The symmetric basis x, has an equivalent S-algebra norm
if and only if, for each non-zero aef{x,}, {u} is equivalent to {x,}.

Proof. If ||-]| is an S-algebra norm on [x,] and f =) B,x,, then

X Basll = [|oe * Bl < llachl - 1B

Thus {x,} dominates {u}] and so they are equivalent.

Conversely, it suffices to show that the cut-Cauchy product on
[x,}® [x,] is continuous in each variable separately ([16], p. 5). This is a
standard consequence of the equivalence of basic sequences ([10], p. 13).

THEOREM 3.2. Banach S-algebras have index.

Proof. Let |||} be an S-algebra norm on {x,}. It follows that

A(nk) = |51 x)* (% ) < A(m) A(k).

First, we show that for 0 < s < 1, either inffA(Wn~*>=1 or limA(n)n™° = 0.
To see this, suppose for some m and s, 1(m) < m’. There is a t < 5 with A(m)
= m', and by induction, for n = m', m?, ... we have 1(n) € n'. Hence for each
n, A(n) < Kn', where K = m'. Therefore A(n)n~* < Kn'™* and limA(n)n™° = 0.

Now let S=inf{s: infA(m)n™*>1} and let p=1/S. Thus for
s> 8, A(n) = n® and for t < S there is a constant K with A(n) < Kr'. Thus by
Lemma 2.2 and Proposition 2.5, {x,} has index p.

Remark. The lower inequality, ||3 «,x,|| = (¥ |#,?)?, mentioned in the
introduction, can be obtained from the proof of the Proposition in [1].

ExampLEs of Banach S-algebras.

1. The norms of the spaces [,, 1 < p < o0, and ¢, are S-algebra norms
for their usual basis. In fact, for any of these norms, [la* B|| = ||« ‘||]i.
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2. The Lorentz sequence space, d(a,, p), can be renormed to be an §-
algebra if and only if there is a K > 0 with s, < Ks,s,, for all n and k,
where. s, = Y1 @ [2].

3. There are conditions on {a,} which imply that [f,] has an equivalent
S-algebra norm, where {f,} are the coefficient functionals of the usual basis
of d(a,, p) (see [6]). v

4. For each non-decreasing sequence {p(k)} with 1< p(n) <o we
construct  the S-algebra S(p(k)). Let X be the cosum of
By @2, @... and let {} be the usual basis for X. Define $(p(k)) to be
sym(X), the symmetrization of X, that is {o;}esym(X) if the norm

fof = sup {|[3" o Xoqp/|x: @ a permutation} < co.

It is easy to check that |-| is an S-algebra norm. Let p(o0) = lim, p(k); it is
easy to show that S(p(k)) has index p(co).

5. Consider the following special cases of 2 above. Let g < oo be given
and let a, = k"4—(k—1)'4, The Lorentz sequence space d(a, 1) can be
renormed to be an S-algebra with index g. The space d(a, 1) has the
property, that for a = (37 x;)/(m) and scalars f, then ||} 8[| = [|3. ;]

6. There is no relationship between Barnach spaces with given index and
reflexivity. Indeed, the spaces d(a, 1) above are non-reflexive spaces with
index g. Let b, = log,(n+1)~log, n; then d(b,, 2) has index oo, is reflexive
and can be renormed to be an S-algebra. Thus the coefficient functionals of
d(b,, 2) span a reflexive space with index 1 by Lemma 2.1. However, if {x,}
has index g and if {x,} is super-reflexive, then 1 < g < oo by [9].

7. Each example in 6 can be renormed to be an S-algebra with the
exception of the dual of d(b,, 2). Indeed, by the Remark after Theorem 3.2,
the only S-algebra with index 1 is I,. Thus a reflexive S-algebra has index g
with 1 < g < o0.

Proposition 3.1 suggests the following definition for a Fréchet S-algebra.
The Fréchet space X with normalized symmetric basis {x,} is said to be a
Frécher S-algebra if for each non-zero ae[x,], {u?} is equivalent to {x,}.
(The requirement.that {x,} be normalized rules out exactly the spacg w — the
product of countably many copies of the scalars) If, in the proof of
Proposition 3.1, we use [20], p. 354, instead of [16], we obtain the first
statement in the following proposition.

Proposirion 3.3, The normalized symmetric basis {x,} of the Fréchet
space X spans a Fréchet S-algebra if and only if the cut-Cauchy product is a
Jointly continuous bilinear map X ® X —» X, and if and only if the topology
on X can be defined by a sequence of norms {||:|,} so that each |||, is
1-symmetric on {x,} and for each k and «, fe[x,], we have

(#) : lloc# Bl < Hlotllies 1 MBIk 1
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Proof. We complete the proof by showing how to renorm to obtain
(#). Since |{x,} is a normalized symmetric basis, the topology can be defined
by an increasing sequence of norms {|-|,} with each ||, 1-symmetric on {x,}.
Since the cut-Cauchy product is continuous, by passing to a subsequence if
necessary, there are constants C, so that .

o * Ble < Cieloles s Blisr-

Let || |l =]|-]; and inductively construct |||+, as follows:

llodle+ 1 = sup {lales 1} O {lloc* Bile: 1Bliss < 13-

It follows that each || -||, is 1-symmetric on {x,} and |-, <||-|ls. By induction
for k= 2, |-l < ([T £ Ci)l -1, and (#) holds. Finally, since || ||, is equivalent
to ||y, for each k, the norms {||‘||,} define the topology.

ExampLEs of Fréchet S-algebras. )

1. I {||-|l} is an increasing sequence of S-algebra norms on {x,}, then
{|lll} generates a Fréchet topology in which {x,} is a Fréchet S-algebra.
Each of these examples is .an indexable Fréchet S-algebra, in the sense that
the topology can be defined by a sequence of norms {||-{|,} in which {x,} has
index p(k). Let g = limp(k), either for some k, p(k) =g¢, or the space is
isomorphic to U,», I,

2. If |||l are Lorentz sequence space norms of d(a¥, 1) with the
property that for each k, there is a constant K and integer j so that
st < Ksi,si, then {|| ||} generate a Fréchet S-algebra. This can be proved by
imitating the proof in [2] used in Example 2 after Theorem 3.2. :

3. We now construct a particular example of 2 which will turn out to be
an unindexable Fréchet S-algebra. We inductively (on' j) construct {si}, so
that I; =03 and S; =05 for each j; this will show that the space is
unindexable.

Inductively pick integers {M (i)} and {N(i)} and the sequence s} with the
following properties:

(1) M(@i) < N(@) < N@¥ < M(i+1);

(2) n®3 <si, for all n;

(3) sk =(M()°3, for each i; and

(4) sk =n%3, for N(i)) S n< NGE™ and each i.

Finally, we use the following lemma with s, = s} to-choose si*? = v, to
complete the example.

LEMMA 3.4. Suppose {s,} is the {i(n)}-sequence for a Lorentz sequence
space. Let to=0, t, = 1 and inductively define {t,} by

tw =max({s,/t;; 1 <j<m—13u{(s,)");
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and let
Uy =SUP{Y 1o {(tap+1—tag): O (D) <n(2) < ... <n() < ...}

Then {v,} is the {i(n)}-sequence for a Lorentz sequence space with s, < v,
and Spy < Uy Uy

Furthermore if 5, > n®3 and if for some constant K and integers m and j,
5, < Kn%3 for m< n< m?¥, then v, < 3Kn%3, for mgsngml.

Proof. By hypothesis, if n<m then both s,/m<s,/n and s,—s,
< (m—n)s,/n. By considering both possibilities of t,, = s,,/t; or t, = (s, 2)'/%,
it follows that if n < m, then t,,/m < t,/n and ¢, —t, < 2t,/n. By definition
of {t,} we have s, < t,t,. From the proof of Proposition 3.a.7 ([11], p. 119)
it follows that ¢, < v, < 3t, and that {v,} is the {A1(n)}-sequence of a Lorentz
sequence space. Finally, if m<n<m/, then m<ni<m¥ for i=1,...,n.
Thus 1, < K(m)*3/t; < Kn®® or (1)’ <s.,<K@®)*® and therefore, if
m<n<m, v,<3Kn%3 This completes the lemma and the example.

We turn our attention to S-algebras with index <. Proposition 3.6
provides a strong local condition that such spaces possess. The corresponding
result for S-algebras with index ¢, 1 < g < oo, is false, as the space d(a, 1) in
Example 5 after Theorem 3.2 shows. ’

We need to define a rather strange collection of measure spaces. On the
set {1,2,...,n}, let u, be the probability measure with

* (i) = (log (i+1)~log (i))/log (n+1).
As before, if [|-|| is a L-symmetric norm on [x,], let A(n) =¥} x]|.
Lemma 3.5. If ||| is an S-algebra norm on {x,} with infinite index, then
Jor K >1 and each integer k, the sets
A(n) = {m < n: A(km) = KA(m)}

satisfy lim, p,(4(n)=0.

Proof. Let m(0) =0 and inductively choose m(i+1) to be the first
integer > km(i) with A{km(i+1)} > KA(m(i+1)). If the induction terminates
after a finite number of steps, then we are donme. Otherwise, A(m(i+1))
= A(km(i)) = KA(m(i)) and by induction A(m(i+1))> KA (m(1)).

Since our space is of infinite index, for each p < oo, lim; A (m(i))(m(i))~ 1
= 0. Thus lim; (K?)' (m(i))"* = 0. Since K > 1, we can choose p < o0 to make
K? arbitrarily large and therefore lim,i/log(m(j)) = 0.

Let n be given and choose i so that m(i) < n < m(i+1). All the elements
of A(n) are between m(j) and km(j) for some j < i. Therefore

1 (A (M) < i<y (log (1 + km (7)) log m(j)/log (n+ 1))
< i(log(k+1)/log m(i)).
Since lim;ilog(k+ 1)/logm(i) = 0, we are done.
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ProposiTION 3.6. Suppose {||‘|l;}}., are each infinite-index S-algebra
norms on {x,}; then for each integer k and positive &, there is an infinite subset
of the integers M so that meM, 1 <j< N, implies that if

u{ =(x(i—1)m+1 + + xim)/lj(m)s 1 i< k:

then ({uf}s. |, |I'1l) is (1+e)-equivalent to the usual basis of ck.

Proof. For {a,}%, let [lo,llo = max, < <,loe;] and suppose A (km)
< (1+€) A (m); then

[lallo < HZ:‘: 1% u{llj < ”an”O“Z:;l “{“; < Jlollo (1 +e)-

Thus, to prove the proposition, it suffices to show that for each L there is m
> Lwith m¢JY., 47(n), where A/ (n) is the set in Lemma 3.5 with K = 1+¢
and,||-|| = |I-];. But this is a consequence of Lemma 3.5 for large enough .

4. Non-Montel Fréchet spaces. Here we show that a large class of non-
Montel Fréchet spaces have conditional basic sequences. To understand the
scope of these results, some definitions are needed. A prevariery [3] is a
collection of locally convex spaces, closed with respect to the formation of
subspaces and arbitrary products. If B is a collection of Banach spaces, then
¢v(B) will denote the smallest prevariety containing B. A Fréchet space E is
in gv(B) if and only if E is isomorphic to a subspace of a countable product
of spaces in B ([7], Th. 4.1).

The Fréchet space E is said to have property oo if for each collection of
continuous semi-norms A which define the topology on E, there is ||-||e 4
and a sequence {x,} < E with

() {lIx,l} is bounded above and below; and

(ii) for each p < oo there is {«,}¢[, so that Y «,x, is unconditionally
summable with respect to ||-|[. .

Note that if X,,..., Xy each fail to have- property co, then

"X, @ ... ® Xy fails to have property oo. Thus each Fréchet space in the

collection Q = ov{X: X is a Banach space which fails to have property oo}
does not possess property oo. This collection Q is quite large, in fact it
contains each of the following collections:

(1) Subspaces of /,-K&the sequence spaces, p < 0.
“(2) ov(X), where X is a super-reflexive Banach space, or X is a

~ collection of such spaces (use [10], p. 130 and [15]).

(3) ov(X), where X is the collection of Banach spaces with finite cotype
(see [8] for definition).

Finally, we come to Theorem 4.1, our main result. The proof of the
theorem is partitioned into a collection of propositions and lemmas.

TueoreMm 4.1. Each non-Montel Fréchet space has a conditional basic
sequence or has property-cc.
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ProrosiTioN 4.2. Each non-Montel Fréchet space contains a conditional
basic sequence or a normalized basic sequence spanning a Fréchet S-algebra.

Proof. Let E be a non-Montel Fréchet space. By [12], Th. 3.5, E has a
‘normalized basic sequence {x,}. Let X ={[x,]. If {x,} is conditional we are
done, otherwise X has a sequence of norms {||||,} which define the topology
on X and which satisfy

(@) JIx,iy =1, for each n and k;

(by) {x,} is l-unconditional with respect to ||- Hk, for each k; and

© Il'lle <lllle+; on X, for each k.

This result is well-known for Banach spaces (i.e., see [10], p. 16), a
similar proof works in Fréchet spaces. (To see (a), note that if {x,] is a
normalized unconditional basis in || ]|, then

MR o xall = [ el o™

is an equivalent norm which satisfies (a).)
Next, we use the ideas of [14]. The statement A below is proved for
Banach spaces in the proof of Proposition 3 of [14]. The proof can be
generalized to prove statement A. (The fact that the basic sequence is
normalized is essential.)
A. If {e,} is a normalized basic sequence in a Fréchet space and {y,}
and {z,} are defined by:
Yan-1 = €414 and
Yan = €2,—1 1 €2y, Z2

-

Zan-1 = €ap- 1+ €2y
n =€z

then {y,} and {z,} are basic sequences. Furthermore, if {y,} and {z,} are
unconditional, then {e,,_,}, and {e,,}, are equivalent basic sequences.

Thus, Proposition 3 of [14] implies that X has a conditional basic
sequence or (with possible renorming) (b,) can be strengthened to:

(by) x, is l-symmetric with respect to ||-||, for each k. '

Since for each non-zero o =Y &; x;€ X, {u%} is normalized, we can use the
statement A. Therefore either X has a conditional basic sequence or by the
comments before Proposition 3.3, (b,) can be replaced with:

(bs) {x,} spans a Fréchet S-algebra.

This completes the proof of the proposition.

Lemma 4.3, If {|| s} is an increasing sequence of norms each 1-symmetric
on {x,}, then either some I, >0 or [x,] in the topology generated by {||- I}
has property oo.

Proof. Suppose I, =0 and 4 be any collection of continuous semi-
norms on [x,] which define the topology. Choose ||| € 4 and an integer k so
that there are constants B and C with

(% Il < Byl < Clyllk,  for  yelx,].
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By (%), {x,} is normalized in || ||, «ud if there is a p < o0 so that Y o, X,
unconditionally summable in ||| implies {«,}el,, then Y &,x, uncondi-
tionally summable in ||-{|, also implies {a,}el,. But this implies that the
obvious map: ([x,], [|*ll) = I, is continuous and hence A*(n) > Kn'”?. Thus
Lemma 2.2 implies I, > 0, a contradiction. Therefore [x,] has property oo
ard the proof is complete.

ProrosiTION 4.4. An indexable Fréchet S-algebra has property o or a
conditional basic sequence.

Proof. Let {x,} be the basis of the Fréchet S-algebra and let {ll ~||k} be
an increasing sequence of norms which define the topology and so that {x,} -
has index p(k) in ||-[[,. By Lemma 4.3, for some k, p(k) < co. Since p(k) is
non-increasing, g = lim, p(k) exists and g < cc. By passing to a tail end of
{II"ll.}, we may assume p(1) <tq, where ¢ < 2. Define, for yespan{x,},
support(y) = {m: y =Y a,x, and «, # 0}.

Using Proposmon 2.8, 1nduct1vely define 1ntegers NO=0<N()<...

. <N()<N(k+1) < ... and {y,} =span{x,} so that

(d) {y;: N(k—1) <n< N(k)} is K-basic with respect to I-1l;, for j < k.
(¢) If m > N(k), then y,espan{x,: n > M}, where
M = max | {support(y,): n < N(k)}.
(f) There are scalars
{a,: N(k—1)<n< N(k)} and = {Nk—-1+1, ..., Nk}

so that
”Zﬂkﬁ(kv n+1% yi”k =1 but ||Z.~sm» % Y.'“1 =k

Conditions (d) and (e) imply that {y,: n> N(k ——1)} is K-basic with
respect to ||||,. Since {y,} is independent, {),} is basic in X. Condition (f)
implies that {y,} is conditional (see Section 1). This completes Proposition
44.

Remarks. Two partial results for the case {||-||,} are S-algebra norms
on {x,}, each with index co.

A. If for some k, sup,, A/(m)/2*(m) is bounded for each j, then [x,] has
conditional basic sequences. The construction of the conditional basic sequ-
ence is similar to that of Theorem 4.4. Only Proposition 3.6 is used in place
of Proposition 2.8.

B. If for some x > 1, and some subsequence of integers {m(i)}, and for
each k, there is a j = k with

inf; & (m () 2* ([m ()F) > 0,

then [x,] has conditional basic sequences. Assume [m(i)]*"* = k(i) is an
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integer for convenience sake. The conditional basic sequence is built out of
blocks of the form:

Y= TR, s =12, k()

where p(0) =0 and p(i+1) = p(i)+ k@ m(). A

The inf condition implies that {z,} is basic, where yj =2z, if n=
YiZ1k()+s. The proof that {z,} is conditional uses both that k(i) is a power
of m(i) and ||-[|, is of infinite index.

To complete the proof of Theorem 4.1 we need only drop the condition
that the Fréchet S-algebra is indexable in Proposition 4.4. Since Proposition
2.9 can be used in place of Proposition 2.8 in the proof of Proposition 4.4, it
suffices to show that if {||-||,} are norms which satisfy the last statement of
Proposition 3.3, then each || ||, satisfies the hypothesis of || -||y in Proposition
2.8. Thus the following sequence of lemmas will complete the proof of
‘Theorem 4.1.

LemMma 4.5. If ||-]| is a concave 1-symmetric norm with &(n) and A(n)
defined as before Lemma 2.2 and if 0K B A1 and ¢ =(1—-B)(1—A4)”
then &(n) < B implies £(m) < A for n< m< ng.

Proof. Since A(n) is concave, for m = n, (m, A(m)) must lie on or below
the line through (1,1) and (n, n®). Thus, if n4 > (n® ~1) (n=—1)"1(ne—n)+n®,
the lemma is proved. We will show nt4—n®? > nP~(n—n), which is a
stronger statement since n®~! = (n® —1)(n—1)"". It suffices t0 show ne4*!~#
—n 2 n?—n, which follows from the definition of g.

Suppose now that |[-]|; <||']l; < ... are concave l-symmetric norms
with & (n), A*(n) and I, defined as before Lemma 2.2. Define I, to be lim, I,
which exists since I, < I4,. Suppose further that

(4a) {lx %yl <

for each k and x, ye[x,].
LemMa 4.6, With the above noration, for each § > 0, and integers j, k, N,
there is n > N so that both

Em <<l +6  and

1B PN 17 PP

Emh<I,+8.

Proof. Suppose not, then there are k and N so that n> N and
Em) < I,+6 implies &(n)) > I,+6. By induction on (A) it follows that
&)< &I~ (n). But this implies for n2 N, &*/(n) > I,+6; that is
Iy > I, a contradiction.

Lemma 4.7. With the same notation, for each § >0 with 1 -1~ >0
and integers j, k, N, there is an n 2 N so that &(m) < I+ forn<m<nl,

Proof. Let o =(1-I,—6/2)(1~1,—8)"! > 1. Choose [ large enough
so that lg > I+1 and hence for each i, ({+i)g > I+i+1. Let B = [+8/2. By
Lemma 4.6, we may choose nx= N so that both ¥/~ !(n)< B and
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¢**J=4(n) < B. Again by induction on (A) it follows that (n'*)) < B for
0<i<jl—I Thus by Lemma 4.5 it follows & (m) < I ,+6, for n' < m < n,
which completes the proof of the lemma and Theorem 4.1.

A theorem weaker than Theorem 4.1 can be proved for non-Schwartz
spaces (see [5]).
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