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2° We have sup {a,(g): geZy} = M; the supremum is not attained.
One can easily see that the set {geZ3: [lgll, =1} is dense in ZY in the
L*-norm. Thus

1
sup {a, (9): geZ;} =sup{m: geZ&}=(inf{MllgH§: gezZyh)!

<(M-inf{ligli: geZy))™' =M.
On the other hand, lim a,(f,)= M.
a=+0
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Multipliers along curves
by
YANG-CHUN CHANG (Peking) and P. A. TOMAS (Austin, Tex)

Abstract. The authors analyse boundedness of Fourier multiplier operators which are
constant along curves. Boundedness is shown to depend upon a balance between the curvature
of the level curves and the lack of smoothness of the multiplier function.

Introduction. In this paper we shall give an analysis of the L7
boundedness of Fourier multiplier operators which are constant along curves
in the plane.” The three fundamental examples for our study are the
following:

(A) m(x, y) = @(x*+y%), ¢ smooth and compactly supported. Then m
gives a multiplier operator bounded on all I?, 1<p<oo. If ¢ has a
discontinuity of the first type away from origin, the work of C. Fefferman [1]
shows m gives a multiplier bounded on L” if and only if p= 2.

(B) m(x, ¥) = @ (x*~y?), ¢ smooth and compactly supported. Then m
gives a multiplier operator bounded on all L, 1<p<oo, by the
Hérmander—Mihlin multiplier theorem [4].

(C) m(x, y) = (y—x?). If ¢ has any reasonable growth properties, m
gives a multiplier of L? if and only if p =2, from the work of Kenig and
Tomas [2].

These examples show that the L” boundedness of such multipliers
depends on a balance between the curvature of the level curves, and the
“bumpiness” of the multiplier function. It is these intuitive ideas we shall
make precise. Such questions have already been considered by Ruiz [3].

In Section one of the paper we shall use some techniques of Ruiz [3] to
give a different geometric characterization of the level curves. In Section two
we shall follow Ruiz' [3] proof and show certain restrictions on ¢ can be
removed.

Section ome. We shall analyse the LP(R? boundedness of Fourier
multiplier operators 7, where :

T7(E) = m(@ F(©)

and m is constant along level curves of a function F: R>— R!, that is,
m(&) = @ o F (¢). We shall consider a restricted class of level curves, which we
shall call regular. )
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DerFinrrion. The level curves F () =c are regular if for each ¢ there
is a parametric realization y,: R' — R?, parametrized by arclength s with
s€(a, +o0) (a is finite or — co), satisfying the following: if 6F/dn denotes the

normal derivative of F along ¢,, G =1 and s the curvature of y,,

F
on’
then for s > 0

b+sl/2

() IG(s)<s™Y% [ G(1)di < LG(s)
b

for every b, s <b <b+s'* < 2s,

¢ 2s

2) M, J ﬁ?;’()r) di < f x(0)dt < M, G (s),
[o] s

where I, L, M, M, are constants, 7, is the unit vector normal to F(&)=0at
s and 7(t) the unit vector normal to F(&) =1 at the point P, as shown in
Figure 0. G(z) is valued at P,.

Fig. 0

To clarify these conditions, we translate them into geometric terms. If
. 2s
we draw the level curve F(&)= 0, then 0 = f %(tydt is the angle subtended

by the normals at s and 2s (Figure 1). Ifs we draw the curve F(¢) =¢,
£ G() . .
cl=£ﬂ:dr is the distance between the curves F(&)=c and F(¥) =0,
where the distance is measured at s, along the direction of the normal to
F() =0 at s (Figure 2).
Condition (1) is clearly a technical condition on the regularity of the

behavior of the normal direction, and could in fact be replaced by other
technical conditions.
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The inequalities of condition (2)
M;d <0< M,G(s)

lie at the heart of the matter. A multiplier whose derivatives are well
controlled will satisfy the Marcinkiewicz conditions, and therefore the
negative results we obtain require a certain “bumpiness” in the part of the
multiplier. The thickness of the bump is d, and condition (2) is an upper
bound, which corresponds to a large derivative.

Flgl=c

Fl&)=0
N F(£)=0

Fig. 1 Fig. 2

The other essential condition concerns curvature. As the characteristic
function of a half plane shows, a multiplier may have large derivative if it is
concentrated along straight lines. Even multipliers of the form ¢(y*—x?),
whose large derivatives are only asymptotically concentrated along straight
lines, have L” boundedness. To obtain the negative results we seek, the large
derivatives must be concentrated along curves with a significant amount of
curvature. The curvature is measured by 6, and condition (2) puts a lower
bound on 6.

Condition (2), then, expresses in a precise manner the necessary
relationship between curvature and size of derivative.

To clarify the meaning of these conditions, Table 1 below lists some
standard curves and their relation to the various conditions.

F(x, y) y=logx y-x*@<1) y—x@>)y-1x xy x*—y* x*+y*—1
0<M;G(s) yes yes yes yes  yes yes no
M d<0 no no yes no  no no yes
regularity no no yes no . mno no no

Table 1
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With this concept of /rsgularity we can now state the principal result.

THEOREM 1. Assume Tf(&) = m(&) f (&), where m(€) = oo F (&) and F is
regular. If ¢ € L? " L®(R) for some q > 0, and ¢ is not identically zero, then T
is IP(R?) bounded if and only if p=2.

The proof proceeds similarly to that of Ruiz [3] and makes use of the
Kakeya set construction of C. Fefferman [1]. We require two preliminary
lemmas.

Lemma 1 (Kakeya's set). For positive numbers A, B, C, there exist a set

1 A
E = R?* and a family of pairwise disjoint rectangles {R;}, with size SC1E XZE

B
whose directions are within an angle T such that

M ,
|E| < Toglog C Y IR;l, where M is a constant,

and such that |E nR)| > $IR][, where Rj is the usual rectangle adjacent ro R,
(Figure 3). :

Fig. 3

Lemma 2 [3]. Assume {B;} is a family of parallel pairwise disjoint strips
with width 1, and

T @) = m(&) 13, (O] (@),
‘ I TN, < CLllf N, for every SeL?, p=2, then for any {fj}eL"(lz),
TR, < CL I 14242,
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Proof of Theorem 1. We may assume ¢ > 0 and gL' ~ L. Choose
¢ so that

¢ o

0 0
L+1/4
[>T [ [ |
0 0

T Lty2

-c ~ o
For any fixed s let 4, B and C (in Lemma 1) be M,, 6 and s. Now let us
set the strips {B;} with the same direction as the normal at s, as shown in
Figure 4, such that the normal direction at x;, #i;, is the direction of suitably
rotated Kakeya’s rectangle R; (in Lemma 1), and the width of B; is s'/2.

Fig. 4

I TA1, < Cpll f1l,» and

2s .
TS =Y, [s, O+ 10, 0 [F 17 (2,

then || T, f|l, < C, I fll,- Therefore, by Lemma 2,
I T2 < CllE LA
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where T (&) = 15,(9) T (&) = 15,(8) 9 [F (611 (&), C, independent of s.

We shall prove that C, cannot be bounded as s—o0, if p>2 Set

£ =z, ()€™, then
T30 = {{0(F(O) 18,01 2, (€™} ()
—m“cp( (8)) € de] yr, (x— ) eV dy
=] 40(F(£) )€™ i e T yp (x—y) dy dé
BJ ¥
=[] e(F)e T dyde.
B x— R<
Hence
ITH () = H [ @(F@)cosllx=0- yldyde.
The curve separates the stnp B; into two parts B and B; (Figure 5).

Fl£)=0

/

.

/

Fig. 5
Since | = [+ [, it is enough to estimate one of these two integrals.
Bj BJ.* B
[ 1 o(F@)eos(—2-y)dyat
B ==&

=(J )¢(F(f)) I COS((xré)-y)dydé,
Bj +x€
where B? is the subset of the strip B between the curve F(&) =
(é)-—c, and B¢ = Bj \B? (Figure 6).
Flg)=c

0 and

Fl&)=0

Fig. 6
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We claim, for every xeR; and yex—R,,

=12 if ¢eBd,
s ((xj—i)‘y) { < 1/ otherwise]'

This is because, when £e B}, (x;—¢)-y = [x;—¢&| |yl cos(n/2—a— ), where o
is the angle between the vector y and the direction of R;, f is the angle
between the vector x;—¢ and the direction perpendicular to R; (Figure 7).
Then

—&y = [xJ——fl [¥l[sin « cos f+cos o sin Bl
< |Ixy =& cos Byl sin a]+|jx;—
<

A -(width of Rj +d-(2 length of R;)

¢l sin B |1y cos o

stz
1/2 +d

26

R
Fig, 7

By condition (2) of the regularity of the curve F(¢) =
Hence cos ((x;—¢) y) >4 as £eBY. Therefore,

[ @(F@) [ cos (-8 y)dyds
Bf x—R;
=({+1])
n° B

N
B x
Rj|

0, g8y <1

| @(F(©)cos (x;~&) y)dyd¢

x—Rj

(FQ)dydé~ | | o(F()dyds

i}
)
R Bj xR’
¢ - [)eF@)d
B° K
Let ¢ be the rotation of angle v, where v is the angle between the &, axis
and the normal to F(£) =0 at point s. Let & = o&, @ [F(&)] = @ [F (0].
Changing variables F(¢&') = u, £, = v, the Jacobian is
bu,v) _OF _GF oF oF
0S8 V+——sinv = "

B ey oE ek e (7).
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Since . ) So,
. OF\* [0F\? ||oF c @
ds = — | +l=) |l |dv ) M l
[ (ac;) aé;) /56’1 ] J >3 609 [5 j—LJ] o) du
+ 0 ¢
= E.Ii/'ai lﬁﬁ" dv:du/lﬁ'ﬁs]a Bj c o
onf on M |
. _ My i _
we obtain =30 G(s)[<2+L>J LJ] @ (u)du.
[ ¢
%le| J(p[F(f)] dé =(IRj/2) J‘(p(u)_a_F_l___'. dvdu We have chosen ¢ so that
BY B) on - -(P>L+l/4 0
e by+all2 L+1/2 '
1 0 )
= (|Rj|/ 2) f(l’(u) J a—F/é;l dtdu Therefore
(1] b] ©
bj+st/2 B J > M, G(s)—l j 0.
M, 80 4
= 166572 G@t)dt | p(u)du. Bj+ o
by 0 Then from condition (2) of regularity,
" By condition (1) of regularity of curve F(£)=c we have M, 1
= Q.
32M,
Ml 5 °
[Rjl/2 f¢[F &)1d¢ > —1319‘ G(s) J(p(u)du. By the same estimate,
) 0 > M1 0
Similarly Z oM, @
n" - D
© by+si/2 So J
IR} jw[F(f)]dé <R J o) J G(t)dt du M, 1
7 ; 2o el
B ¢ b 32M,
b}-Hrl/z Bj
M, J J . s . 1 hat if TA {22
= G(t)dt wdu (b diti Using Fefferman’s method ([1]), it follows that I IEITA42 2,
86s'/* ® ?) (by condition (1) <G |14, Cp independent of 5, then 1< Cyfloglogs) ~%P.
g ‘ This contradicts the boundedness of T on L7, p > 2 (the case p > 2 yields
M,L r that of p <2 by duality), and then completes the proof of Theorem 1 (the
<735 60 f ¢ (u)du. case p =2 is trivial). '

€ ‘ Section. two. In this section we prove a result of Ruiz on multipliers of
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the form m(&y, &) = @(£,—7(&,)). We shall use the same class of curves r as
Ruiz [3], but remove Ruiz restriction on o.

DEFINITION. A curve y = r(x) is regular in the sense of Ruiz [3], if

(a) The function » is C*, r'(x) — o as x = o0, and r"(x) > 0 for x large
enough;

(b) If k >ko and x; > x,, x;€[2%, 2¥71], i=1, 2, then

%(x,)
(%)

r(x‘)<L 1<

; , <M,
r'(x2)

1<
%(x) is the curvature of curve y = r(x);
(c) The length of r in [2%, 2¥¥1] is greater than [%(29]™'/? for k > k,.
TueoreM 2. Let Tf(¢) =m(&)f (&), where m(Sy, &) = 0(E,~r(&)).
Assume r is regular in the sense of Ruiz, and that ¢ is in L' L™ for some
g>0. If ¢ is not identically zero, then T is bounded on LF(R?) if and only
fp=2
We need a slightly different Kakeya set than that used for Theorem 1.
Lemma 3 (Kakeya’s set). For positive numbers v\, x,, {, there exist
a set E and a family of pairwise disjoint rectangles {R;} with dimensions
(7 %)"2

T xry/8(, whose directions are within an angle 8(k*, such that

M log 1

B <= :fg LS R| (M constant),
1

and [EN R} 2 %5|R|, where R, is the usual rectangle adjacent to R;.
Proof of Theorem 2. Without loss of generality, we can suppose
@eLl'nL*(R) and p > 2. We shall follow the proof of Ruiz [3]. Take a

positive integer k such that { cos o < 1, where a > m/4 is the inclination of
tangent at 2% { is a number so that

[ © 0 0
>2 and > °
% 10 @ ] 10 .
0 0 -t -0

We choose a, b satisfying 2 =a < b < 2¢*! and the length of the arc of
curve &, =r(¢)) fro/rr\x (a, r(a) to (b, r(b)) is #}/? (3, = x(a)). Let I = [a, b] x
x[r(a), r(b)] and S =my, f. X | TS, < C,l|/ll,» then ||SF(l, < A|If1],.

We arrange the strips {B;}, in Lemma 2, with width A = 1/(r) »,)"/2
(i =7'(a)) and directions the same as that of the normal to the curve
at (a+b)/2, centered at the points on the curve at which the normal

directions coincide with those of the suitably rotated Kakeya rectangles R,
(in Lemma 3) (Figure 8).
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»(b)
N
N
> N
s
N
5 N
X
~N
N
N
N
N
N
a=2k b
Fig. 8

We take f;(x) = xx.(%) e, f’l?= xng'?. Then, by Lemma 2,
I T4 < C I LAYl

But we claim that C,, cannot be bounded as k — 0 if p > 2. It is sufficient to
show that |Tjf;(x)| > const(r, p) for every xeR;. We have

T (0 = |{{ (2~ (£0) 8, (O 1 (O] * 22, (8) €™} ()]

=|Je®o(,~r@) | £77dedy| (B;=Bin])
Ej x—R;

2 | @(é—r@y)) [ cos ((x;—&)-y)dydé.
§j x=R;

The curve &, —r(£y) =0 separates the strip B, into two parts B’ and
B;" (Figure 9). It is enough to show

[ [ e(E—r(&))cos (x—&y)dydt
Bj* x—R;
=([+ ) | e(&—r(&))cos(x—2)y)dyde
Bj’ B x-R;
> const,
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&p-rlén)=0 sides [, and I, of strips B; will be
(*) u+r(®)~no—b; = 0.
" ~ n is the slope of I, I, b, the &, intercept of [, i=1, 2. Seeing b; as
’ & a parameter, (*) as an implicit function of variable u, we obtain a function
v=1v(u, b), and
/ [4 v(u,bg)
. 1 1
Fig. 9 1 Jtp(fz—r(ifl))dé=z pr(u) f dvdu
. 5? 0 o(u,b1)
where BY is a subset of the strip B; between curves &;—r(¢;) =0 and 1 p
&—r(¢y) =, Bj=B;"\B} (Figure 10). =3 j (W) [v(u, b)—v(u, by)] du
0
E-rlE)=t é,-rlé))=0 C

1 0ah er(u)du, a<vo<h
47 (v0)—1

: 0
8f / 8 / » ~and
L. -] v(u,ba)
/ / J oW J dvdu
T .

J¢(fz—r(f1))d§ <

5 v(mb;ll)
ne - j () [o(u, by)—(u, by)d
As in Section one, when xeﬁj, yex—R,, ‘ 4 .
' 2% if Bf, by—b ,
cos ((xj—f)'y){ <;' Ltheréweisej. : =r’(izb)—l*1 J‘ o()du, a<vo<h.
Hence : ' ¢
So
(J+1) [ olGa—r&)cos ((x—&)y)dyde
B) B =g J f @(Ez—T(£)) cos ((xy—&)-y)dyd¢
28] 1 eG-r@)dvde= [ [ pta-rE)dyde, o =,
B} x-R; Bj x=R; 1 D
‘ L — de¢
=IR1|(21: "‘ _ “‘P(f;“r(fl))dfz ?'Rﬂ (4 J <P(fz r(él)) ,
W o5 2o

Changing variables L)' bp—by (1 f [ 0
{éz—r(fl) =u, Jacobian =1, ‘ ; ZTRLL Leh-n \4 ’
§y=v ‘ ' ;
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4 0
g ()2 /2 5 o— | o 1o
78y \4 ’
0 0

NG

>
647

o

0

For the same reason
j f ‘P(fz—"(fﬂ) cos ((xj"f:)'J’)dydf =
Bj_ x-—RJ

Therefore

2
|09 >g;£—;§ lols-

N
‘Qﬁff(p'

- w

Then T is L? — L? bounded operator if and only if p=2
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Invertibility of some second order
differential operators

by

YANG-CHUN CHANG (Peking) and. P. A. TOMAS (Austin, Tex.)

Abstract. The authors examine L invertibility of second order linear partial differential
operators with constant coefficients. Invertibility of such operators is shown to depend upon the
geometric structure of the level surfaces associated to the symbol of the operator.

The purpose of this paper is to examine the invertibility of second order
linear partial differential operators with constant coefficients. In general
dimension we shall treat operators with level hyper-surfaces; in two
dimensions we shall give a complete classification. Following the remarks of
Kenig~Tomas [2], we shall see that the invertibility of such operators
depends upon the geometric structure of the level surfaces. The main tools in
our approach are the Kakeya counterexample of C. Fefferman, the classical
multiplier theorems of Marcinkiewicz and Hormander, and a multiplier
theorem of Littman, McCarthy and Riviére.

Let d(x), x =(x,, ..., X,)€ R", denote a second order polynomial on C.
d(x) can be expressed as

d(x) = P(x)+iQ(x),
P() = XTAX +a X +1,
Q(x) = X"BX+B X +s,

where A4, B are real symmetric matrices, a, § are real vectors, t and s are real
constants.

d(x)

hyper-surface. Then E%——i is a Fourier multiplier of I*, 1 <p < oo, except in
X

THEOREM 1, Assume d(x), eL®(R", has (n—1)-dimensional level

the following two cases:

(1) o is not an eigenvector of A.

(2) The rank of A is at least three and the restriction of XTAX to the
eigenspace is not positive definite.
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