Les Bg-algébres & idéaux premiers

des idéaux premiers de A est totalement ordonné par inclusion, alors A est une
algébre de Fréchet.

Démonstration. 4 est évidemment un anneau local. D’aprés le lemme
précédent l'application x — x~! est continue sur G. Le fait que A est une
algébre de Fréchet résulte alors du théoréme 2.

Rappelons qu’in anneau commutatif unitaire et intégre A est appelé un

anneau de valuation si ensemble des idéaux de A est totalement ordonné
par inclusion.

CoroLLAIRE. Toute By-algébre qui est un anneau de valuation est une
algébre de Fréchet.

On a montré dans [1] que toute algébre de Fréchet de dimension infinie
qui est un anneau de valuation est une algébre de séries formelles, c’est-a-dire
qu’il existe un homomorphisme injectif de 4 dans C [[Xx1], continu pour la
topologie naturelle d’algébre de Fréchet de C [[XT] et dont Image contient
les polynémes. On voit donc que toute By-algébre de dimension infinie qui
est un anneau de valuation est une algébre de Fréchet de séries formelles. 11
résulte également du corollaire 1 et d’un résultat de [1] que si une telle By-
algébre A ne posséde aucune norme continue,.d est isomorphe i Ccl[x1].
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Operators of Bochner-Riesz type for the helix
by

ELENA PRESTINI (Milano)

Abstract. We consider in R® a family of muttipliers m,() depending upon a parameter
5 > 0. Their singularities lie_along a cylmdrlcal helix. The boundedness on L,(R% of the
operators T; f (X) defined by f,?(é (&) (&) is studied after establishing a sharp estimate on
the corresponding maximal function. The operators T; are the analogue for the helix in R® of
the Bochner-Riesz spherical summation operators for the circle in R%:

Introduction. Bochner—Riesz spherical summation operators U; are de-
fined in R"(n > 2) by the formula U, f18) = n5(8) &), 6 > 0, where my(&) = (1
~[181%? if |18l <1 and n;(8) = O otherwise. They have been studied exten-
sively (see [17, [31, [51 [71, [8], [10], {17]). In R? the results on the
boundedness of these operators acting on L, functions are sharp (they actually
hold not only for the unit circle but for more general curves with the
function n; replaced by any function with compact support which is smooth
except near the curve where it is the distance to the curve raised to the
power §; see [11], [15]). The studies on the subject have shown that these
operators are. tight up with restriction theorems of the Fourier transform to
the unit sphere of R" In [13] a restriction theorem to smooth curves in R3
with nonvanishing curvature and torsion is proved, so it is natural to look
for the related multipliers We are gbing to define them in Rj for the helix I
of equation y(r) = (cos 1/\/5 sin r/\/2 r/\/_ —1/10 < r < 1/10. (The helix
being the only curve with constant curvature and torsion might' be thought
as the analogue in R® of the unit circle in R%) This choice makes the
geometry slightly easier, at the same time it captures the nature of the
problem which has to do with the local behavxor of the curve.

Let (&, &, &) be the coordinates of ¢ E=(&, &, &3)eR?, with respect to

- the Frenet frame of I' at y(t). Denote by N, the normal plane at y(t). If isa

point lying in the angle determined by the planes N, for ¢ = 11/10, which
contains I', and moreover € is close enough to T, say dist (¢, I') < 1/100
(denote by U (I) this set) then there exists one and only one normal plane
N, through & (¢() is the solution of the equation —¢&, sint+¢,cost+¢; =0,
unique under our assumptions). Now we define the‘following multipliers

= (O +EIN G @, 8>0
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where G (&) is a C¥ function identically one on the ball centered at (1, 0, 0)
of radius 1/200 and zero outside the double of it.- We study the boundedness
of the operators T; f(X), X =(x, y, z), defined by

\

) T7@ =m (D7 (®.

Associated to T;, for N > 1 and d > 0, we consider the maximal function M%
defined on locally integrable functions by the formula

3 M f(® = Sup [RI™* [| /(D] dy

i’eReB‘}{l R

where BY is the set of boxes R centered at the origin of dimensions

(dN, dN?, dN®) along the tangent, mormal and binormal directions at

y(2\/§nj/1y), j=1,..., N. In Section 1 we prove the following theorems:

TueoreM 1. Suppose 1 < p < 2. Then if MY f(X) is defined as in (3) we
have that for any d >0 and N > 1

(a) there exist positive constants C(p) and a(p) independent of N, d and f
such that

M4 fll, < C(p) NE~ 2P (1g N)*P|| f1]
(b) there exists a constant c(p) independent of N and d such that

”M'l{l”(p.p) = c(p) NE~Pip,

THEOREM 2. The operator T; defined in (2) is a bounded operator from
L,(R? to itself in each one of the following cases:

(A) 1<p<6/5Sand §>5/3p—4/3;

(B) 6/5<p<4/3 and 6> 2/3p—1/2;

(C)y43<p<2and 6§ >0. ‘

The range 2 < p < oo is covered by duality.

In Section 2 we study the behavior at infinity of the kernel K; of the
convolution operator T; and we show that K, is integrable for & > 1/3. Then
we prove that if u denotes the uniform measure on the curve (i, 12, %),
0<r<1/10, then i belongs to L,(R%) if and only if p> 7.

We wish to thank A. Cordoba, C. Fefferman and P. Sj6lin for valuable
conversations.

Sgction 1.. In what follows by C we denote a constant not necessarily the
same in all instances. Before proving Theorem 1 let us recall that the
spherical indicatrix of the tangents and binormals of the helix y(1),

0 t< Zﬁn, is the parallel z = 1/\/-?: in the (x, y, z)-coordinates and the
spherical indicatrix of the normals is the equator z = 0.
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Proof of Theorem 1. Let us consider for d > 0 and N > 1 the following
maximal function: .

d
MY £ (%) =Sup(2d)™! | |f R+l dt
d,j ~d

where &; is the point of the unit sphere of coordinates (1/\/§cos 27wj/N,
1//2sin2mj/N, 1//2), j=1,...,N. In [6] it has been shown that
I 1l < C(g Ny |l ||, where C and o are constants independent of N,d
and f. This implies ||M% f|l, < C(1g NY**||f]l;. Moreover since the number of
boxes' R belonging to B% is N, we have trivially that ||[M} fll, < NI fl;.
Then (a) follows by interpolation. Statement (b) is proved for d=1 by
applying M}, to the characteristic function y of the ball of radius N 2 centered
at the origin. It is easy to check that My (%) > (100N)™* on the set

{(r, 0, 0): N32<r< N3, |p—m/4| <(2N)", 0<0< 2n}

where (r, @, 6) are the usual spherical coordinates of R3, This implies (b) in
the case d = 1. By a suitable dilation the counterexample can-be made to
work for any d > 0.

We shall now consider the multiplier problem. We are going to break
up m;(£) by means of a smooth partition of unity. There exists a C§ function
in R? t(u, v) supported on {(u, v): 1/4 < |ul, |v| < 2} such that if we denote
7, (u, v) = T(2%3u, 2*v) then

Y u(w,v)=1 on
k20

Now we consider a smooth partition of unity on I'. Precisely there exists a
C= function ¥ (1) = @ (y(t)) defined for —1/5 <t <1/5 with bounds indepen-
dent of k such that if we denote

V() = o (@3 @—i/2%),  k>90, j=[-2%/5],...,[2/5]
then Y ¥ (1) = 1for —1/10 <t < 1/10 and for every k > 90 ([ -] is the greatest

{(u, v): 1ul, o] < 1O, 0)}.

integelr function). Now as we already pointed out for every & in U(I') there
exists a unique value r = t(@ such that the normal plane N, goes through
Z and the correspondence ¢ — t(£) is C*. Hence the function

‘ﬁkj(g) =T (6'2(5, 5'3(3)) '//k,(t(g))

is well defined in U(I') and C®. Moreover if we denote ¥, (&) =¥ (&) we
7
have Y ¢, (& =1 on support(G)'I'. Let us denote
k

@ TIO=m@uOIO. TT@=m@¥O5 0
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Obviously,

() Lf= Y Tif+Tf
k>90

j
where T f is defined by (5). Clearly T¢ is a bounded operator on L, p
21,6 >0. To handle T we need to know the behavior at infinity of the
corresponding kernel. Obviously
lins Vg (%, 7, 2| < C27 2+
on
Ry ={% 7, DeR% |7 <2, |5 <227, |21 < 24

where (X, 7, Z) are coordinates with respect to the Frenet frame at P,
= y(j27*3) translated at the origin of ‘the (x, y, z) coordinates. Outside Ry
‘an integration by parts shows that for any integer M, M', M" > 0 there
exists a constant Cyy . e Such that

O [MPig(%, 7, 21 < Caungraer 272 Q)M (2293 5) (23"

Therefore the operator T is dominated by the convolution operator whose
kernel is given by

) c2 vy 2““|RL',-I“xR;:j(x, ¥, 2)

hz0
where R, denotes the box obtained from Ry; by a dilation of 2", namely
Rly={(%, 5, D) €R® |5 <23, [5] < 2+ 243, |5 < 2h+h).

For every k> 90 we are going to estimate the norm of T as an operator
from. Lg to itself. We shall prove the following

Lemma 1. If TP is the operator defined in (4) then for every k > 90 there
exists a constant v-such that

® TEflle < C27HO 0 kv £l

Proof. Let us write T; instead of 7,?. By Plancherel theorem we have

(I%f (N0 d% = [ Ty f (B0 = | | T RS D%, /DT S (a5

1,/2yl3

=11 T Ty SO T T @+ Ty, T B dE

didans
<c % [T T @5 Toy T O Ty T (B2 dE
122073

with C a constant independent of k. The last inequality follows from the fact
that every point in R® belongs to at most a hundred of the following sets:
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NN TS TN
support(T;, f* Ty, f* Ty, f).= support ;) +support (Y;,) + support (),
Jisdasjs =[—=2¥3/5], ..., [2¥3/5] (this is the connection with the restriction
theorem [13]). Now we proceed as follows:
NLf@Sdi<C Y [Ty, F Ty, DTy, f () dX
J1sd2ed3

= CI(EIBof Y d = C 3T £ (I3

<( Sup [YI%;f (gD
J

llgll32=1 .

We split the sum over j into the sum over j odd and j even. The two terms
can be treated in the same way. So let j be even. We can find a configuration
of congruent disjoint squares Q,; in the plane z = y (notice that it is parallel
to y(0)) lined up in the direction of the vector (0, 1, 1) and equally spaced
such that if E,; denotes the strip orthogonal to the plane z =y whose
projection on it is Q,; then

XEyj (‘é) Vi (é) =y (&) i j=7,

XEyy (&Y€) =0 it j#j.

We denote by S,; the operator defined on Cg functions by S/,u?(f)
=X£k,-(a f(®. Evidently S,;T,; = T,;. Now observe that it is enough to
deal with the convolution operator whose kernel is Z2”‘"|Rk‘i[“’x,¢kj(5c’)

J
instead of 71, g (%) because of the exponential decay 2" in (7). If we do so
and g >0, by Lemma 1 of [9] we have

[XIT, f (RN (D) dx =3 IS Ty £ (¥)]* 9 (X) d%
j 7

< CZ.”TWRUI_IXxkj*skjf(fﬂzg(@ ds
=

< C272||(% 1S,y f (91742211 M w3 ¢ (Rl -
i
Therefore by Theorem 1 and the following Lemma 2 we obtain

@ [Inf(®dE < CIIZlEjflzllﬁ

< CZ"GH“(ZISHHI)WHE Sup ”M;k/:s g3
J Ug||3>12= 1
PED)
< c2- 6k(é— 1/18) k3¢(3/2) Hfll?,

This proves (8) once we have the following lemma.
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LemmMa 2. Let the operators S,; be defined as above. Then for p=2 the
following. inequality holds:

S 184 /12725 < Coll f -

J

Proof. The proof follows the same lines as the proof of Theorem 18 of
[5] to which we refer the reader.
The following lemma is due to A. Cordoba.

LemMa 3. For every k > 90 there exists a positive constant ¢ such that
(109 1T flla < C274 k8|l
Proof. In (9) we proved that | flls < C (X175 /1%)*?|l. On the other
hand, it is obvious that !
1T Fll2 < C[(SIT AP
Hence by interpolation '

1T flle < CIE 1TSS < C272 (1S A7) { Sup 1M 6ll2}-
j J “Hg“;zo

Now Lemma 3 follows by applying Theorem 1 and Lemma 2.

We shall give now the

Proof of Theorem 2. (A), (B), (C) follow respectively by interpolation
between the trivial estimate || T2 f]|; < C27 ¥4~ 13| f|, and the dual estimate
of (8), between the dual estimate of (8) and the dual estimate of (10), between
the dual estimate of (10), and the trivial estimaté in L, and by adding a
geometric series.

Because of Theorem 1 we expect Theorem 2 to be sharp in the range

6/5 < p<6. If so, in the (1/p, d)-plane, the shape of the region in which -

Theorem 2 holds is strikingly different from the analogous one for Bochner~
Riesz operators.

Section 2. We are going to study the behavior at infinity of K,(X), the
kernel of the convolution operator T;. As a consequence we will have that
K‘,(Sc’).is integrable for 8 > 1/3. To the preceding notations we add the
following ones. Let D = {J Ryj, Dy = U Ry pj\U Rysn-1,(h = 1) and let A4,

. _ Jj . j J
= {FeR%: 2¢"1 <|)%]| < 2¢}. Write K (%) = K,;(%). Then we have the fol-
lowing

ProposiTiON 1. There exists an integer ko such that for k > k, and any
integer h = 1 the following estimate is true:

C27ke+2) if XeDynA4,,
C2k+W@+D Ok i KeDyndy.

(n IK(Z) < {
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Therefore K (%) belongs to Ly(R3) for &> 1/3.
Proof. Asin (4) we split K(¥) = ), Ky;(X)+K,o(%). If ko is big enough
k>90

J
then in Ag, k > ko, we have |[Ko ()] <[}, Ki;(%)]. Let us estimate the size of
&

J
Y K;; (%) in Az To do so, let us recall that for XeR, we have
o

]
|K,; (%) < C274*2 and that outside Ry; estimate (6) holds. Now since the
R;;’s are essentially disjoint in Ag, we have that the main contribution to the
size of K (%) in Dy A is due to ) Kp;(%). By this we mean that

' 7

|Y Ky < C[LKy(®)|, TeDpndg
k#k j
I

Hence the first part of (11) is proved. Similarly in Dg, n Ar the main
contribution is due to Y Kgy,;(X). This time, though the Rg,,;’s are not

disjoint in Ag, the estime{te has to be modified by a factor of 2" which takes
into account the overlapping. Therefore (11) is proved. Now it is not difficult
to see that ||[K (9|, up < C2~ R+ 22783 which implies that K () is integrable
for 6 > 1/3.

Next we are going to study the behavior at infinity of the Fourier
transform of the uniform. measure on the curve (f,1%, 3), 0 <t < 1/10. We
shall need Van der Corput's Lemma which sounds as follows (see [12],
p. 220);

(a) Ler ¢ be real valued on [a, b] and assume that it has a monotone
derivative ¢ (t)> o > 0 on [a, b]. Then |[}e*® di| < 2/g;

(b) Instead of assuming ¢’ > g on [a, b], assume that ¢ is twice differenti-
able and that ¢"(t) >k >0 on [a, b]. Then |[5e°® dt| < 6/k'/>.

Now let us prove the following

Lemma 4. Let $(x, y)= | },/1°e“"'+y‘3’dt. Then using polar coordinates
(v, 9), if r > 10'° the following estimate holds:
(12)
Cri3 if 10—m/2 < (3r¥3)7 ! or |9 —37/2| < (3r33)7 1,
s o1 </ i 18~m/2] < (3r%)7 1 o [0=3n/2] < (3r2)

Cr=Y2|cos |~ ¥* otherwise.

Proof. We are going to prove the lemma for 0< 6 < n. In a similar
way one can take care of the range m < 0 < 2n. Write

Yo ey = [§071 N g [yt dt = 1yt
Write ¢ (1) = xt+yt* = r(t cos 0+1>sin ) and observe that ¢'(t) is an increas-
ing function of t for every 0 fixed. First we study I,. f 0< 0 < /2 —m/10*
then ¢'(2) >7r/10%; hence by (a) |I,| < 20°%/r in this range of 6. If
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n/2+7/10* < 0 < m then ¢'(t) < —r/205; hence by (a) |I,| <40°/r in this
range of 0. If mstead |0—n/2| < r~%* then obviously |I;| < (3r'*)~ . Finally
if 2 L)0-n/2 < 2" 23 with 0 n<1g(r®*?n/10)  then
@' (1) > 1071 2" for 0 < m/2 and ¢'(t) < —10712"¢' for 0 > n/2. In any
case |I,] <20 27"y~ %3 in the range of @ under consideration.

Now we are going to study I,. In the region [n/2—0] < r™ >3, I, satisfies
the same estimate as I;. To show this, it is convenient to break up I, in the
following way:

13
(13‘1’1/3 2,0 dr 4 [1“0 ya €00 dt =T 41,.

Evidently |I5| < 10r~"3. Moreover |1,/ < 10r™%® since ¢'(t) > r¥*. This
takes care of the range of 0 we were studying. In the range 0 < 0 < n/4,
3n/4 < 6 < m, respectively, ¢ (r)>r\/—/2 and ¢'(1) < —r/100. In any case
11,] < 200/r. To study I, in the region /4 <0 < n/2—r 23 it is convenient
to further subdivide it as we did before into m/2—2"*1p"2% <@ < n/2
~2r"M for n=0,...,[lgr** n/109]. Here ¢'()> 2"r'3. Hence
[Io] £ 27" 1 r~ 13 Tt remains to study I, in the region n/2+r%? < 0 < 3n/4.
Observe that ¢'(f) =0 for t=1ty=(—cos0/3sin0)"% If t, belongs to
[(3r/3)7%, 1/10], then we split 1, in the following way

9914/100 101tg/101
I, = f‘3,1/3 —1 e dr 4 J99:o/1oo &0 dt + [ (41;0/100‘9"””(” =Is+Is+1,

(the case 1, < (3r"/%)7! is easier to handle and it can be treated similarly). We
start with I,. Observe that ¢”(t) = 6rtsin > 100" (—cos 0)1/2r. By (b) we
have |Io| < 600r =42 |cos 0]~ ”‘*. For Is observe that ¢'(f) <10~ *rcosd.
Hence |I5| < 20*r~'|cos@ ™. For I, observe that ¢'(f)> —10~*rcosf
which implies that I, satisfies the same estimate as I. Hence (12) has been
proved.

Let us denote fi(x, y, 2) = [ ¥10 &+ =) gt that is, ji is the Fourier
transform of the uniform measure on the curve (1, 12, 1), 0 <t < 1/10. We
are going to prove the following

ProrosiTion 2. fi belongs to L,(R?) for p>1T.

Proof. By the change of variables t =u—y/3z, i can be written as
follows:

A(x, y, z) = o 110+ E=y23nutzed) g,
where ¢ is a number with module one: (Notice that u(x ¥, 0) is the Fourier

transform of the uniform measure on the curve (1, 1?), 0 <t < 1/10 and it is

well known—see eg. [11] — that |(rcos 0, rsin0)| < Cr~2) Hence we are
led to study the following integral:

i 23
I(u’ Z) — j:+llloen(wu+.u )dll, aeR.

Ifa>10"*or g < —10"*—107! then I (w, z) is the Fourier transform of the
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uniform measure on (f, +*), a<t < a+1/10. Such a curve has curvature
bounded away from zero; hence |I{rcosf, rsin8)| < Cr~/* (see e.g. [11]). If
—~1071—10"* < a < 10™* then (12) holds as the preceding lemma or a slight
modification of it shows. Let us observe that Lemma 4 says that the decrease
at infinity of fi becomes worse as we approach the cone 3xz—y* =0.
Observe that the binormals of (¢, ¢, t3), 0 <t < 1/10 have the directions of
the vectors (612, —6t, 2) and that if we set x, = 6%, yo = —6t, z, =2 then

—yo/3zo = 0. Now we are going to estimate the L,-norm of f restricted to
the set {XeR3: 271 < ||F]| < 2", n= 2! If ¢, is any direction of the cone

3xz—-y? = 0 then on the set
Uilr, @, 0): 271 <7 <27, |o—gol <2771,
?0

we have |y < C27"3. On the sets

Udlr, @, 0): 271 <r< 2, 27203 S g — gl <2172

®0

we know that |fi] < C27"2(2#B 2~ for i =0, ..., [lg(22"/3‘1r/10“)]. Hence

27 2 1< sy < om < €277,

Therefore fi

Remark. P. Sjolin recently informed us that in [16] he proved a
stronger estimate than (12) using different methods. In the range n/2—-6 <0
< m/2—r~23 3n/2—5 < O < 3n/2—r~** (for some > 0) his estimate reads

[9(r, 0)] = coW(cos'’?B)/ri/?(cos 6)*/* + O((rcos 6)™ ")

where ¢, is a fixed constant, ¥ (t) is C§(~4&, 6) and bounded away from zero
—38/2, 8/2). This implies that 7 does not belong to L, for p<7.
Lemma 4 and the preceding Remark allow us to conjecture, by analogy
with the R? case, that the sharp restriction theorem for smooth curves in R3,
with never vanishing curvature and torsion, involves an (Lyje-;, Lyje) €8~
timate, ¢ > 0 a small numbert.

belongs to L, for p>7 and the proposition is proved.
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Banach S-algebras and conditional basic
sequences in non-Montel Fréchet spaces
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STEVEN F. BELLENOT®* (Tallahassee, Fla)

. Abstract. A non-associative multiplication is defined on Banach spaces with symmetric
basis. This multiplication is continuous exactly when each basic sequence generated by one
vector is equivalent to the original basis. Upper and lower I-estimates are proved for such
algebra norms. As an application, these results are combined. with the techniques of Figiel,
Lindenstrauss and Milman to produce conditional basic sequences in a large class of non-
Montel Fréchet spaces. This class includes subspaces of [,-K&the sequence spaces and subspaces
of products of superreflective spaces. This partially answers a question of Pelczynski,

Altshuler, in [1], studied the class of Banach spaces X with a symmetric
basis {x,} which have the further property that each basic sequence gen-
erated by one vector is equivalent to {x,}. We show (Proposition 3.1) that
such spaces X are exactly those which can be re-normed into a Banach §-
algebra; that is, there is a (non-associative) multiplication which singles out
this class of Banach spaces with a symmetric basis. The algebra norm of a
Banach S-algebra must satisfy some [-estimates (Theorem 3.2). In fact, for
each such X there is a.p with 1 < p < o0, so that for each g > p there is a
constant C, so that

Co( ) > [t > (£ "

for any scalar sequence {a,}. (The lower estimate is essentially in Altshuler
(11 '

Thus a Banach S-algebra can replace some J, and still preserve the
ordering (as sets of sequence spaces) of the l-spaces. In Section 2, such
spaces are defined to have index q. The techniques of Figiel, Lindenstrauss
and Milman [8] applied to spaces of index ¢ < oo, yield “nearly” the same
Dvoretzky-type results as obtained for /, in Example 3.1 of [8] (Propo-
sition 2.7).

In Section 4, these results are combined to affirmatively answer the
following question of Pelezyfiski [13] for “most™ non-Montel spaces:
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