iom®

STUDIA MATHEMATICA, T. LXXIX. (1984)

Finite-dimensional Banach spaces with
symmetry constant of order \/r—z
by
P. MANKIEWICZ (Warszawa)

Abstract. 1L i3 proved that there exists an absolute comstant ¢ > 0 such that for every
positive integer n there is an s-dimensional Banach space X, with symmetry constant

s(Xp 2= cey/n.

We shall only consider finite-dimensional Banach spaces over the real
field. The complex case can be treated after obvious modifications in exactly
the same way.

Given a finite-dimensional Banach space X, let %(X) denote the set of
all compact groups of linear isomorphisms of X with trivial commutator (i.e.,
all groups G of linear isomorphisms of X with the property that if a linear
operator T: X — X commutes with every element of the group G then
T =1 Idy for some AeR). Define

s(X, G) = max {||T|x.x: TeG}.
The symmetry constant s(X) of the space X is defined by
s(X) =inf ls(X, G): Ge¥(X)}.
It is easy to see that s(-) /s a Lipschitz 1 function with respect to the

Banach-Mazur distance and that s(Y)=1 for every finite-dimensional

Banach space with 1-symmetric basis. Therefore s(X) < \/n for every
n-dimensional Banach space X. On the other hand, all known examples of
finite-dimensional Banach spaces for which the symmetry constant has been
computed have shown the order of growth to be not bigger than the fourth
root of the dimension. In [2] Garling and Gordon conjectured that

Sy = sup (5(X): dim X =n} = 0(n*/4).
The aim of this note is to disprove this conjecture. More precisely we shall
prove the following
THEOREM, §, = O (\/ﬂ).
Because of the trivial estimate s, < \/ﬁ it will be enough to prove
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THEOREM 1. There is a constant ¢ > 0 such that for every ne N there is an
n-dimensional Banach space X, with

s(X,) = ¢ /n.

As often happens, we are unable to determine spaces with this property;
instead, for every ne N we construct a class of “random” n-dimensional
Banach spaces with the property that for the “vast majority” of the spaces in
this class the desired estimate holds. For this, we use the spaces introduced
by Gluskin, [3], to prove that the Banach-Mazur distance between certain
n-dimensional Banach spaces is of order n. Similar spaces have been used by
Gluskin [4] and Szarek [7] to construct finite-dimensional spaces with the
“worst possible” Schauder basis constant. Similar examples of a “random
approach” to finite-dimensional Banach spaces can also be found in Figiel,
Johnson [6] and in Figiel, Kwapiefi, Pelczyfski [5]. Our proof consists of
two basic arguments. The first one is a kind of a “subspace mixing” property
for groups G in %(R") and the second is a “small perturbation” of the
improved version of Gluskin’s argument, [3), due to Szarek [7].

1. Notation. We shall use the strandard notation. For every neN, let
{e:1 1 <i < n} denote the standard unit vector- basis in R and for x, ye R"
let (x, y) and |x| denote the standard scalar product and the standard norm
on R". For neN, let K, = {xeR" |x| <1} and §, = {xeR" [x|'=1). We
shall denote n-dimensional volume in R" by vol, and normatized Lebesgue
surface measure on S, by u,.

For all neN, we define

20n
- X200 X%;€8,,1<i<20n} =[] §,,
i=1
and we let P, denote the product measure of 20n copies of pu,. If

A =(%y, X3, ..., Xs0,) €&, we define ||-||, to be the norm on R" with the
unit ball

Ay = {(xli X35 -

a— ! N
A =absconv ey, e, ..., e, Xy, Xy, ..., Xz00};

in the sequel we shall also denote the Banach space (R", ||-]|,) by A. Note
that P, induces a normalized measure on the set of Banach spaces 7, in
a natural way; this will also be denoted by P,.

For every neN and every A, Besf, we shall mean by AxB the

l-product of spaces 4 and B (ie., the Banach space (R?", || || 4 x5), Where for
(x, ) eR"x R = R™"

G, Wlaxs = (Ul +I1y13)"72.
Also, we let

E] = {xeR™ xelin{e,, e, ..

. €n}}
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and
- 20, ;
E; = {xeR™ xelin{e,,i, eprss..., et}

and we let P} be the orthogonal projection on E} for i =1, 2.

We shall deal mainly with linear operators in R" The set of all such
operators will be denoted by L(R"). If TeL(R" and [[-||,, ||'|lp are two
norms on R” then || T||,.., will denote the norm of Tregarded as an operator
from (R" |||l into (R" ||-|(p). In what follows, operators from E} into E,
i, j=1, 2, will be identified in a natural way with operators in L(R".

We shall prove the following theorem which easily implies Theorem 1.

TueorEM 2. There is an absolute constant ¢ >0 such that

P,xP,l(4, Bied,xof,: s(AXB) <c./n} —0

From now on, in order to simplify- the notation, we shall assume that
n=10k for k=1, 2, ... and we shall say that an operator Te L(R") is thick
iff |Tx| > 4|x| for every x in some k-dimensional subspace of R”.

2. Some properties of ¥"= %(R". In the sequel we shall need the
following easily verified properties of %"

(%) For every Ge%" and every UeL(R") we have

tr (U
[T UTdhg(T) =414 with  4="0D

. G
where h; denotes the Haar measure on G.

(#* ) For every Ge%(R") there is a unique ellipsoid &g of the smallest
volume containing the set

conv |J T(K,),
TG ‘

and this is G-invariant (i.e., T(¢g) = &g for every TeG). In other words G can
be considered as a group of isometries of (R" || |lg) where || llg is tl_le
hilbertian norm defined by the scalar product {, >g inducc?d by the ellipsoid
¢6. In particular, if &g = K,, then G is a group of isometries of (R | ). The
set of all such groups will be denoted by %, (R").

LemMma 1. For every pair F,, F, of Sk-dimensional subspaces of R*" and
every G &%, (R™) there is a Ty in G such that

P, To x| 2 41

for every x in some k-dimensional subspace Fy of Fy, where Py, denotes the

orthogonal projection onto F,.
Proof. Let P = Pp, and u be the normalized Lebesgue surface measure

on Sp, = {xeFy: |x| = 1}. Fix Ge%o(R*). By () we have
{1d = | T=*PTdhg(T).
3
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Thus, for every xeF,,
1(x, x) = [ (T~ PTx, x)dhg(T)
G

and

b= [ (JOT7PTe, x)dhe (T))dp(x)

Sry
= [ (J(PTx, PTx)dhg (T))dp(x) = [ | |PTx)*du(x)) dhg(T).
5p, G G Sp,

Thus, there is a Ty in G such that

[ 1PTyx?dp(x) > 4.
sFl

Let U = PT,. There exist orthonormal bases (w)?%,, (v)7¥, in F, and F,,
respectively, and non-negative numbers 4; such that

S5k
Ux = Z A (i, X) vy
)

i

for every xeF,. We have

5k
i< [ UPdu(x) = | |3 Aw, x)v)?dp(x)

SFI SFI i=1

S5k 5 2 5k
=3 A2 [ (w0 dp(x) ==Y a2

i=1 SFy ni=i

5k
Hence )° A7 > §n; we conclude that the cardinality of the set 4 = {i: =i
i=1

iﬂs at Jeast k. Indeed, if this were not so, then, since ||Ujj < 1 and therefore
A<lfori=1,2,..., 5k we would have

5k
Y A=Y A +Y A7 < (card A) 1 +(5k —card A) (})?
i=1

ied igA
< k+4kis =4n,

which gives a contradiction. To conclude the proof note that for x in
Fy=linju;:igA} we have |Pp, Tyx| =|Ux| > }|x].

We now turn our attention back to the case of a general group G in
%(R*". Using Lemma 1, we shall derive

LemMA 2. For every group G e 9 (R) there is a permutation @i,)of 11,2}
and an operator TyeG such that the operator P} Ty restricted to E} is thick
(considered’ as an operator from R" into R").

Proof. Fix G.eff (R_z") and let ¢; be the ellipsoid with property ( x«). Let
F, and F, be 5k-dimensional subspaces of E" and E?, respectively, such that
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Ix| =¢llxllg for xeF;, i =1, 2 (it is easy to show that such subspaces exist,
cf. [1]). Assume that ¢, < ¢, (the other case can be treated in a “symmetric”
way). Let E be the orthogonal complement of F, in (R*", (,)) and let P be the
orthogonal projection with respect to the scalar product {,); with ker P
= E. Set E =Im P. Obviously dim E = 5k and P|F, is 1-1 mapping of F,
onto E. By Lemma 1 applied to (R*" {, %) there is a T, in ‘G with the
property that ||PT, xl|¢ = 4Ixllg for every x in some k-dimensional subspace
F, of Fy. Let Q: E — F, be the inverse of P|F,. Since || Px|l¢ < ||x|l¢ we infer
that [|Qyll¢ = I¥ll¢ for every yeE. Note that Pp, =QP is the orthogonal
projection of R*" onto F, with respect to the scalar product (,). Indeed, Py,
annihilates the orthogonal complement of F, and Pr,|F, = Idg,. Thus, for
every xeF;, we have : .

[Py Tox| 2 |Pp, Tox| = ¢, || Pp, Toxlle
= ¢ [IPToxlg 2 catlixlle = cr kXl = 21X,
which concludes the proof.

Remark. Note that, if for some Ge¥%(R*) and some B,, B,e./,
s(B; x B3, G) < c\/ n and if Ty is an operator which satisfies the conclusion
of Lemma 2, then the operator

‘ T= P} Ty|E}: Ef - E}
has the following properties:

(a) Tis thick,

(b) I Tllg,n, < ¢/n (because [|P]lls, xs,-5, x5, = 1)

3. Volume estimates and Gluskin spaces. We begin with

Lemma 3. Let T2 R" — R" be such that Trestricted to some k-dimensional
subspace F of R" is 1-1 and let A be a subset of R". Then

vol, {xeK,: Txed}< |det TIF|™* vol, P(4) voly, (Koy),
where P is the orthogonal projection onto Im T|F.

Proof. Let P, be the projection onto F with ker P, =ker PT. Then
PT= PT,. Since, by the Hadamard inequality, for every C = F and D < R" we
have )
“ vol,ixeD: Py xeC} < | volg{xeD: Pyx =y}dy,

(5

we infer that
vol, {xeK,: TxeA} <vol,{xeK,: PTxeP(4)}
=vol, [xeK,: TP, xeP(A)} = vol, {xeK,: PyxeT " '(P(4))}

< [ volgixeK, Pyx=yldy< [ volg(Ko)dy
T L(peay) T L{P(4))

= volg, (Kg) | |det TIF|~!dx = |det T|F|~! vol, P(4)vol o (Kay).
PlA)
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Lemma 3 yields the following (cf. Gluskin [3], Cor. 1, and Szarek [7],
Claim 6.2).

LeMMA 4. There is an absolute constant di > 0 such that for every ¢ > 0
and every thick Te L(R") and every B, e s/, the following inequality holds

P, {Besdy: | Tllp-p, < 2¢/n} < (cdy)*™.

Proof. By Lemma 3, with A = 2¢ ﬁBl, we have for every fixed thick
Te L(R"), Bie«, and ¢ >0

vol, {xeK,: Txe2c./nB;} < 4voly(P(2¢ /1 By))volg (Kop).

let 2 be the family of all k-elements subsets of the set of extreme points of
B, . Since, by the Hadamard inequality,

vol, (P(2c/nBy) < > (2 Jmkvol, (abs conv P(D))

Ded

< (2¢/n)card @ vol, (abs conv fe,, e,, ..

o] <)

for suitable d, > 0, we infer that

k 9k n
vol, {xeK,: TercﬁBl} < 4 (%) <%> gd‘(%),

for some absolute constants d;, d, > 0. Hence, for sufficiently large ds > 0

vol, {xeK,: Terc\/;Bl}

v el

xeS,: Txe2 B! < < n ok
Ha { o € C\/; 1} vol, (K, < (ds)'c
Therefore

P,{Besdy: |Tlip-p, < 2c/n}

.20n
< T ta{xie8y: Txie2e /nB} < (di0c)™,
i=1

which gives the required inequality with d, = di°.

4. P!'oof of Theorem 2. The rest of the proof is, essentially, a repetition
of Gluskin’s argument [3], but we shall present it for the sake of complete-
ness. The next lemma can be found in [3].

LemMA 5. There exists an absolute constant dg > 0 such that Jor every
& >0, every B, esZ,, every subset of the set of all operators Te L(R") such that
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Te,-e\/ﬁBl, for i=1,2,...,n admits an g-net MB' with respect to the
operator norm in (L(R"), | |) with :

: 2
card M2 < (%) .

Proof of Theorem 2. Let ¢; = (2d,d%)!. By Lemma 2 and the Remark
which follows it, we have

P,x P, (A, Byest, x ol s(AxB) <cy/n} < Pyx P,(U;)+ P, x Py(%)
where, for i=1,2 and je{l, 2}, j #i, ‘
U, = {(By, By)e oL, x o, there exists a thick TeL(R"
such that || Tllp; -5, < ¢, n}.

We shall show that P,x P,(%,;) <(%)"2. Indeed, for every Be.«, set %, p
= {Ade s, (4, B)e¥,} and let A7 be the c,-net from Lemma 5 for the set

Fy of all thick operators TeL(R") such that Teieﬁ B. Note that the set
#y contains all operators which appeared in the definition of %, . Since, for

every Aes/, and Te Fp such that .[|T||A_.,9 < ¢ 4/n, we have
inf {|| T— T| 4=p: Te.l{fl}sinf{llT—T‘lll;_'q: Ten?}
< /ninf {||T— Tl Tedl} <c; Jn.
we infer from the triangle inequality that

Upe U, {4ty ITl4mp < 200/n).

TEJ/cl
Hence, by Lemma 4, Lemma 5 and by the choice of ¢,, for every Be«,

P15 < T Po{Acsd,: | Tllamp < 260/n}

TeHey

dg\"
< (card #2)(c; dy)*" < (;‘i) (e dy)* =@
1

and therefore, by Fubini Theorem
P, xP,(%;) = | P,(%;5)dP,(B) <"
Ay

. By the same token P,x P,(%;) < ()" Thus
P,x P, {(4, Byed,x o,: s(AxB) <c;~/n} <20)";

this concludes the proof.
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Remark. It follows from the proof (not surprisingly) that if

P. Mankiewicz

(A, By¢ Uy U %y, then d(4, B) > c3n.
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