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Stable semi-groups of measures on the Heisenberg group
by
PAWEL GLOWACKI (Wroctaw)
Abstract. Let {;} be a stable semi-group of measures on the Heisenberg, group G. Denote
by P the infinitesimal generator of {u}. Then the measures u, are absolutely continuous with
respect to the Haar measure and their densities are square-integrable if and only if for every

non-trivial irreducible unitary representation n of G, the closure of the operator = (P) is injective.
Some other equivalent conditions are given.

Introduction. Recall that a probability measure u on R"is said to be
stable (in the strict sense) if for every r, s > 0 there exists t > O such that

Oy p*bs b=, 1,
where 8, u is defined by
by = [ p@dx), fe2(R).

if u is stable, then for some 0 < 6 < 2 the probability measures

W= 5,1/9#
form a continuous semi-group of measures. Set
d i n
VO =7 Mm@, ek,
t=0

where fi denotes the Fourier transform (the characteristic function) of p.
Then  is a continuous function. Moreover, it is homogeneous of degree 8
and satisfies Re Y (£) < 0 for ¢e R". We also have

) A = @

for £eR” and t > 0. All the above is classical, cf. e.g. [9].

From () one can easily deduce that the following conditions are
equivalent:

(i) 4 are absolutely continuous (with respect to the Lebesgue measure)
and their densities are smooth functions.

(i) u, are absolutely continuous.

(iii) Re y(§) <0 for £+£0.


GUEST


106 P. Glowacki

We would like to generalize this. for groups. Namely, let G be a
nilpotent connected Lie group with dilations {5,}. We say that a continuous
semi-group of probability measures {y} on G is 'stable if it satisfies 8, g
= 4, for some 6 > 0. Denote by G the dual object of G. Our conjecture is:

Let {1} be a stable semi-group of symmetric probablllty measures on G
and P = P* its infinitesimal generator (cf. the definition in Section 2). Then
the following conditions are equivalent:

(i) p are absolutely continuous (with respect to the Haar measure on G)
and their densities are smooth functions.

(ii) & are absolutely continuous. X

(iiy The closure of m(P) is injective for non-trivial neG.

* In fact we cannot prove it even for the Heisenberg group. However, we
have to offer the following result:

TueoreM. Let {u) be a stable semi-group of symmetric probability
measures on the Heisenberg group G and let Pe @*(G) be its infinitesimal
generator. Then the following are equivalent: ‘

(i) 1 are absolutely continuous and their densities are square-integrable
(with respect to the Haar measure on G).
(i) p, are absolutely continuous.

(iiiy The closure of m(P) is injective for non-trivial neG.

Before we present an application of the Theorem let us introduce a
definition. Following [13] we denote by (S) the smallest class of semi-groups
which contains Gaussian semi-groups, i.e. the semi-groups whose infinitesimal
generators are of the form

L
P=Y X,
Jj=1

where X; are some elements in the Lie algebra of G, and is closed with
respect to taking sums and fractional powers of their generators as well as to
multiplying the generators by strictly positive reals. Then our theorem yields:

CoroLLARY. Let {u} be a stable semi-group of measures in (S) on the
Heisenberg group G. If the Lie algebra generated by the elements X; which
“appear” in the above inductive definition of the infinitesimal generator P of
{i)} is the whole Lie algebra of G, then the measures y, are absolutely
continuous and their densities are square-integrable functions.

Indications for further applications the reader will find in [13].

Another our result closely related to the theorem is

CoroLLARY. Let {u} be a stable semi-group of symmetric probability
measures on the Heisenberg group G. If u, are absolutely continuous, then the
densities f; of 1, are “fractionally differentiable”, i.e. there exists an ¢ > O such
that f,e H*(G), where H*(G) is the usual Sobolev space.
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Let us now sum up briefly the contents of the paper. In Section 1 we
recall elementary properties of a class of pseudo-differential operators whose
symbols satisfy the estimates

la: aga(x: é)] S Ca,B m(x’ é):

where m is a weight function in the sense of Hormander, [18], cf. (1.3) below.
We denote the class by S(m). This is, in fact, an “extremely easy” case of the
general theory of pseudo-differential operators as presented in [17]. Our
symbols, however, are also required to satisfy

(*¥) 1% alx, O < Copm'(x, &)

for |¢]+|B| > 0, where m’' < m is another weight function. The key point of
the section is to establish a reasonable symbolic calculus for symbols in S (m)
classes, addmonally satisfying (#%). One would like, for example, the com-
mutator [a, b] to be not only in S(m; m,), but even in §(mjm}), provided
aeS(my), beS(m,) satisfy (*+) with m] and m), respectively.

The symbolic calculus together with Proposition 1.21 (proved in [117)
enables us to obtain the goal of the section, Propositiod 1.25. Except for
Proposition 1.21, Section 1 is self-contained.

Section 2 gives generalities on semi-groups of measures on a Lie group.
A part of our main theorem is proved in the context of general Lie group.
The standard decomposition of a dissipative distribution to.a sum of a
compactly supported distribution, and a bounded positive measure plays a
role.

In Section 3 we introduce basic notions connected with a homogeneous
structure on a nilpotent Lie group. A definition of a stable serm-group of
measures is given.

Section 4 is devoted to studying some estimates for derivatives of the
Fourier transform of a dissipative homogeneous distribution on R". This
section is of completely technical character.

In Section 5 we prove our main theorem. Several conditions on {z} and
P are proved to be equivalent to absolute continuity of the measures y,. The
crucial point is to show that (iii) implies (ii), cf. Theorem above. This is done
with a help of the idea (originally applied to P = X2—|YJ", cf. [14]) due to J.
Cygan and A. Hulanicki: first estimate the growth of the eigenvalues of 7 (P)
and then apply the Plancherel theorem. The estimation is obtained by using
the pseudo-differential calculus as developped in Section 1. The results of
Section 4 show that the calculus is applicable to nw(P). We also make use of
the simple observation that dissipativity of a distribution is connected only
with the underlying differentiable manifold and not with the group structure
of G.

At last, let us remark that an analogy between the Rockland theorem,
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{207, and ours seems to be not only of a formal nature. Anyway, we were
influenced by this theorem and its proofs (cf. [1], [20]).

1. Pseudo-differential operators. Let V be an n-dimensional real vector
space. Let ¥* be the dual space and denote by x¢ the pairing between xe V
and £eV* We choose and fix an Euclidean norm ||| in ¥ and hence the
dual norm in V* and the product norm in W= V@V* which are denoted in
the same way. Let {e;} be an ortho-normal basis in V and [e}} the dual
basis in V*. For multi-indices a = (ay, ..., 0y, € N*" we denote

1 %n A%n+ 1 %2n
Ff=o . gL,

where

1d
avf(w)=—;a o
=

w, veW and [ is a smooth function on W. The length of a multi-index is

2n
defined by |af = ) a;.
j=1

fw+tv),

There is a natural simplectic form ¢ on W:

(1.1 a(w, v) = y{—xn
n n
for w=(x, &), v=(y, NeW=VOV* If 4 =j; agj+j§1 63; is the Laplace
operator on W, then
(12) (A“+ l)k eicr(u,v) — <U>2k eid(u,u)
for u, veW and keN, where <v) = (1+]v||H)>

Let #(V) and & (V*) denote the Schwartz spaces. Let dx, df be’

Lebesgue measures in ¥ and V*, respectively, normalized so that the relation-
ship between a function fe & (V) and.its Fourier transform fe &* is given by
JO=[e™fx)dx, [f(x)=[e*](&de.

By dw we denote the Lebesgue measure dxdé in W= V@ V*,
We say that a strictly positive continuous function m on W is
a temperate weight or shortly a weight if it satisfies

(1.3) m(w+v) < Cm(w) wHY

for w, ve W and some constants C, N (cf. [18], Chap. II, 2.1). In particular,
every weight m satisfies

(14) (1/C) <w>™N < m(w) < C<wHY
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for we W. The weights m,, m, are said to be egivalent if there is a constant C
such that

(1/C) my (w) < my(w) < Cmy (W)

for we W. Note that weights form a group under multiplication and if m is a
weight, then also m? is a weight for every real 8. For a given weight m let us
denote by S(m) the class of all ae C™ (W) satisfying the estimates:

[ a(w) < Cym(w)

for we W and all xe N*". S(m) is a locally convex Fréchet space if endowed
with the family of semi-norms:

[0*a(w)

|a], = max sup w)

lal=k W

where k =0, 1, 2, ... Obviously, the definitions of weight and of spaces S (m)
do not depend on a norm and a coordinate system in W, respectively. The
above defined semi-norms in S(m) obtained in different coordinate systems
give the same topology. Moreover, if weights m;, m, are equivalent, then
S(m;) = S(m,) and the corresponding semi-norms are equivalent.

It follows from the Ascoli theorem that the space S (m) enjoys the following
compactness property:

(1.5) if{a,}is a bounded sequence in S (m), then there is a subsequence {b,} of

{a,} which is convergent in C* (W)-topology to an element b of S(m).

Every ac % (W) defines a linear map 4: (V) — (V) by the Weyl
prescription:

(L.6) Af (%) = [ [ a(3(x+y), &) f(y)dydE.
If f, ge ¥ (V), then the function
@(x, y) =f(x+3)g(x—$y)
is in & (Vx V) and thus
¥(x, &) =fe " o(x, y)dy
belongs to & (W). Therefore the weak version of the above definition
(L7 Af, 9> = [[[e ™ alb(x+1), &) ()9 (x) dyd¢ dx
=[[fe ™ a(x, &) f(x+1y)g(x—1y) dydEdx
=[[fe"™a(x, O o(x, y)dydédx
= [falx, Oy (x, &)dedx = [a(w)y (w)aw
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makes sense for any ae %*(W) and defines a linear operator which maps
continuously & (V) into &*(V). The distribution a is called then the symbol
of A. We shall also write a”(x, D) or simply a” for 4. The correspondence
between the symbols ae &* (W) and the continuous linear operators 4 from
&(V) into $*(V) is, in view of the Schwartz kernel theorem, bijective.

Directly from (1.6) one can obtain (cf. [4], Lemma 1)

ProposiTioN 18. If m is a weight and a€S(m), then a”(x,D) is a
continuous endomorphism of ¥ (V).

From the above proposition we derive as in [4]

CoroLLARY 1.9. Let a, be a bounded sequence in S(m) converging point-
wise to a function a on W. Then aeS(m) and the sequence of the operators A,
= a¥(x, D) converges strongly on & (V) to A= a”(x, D).

. To obtain the composition theorem let us start with a, be & (W). Then
the symbol of a¥b* is given by

(1.10) aob(w) =2 [a(w+u) b(w+v)e*** dudy
for we W (see [17]). Integration by parts (cf. (1.2)) gives for ke N

(L du) a(w+u)

(1.11) aob(w) = 22({ s b(w+0)

(14 A} I:W] &2 dy dy,

By using the Taylor expansion for a we get from (1.10)
aob(w)—a(w)b(w)

1 .
=221 E [ dt J. I ae} a(w+tu) ae; b(w+v) X7 dy dy —
0

j=1

_22n- 1
J

n 1
Z 2‘;‘1’ Hée;a(w-{-tu) O b(w+ v) e2o® dy d.

Again integration by parts yields for keN:
(1.12)  aob(w)—a(w)b(w)

"1 (L+ 1% Auy* 8, &, (w +tu) Oab(w+v)
= -1 7] k| &
=2 jgl gdtj.[ <2u>2k 1 [ <2v>zk

a1 (1+t2Au)ha tak(W+tu) "0 b(w+u)
—gn-1 at ¢ , k| &) 2ia(v,u) .
J§1 £ II <2u>2k \1 +Al)) [ <2'v“""“>2k :]e dudv

Tueorem 1.13. Let m,, m, be weights on W and let aeS(m,), beS(m,).
Then acbeS(mymy). If, moreover, *aeS(m.), ®beS(m;) for some other
weights my, my and all Jo| > 1, then aob—abeS(m) mj).

]e""""“’ dudy
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Proof. By (1.4) there exists an integer N and a constant C > 0, such
that all the weights under consideration are bounded by C (w)". Thus for
k>n+%N the right-hand sides of (1.11) and of (1.12) make sense for
aeS(my), be S(m;) and all we W. Denote them by rq(a, b)(w) and r, (a, b)(w),
respectively.

Now, let f be a positive compactly supported and smooth function on
W. Moreover assume f=1 in a neighbourhood of 0. Then by a simple
application of the Leibniz formula the sequences

a,(w) =f(w/m)a(w),  b,(w) =f(w/n)b(w),

are bounded in §(m,) and S(m,), respectively, and the sequences a,0b,, a,b,
are bounded in S(m, m,). It is also clear that a, —a and b, —» b in C*(W).
Since a,, b, are compactly supported, we have by (1.11), (1.12)

neN,

(1.14) a,0b, (W) =ro(ay, b,)(w)
and
(115) a,,Ob,,(w)—a,,(w)b,,(w) =TI (an! b,,)(W)

for we W and neN. By the Lebesgue theorem

lim To (ana bn) (W) =Ty (a: b)(W)

and

lim r;(a,, b)(W) =1, (a, b)(w).
Therefore (1.11) and (1.14) together with (1.5) imply a,0b, is convergent in
C*=(W) to a member of S(m, m,) which, in view of Cor.19, is equal to aob.
Thus we have proved aobeS(m,m,). Since, obviously, a,b, converges
pointwise (even in C*, in fact) to ab, we have also proved (cf. (1.14), (1.15))
that formulae (1.11), (1.12) are valid for aeS(m,), beS(m,).

Now assume that not only aeS(m), beS(m,) but also *aeS(m}),
®beS(my) for oe N2" of length at least 1. Then using the Leibniz rule and
the formula (1.12) for ke N sufficiently large one checks directly that aob
—ab-eS(my my).

For a given weight m we denote by % (m) the space of all the linear
operators in & (V) whose symbols belong to S(m). If A, B are endomor-
phisms of (V) we denote by [4, B] the commutator of 4 and B.

CoRrOLLARY 1.16. Let my, m,, my, m, be weights and let aeS(my),
beS(my) be such that &*aeS(my), *beS(m)y) for |o| > 1. Let A, B and T be
the operators in & (V) corresponding to the symbols a, b and ab, respectively.
Then AB~— Te ¥ (mym,) and [A, Ble % (m)y m)).
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For real t let us denote by h, the weight h,(w) = (W)™
CoroLrARY 1.17 Let m be a weight. If the symbol a of A€ ¥ (m) satisfies

(1.18) 1+|a(w)| = Cm(w)

for weW and some C>0, and if
(1.19) ™aeS(mh)

Jor Ja| = 1 and some & >0, then there exists Be ¥ (1/m) such that .

AB—Ie % (1/m), BA—Ie 2 (1/m),

where I stands for the identity operator.

Proof. Let boe C*(W) be such that ab, =1 outside a compact set.
Then boeS(1/m) and ™ byeS (h,/m) for |of = 1. By Cor.1.16

booa=1-r,,

where ro €S (h;,). For an integer N set by = (1+rq)¥ 0 by, where the power is
understood in the sense of “o”. Then by Th.1.13 byeS(1/m) and

byoa =1-r2",
By the above réNeS(thHe), so by (1.4) r%NeS(l/m) for N sufficiently large.
Thus we have shown there exist beS(1/m) such that boa = 1—r, where
reS(1/m). Similarily we prove there is b'eS(l/m) such that aob' = t—r/,
where ' €S(1/m). But then b—b' = bor'—rob'eS(m™ 2. Therefore

acb=aob +ao(b—b)=1~r+s,

where s =ao(b—b)eS(1/m), so we are done.
- Let H be a Hilbert space. Denote by % (H) the algebra of all bounded
linear operators on H. For a positive Te.#(H) let us denote by Tr T the

‘trace. of T which is either a positive number or infinity. For an arbitrary
bounded T set

1< p<oo,

ni/
|T|,,={(TIIT|) ’
p=00.

7,
Then for every 1 <p<oo
C,(H) = {Te £ (H): |T}, < o)

isa Bapach space wit.h the norm |+[,. It is, in fact, a two-sided ideal in 2 (H).
In particular, C,(H) is the space of trace class operators, C,(H) is the space

icm®
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of Hilbert-Schmidt operators and C(H) is the whole of #(H). If T is
in C,(H) for some 1< p < o, then it is compact and

(1.20) ( Z 2P)1? < I'Tlp,
n=1

where z, are all the eigenvalues of T together with their multiplicities (see e.g.
[7], Chap.XL9).

The following proposition was proved in [11] for a different kind of
symbols (Th.3.1), but the proof in the case of the Weyl calculus is essentially
the same, cf. also [16].

Prorosition 1.21. Let acC®(W) and let 1 < p< 0. If 0%ae (W) for
|| € 2(n+1), then the operator a*(x, D) has a unique extension to the
operator AeC,(I>(V)) and the following estimate holds:

{4, <C, max

] €2(n+1)

Let S be an endomorphism of & (V). We define a formal adjoint to S by
STf, 9> =<1, Sg>,

110% al -

where

frgd>=[fx)g(x) dx

for f, ge (V). It is straightforward from (1.7) that if aeS(m) then(a*)*
= (a@)*. Therefore Prop.1.8 implies that every Ae.%(m) has a unique exten-
sion to a continuous endomorphism A of &*(V). It is also clear that
A€ % (m) is closable in I? (V). Denote by 4 and A* the closure of 4 and the
adjoint to A in I?(V), respectively. The domain of 4 in IZ(V) is denoted by
7 (A).

ProrosiTioN 1.22. Let m be a weight such that 1/melI? (W) for some
1<p< oo and let the symbol a of Ae ¥ (m) satisfy (1.18), (1.19). Then

@A) = | feB(V): Afe2(V)).

Proof. First let us show that if Be % (1/m) and fe [?(V), then Bfe & (A)
for any Ae.%#(m). In fact, let f,e (V) and f, —»f in I*(V). Then Theorem
1.13 and Prop. 1.21 imply AB is bounded and so ABYf, 1s convergent in 12 (V).
Thus Bfe & (A).

Now, let A satisfy (1.18), (1.19). Let fe I*(V) and g = Afe I2 (V). Let B be
as in Cor. 1.17 and S = BA—1I. By Cor. 1.17 B, Se ¥(1/m) and

By =B(Af) =f+¥.

By the above By, §fe %(A). Therefore fe &(A), too. Since the opposite
inclusion is trivial, we have completed the proof.
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For a given weight m let us define

(1.23) H(m) = {uel?(V): AueZ2(V), Ac ¥ (m)}.

CoroLLARY 1.24. Let m be a weight such that 1/meE(W) for some
1 < p < 0. Further, assume there exists an operator L= ["(x, D)e & (m) such
that (1.18), (1.19) are satisfied. Then for every Ae ¥ (m),

FV)S H(m) < 2(A).
If, moreover, the symbol a of A satisfies (1.18) and (1.19), then we have the
equality H(m) = 2(A).

Proof. It is sufficient to show that if L, 4e.%(m) and the symbol [
of L satisfies (1.18), (1.19), then @(L) < 2(4). Let Q.2 (1/m) be such that
QL =1I+38, where Se % (1/m). Let fe 2 (L). Then Lf=ge?(V) and con-
sequently f = Qg — Sf. But in the course of the proof of Proposition 1.22 we have
seen that vectors of this form belong to %(A4) for any Ae.% (m).

For an unbounded closable operator 4 on a Hilbert space we denote by
Sp A the spectrum of A. If 1¢Sp A4, then the bounded inverse of A—A is
denoted by R,(4). We conclude this section with the following

ProrosiTion 1.25. Let m be a weight such that 1/meI?(W) for some
1< p< o and let acS(m) satisfy (1.18), (1.19). Let T be a bounded Operator
on LZ(V) Set Ap = A+T, where A = a"(x, D). Then

() (47)* = Ay in IZ(V),

(il 2(A7) = H(m),

(iii) Ry(Ar)eC,(I2(V)) for A¢Sp Ay.

Proof. To prove (i) it is sufficient to show that J((A*) ) < 2(4). Let

ue P((A*)*). This means dueI? (V) so, by Prop. 1.22, ue 2(4). As for (i) it
follows directly from Cor. 1.24.

Finally, let A¢SpAy. Let B be as in Cor.1.17. We have
Ri(A-A-Tu=u
for ue2(A4). Let u = By, where ve I>(V). We get then
R,v=(AR;—R, T~1)Bv—R, So
where § = AB—Ie.#(L}(V)). By Proposition 1.21 B, SeC,(I2(V)). Since C,
is an ideal in #(}(V)), R;€C, and the proof is complete

2. Dissipative distributions and semi-groups of measures on a Lie group
Let G be a Lie group. Denote by %(G) the space of smooth functions on G
with compact support and by 2*(G) the dual space, that is, the space of
distributions on G. A family {g,},,, of positive measures on G is said to be a
continuous semi-group of measures if

i) m(G) <1, >0,

(ll) e * [y = #H-sv t’ B > 0:

(i) l.lfg St [ =1 (@) =48, 1>
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for fe 2(G), where e denotes the identity element of G and &—the Dirac
delta.

If {u} is a continuous semi-group of measures on G, then for every
fe 2(G) the limit

1
21) lim —<{p,—6, 1>
tlo

exists and defines a distribution Pe 2*(G). The distribution P is called the
infinitesimal generator of the semi-group of measures.{y}. It follows directly
from (2.1) that P is real and satisfies the following maximum principle:

(22) P,><0
for real fe 2(G) such that f(e) -—sup f(g). A real distribution Pe2*(G)

which satisfies the maximum prmc1ple (2.2) is called dissipative. Hence, in
other words, the above says that the infinitesimal generator of any con-
tinuous semi-group of measures is a dissipative distribution on G.

Conversely, suppose that a dissipative distribution P on G is given. Then
there exists a unique continuous semi-group of measures {y,} such that (2.1)
holds ([6], Prop4 and also [13], Prop. 2.4). Note that the semi-group {u}
generated —in the above sense—by P, consists of symmetric measures if and
only if P = P*. Another simply observation is that

(2.3) lim 4 (G)=1.
1[0

For PeZ*(G) and ¢eC®(G) we denote by ¢P the distribution fi—
(P, of > for fe Z(G). By a cut-off function we shall mean any [0, 1]-valued
¢ in %(G) such that ¢ =1 in a, neighbourhood of e.

LemMA 24. Let P be a dissipative distribution on G. Then for any cut-off
function ¢ the distribution (1—¢) P is a bounded positive measure. Hence P
admits a decomposition

P=S+u,

where S is a compactly supported distribution and p is a positive bounded
measure.

Proof. This is essentially Proposition II.2 of [8].

As a corollary we obtain that every dissipative distribution extends to a
linear form on the space of all smooth and bounded functions on G. If fis

such a function and if moreover f(¢) = sup |f(g)l, then (2.2) and Lemma 2.4
yE

imply
(2.5) Re (P,f> <0

Recall that if = is a strongly continuous representation of G on a
Banach space H, then every compactly supported distribution T on G can be
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represented as a densely defined operator n(T) on H. More precisely, let H”
denote the space of smooth vectors for m, that is, the set of all £ € H such that
the H-valued function Gsgro>m,éeH is smooth. We take H™ for the
domain of n(7) and define

(26) (e m*y =<T, 0,0

for écH®, n* e H*, where o, ",,(g) = <7_Cl£,jl*> for ge G. n(T), as defined by
(2.6), is closable. Denote its closure by = (T). If § is another distribution on G
with compact support and éeH is in the intersection of the domains of

7(T), n(S) and 7(T+S), then

T(T+8)¢ = n(T) E+n(S) ¢

To consider n(P) for a dissipative Pe %*(G) it is convenient to use the
notion of submultiplicative function. Following [15] we say that a Borel
function m on a Lie group G is submultiplicative if

@7

(i) m is locally bounded,
(i) m(g) 2 1,
(iii) m(gh) < m(g)m(h),
(iv) m(g™") = m(g)
for g, heG. By using the methods of [15] and [6] one can prove

ProrosiTiON 2.8. Let m be a submultiplicative function on G. For a
continuous semi-group of measures {p,} with the infinitesimal generator P the
Sfollowing are equivalent:

(29) sup § m(g) u (dg) < 0,
0<t<1 G
(2.10) | m(g) P(dg) <
G\WV

Jor some compact neighbourhood V of e in G.

Note that by Lemma 24 P is a positive measure outside V, so (2.10)
makes sense. The same lemma implies that if (2.10) holds for a single
compact neighbourhood V of e, then it holds for all such V.

Now let us return to a representation = of G on a Banach space H. Let
Pe 9*(G) be dissipative. Set

my (g) = max (|||, [z - 1)

Then m, is a submultiplicative function and for any measure u on G such
that

fme(9)|ul(dg) < 0
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the linear operator m(u) on H defined by
(W ¢ = [n, & u(dg),

is bounded and |z (u)l| < [m,(g)|ul(dg). Assume P and m, satisfy (2.10). Then
we can define n(P) on H™ by

(eH,

n(P) = n(8)+n(p)

where the decomposition P = §+ u is that of Lemma 24. By (2.10) n(y) is a
bounded operator on H and S has a compact support, so it can be
represented on H™. The definition is unambiguous as P and n(P) satisfy (2.6).
By the above n(P) is a closable operator on H and it can be easily deduced
from (2.5) and (2.6) that, if m,(g) <1 for geG, then the closure of =n(P)
satisfies
(211 Re (n(P) ¢, n*)> <0
for ¢ in the domain of n(P) and n*eH* such that (&, n*> = |[£|| and ||n*||
=1. .

Now we recall the definition of a strongly continuous semi-group of
operators on a Banach space H (see [21], IX.2). This is a family {T;},. of
bounded operators on H such that

(@) sup | T} < oo,
t>0

(i) TTL=T.,
(iii) || ;E—¢|l - 0 when t [0 for (e H.

If {T;} is a strongly continuous semi-group of operators on H, then the
linear subspace & of H consisting of all vectors e H for which the limit

(212 A& =lim 2(Te-y)
tlo

exists, is dense in H. The linear operator 4 defined by (2.12) on 2 is closed
and its spectrum is contained in the half-plane Re z < 0. It is called the
infinitesimal generator of the semi-group {T;} ([21], Chap. IX, §3). The
following theorem relates semi-groups of measures to semi-groups of oper-
ators. One can obtain it from Prop. 2.8 by using the general theory of semi-
groups of operators ([21], [6]).

THeoREM 2.13. ([6], Prop. 18, Théoréme of § 12.) Let = be a strongly
continuous representation of a Lie group G on a Banach space H. Let P be a
dissipative distribution on G such that (2.10) holds true for P and m,. Let {1}
be the corresponding continuous semi-group of measures. Then (m()} is a
strongly continuous semi-group of operators on H and the infinitesimal gen-


GUEST


118 P. Gtowacki

erator of it is just the closure of m(P). In the case when m is a unitary
representation on a Hilbert space H we also have

n(P¥)* =n(P).

In particular, if P is symmetric, then n(P) is essentially self-adjoint.

ExampLE 2.14. For a submultiplicative m on G and 1 < p < co denote by
I7(m) the space of all measurable functions on G which are integrable with
pth power with respect to the Radon measure p = mdg. Consider the left
quasi-regular representation =, on IF(m):

n S =f(g™'h
for fe I (m) and g, heG. Then |In,|| = |l - 4[| = m(g)!’* for g€ G, so m, = m””
If P is a dissipative distribution on G auch that (2.10) holds for P and mY
and {u} is the semi-group of measures generated by P, then Theorem 2. 13
yields that the convolution operators

(2.15) I2(m)> f >y, +fe I (m)

form a strongly continuous semi-group. It can be shown that the domain of
7(P), whiich is the infinitesimal generator of the semi-group (2.15), consists of
all fe I?(m) such that P +fe I?(m). (Note that by Lemma 2.4 this convolution
always makes sense) m(P) can also be thought of as the closure of the
convolution operator f +— P «f defined for fe 2(G) < [IP(m)]* (cf. [6], § 7).

The following lemma is due to E. Siebert. It was also independently proved
by H. Byczkowska jointly with A. Hulanicki ([5]).

LemMma 2.16. Let {i,} be a continuous semi-group of symmetric measures on a
Lie group G. Then for every t, s > 0 supp p, = supp p, = M. Moreover, M is a
closed subgroup of G.

In case where y, are symmetric we shall call the common support M
of u, the support of the semi-group of measures. From [57], Theorem 2 one can
easily get

ProrosiTioN 2.17. Let P, Qe 9*(G) be dissipative and symmetric. Then
the support of the semi-group of measures generated by P+Q is equal to the
smallest closed subgroup of G containing the supports of the semi-groups
corresponding to P and to Q.

We define fractional powers of a dissipative distribution by the formula
(2.18) <P"‘),f> = (1/F(—k)) I tTOHR 6, f > dt

for 0 <k <1 and fe®(G). Here {y} is the semi-group of measures gen-
erated by P. (We shall also write P® = —|P* and P¥ = —|P| = P for
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symmetric dissipative P.) P® is also dissipative and the corresponding semi-
group {u®} satisfies

2.19) GO, 1y = [ F905) s £ s,
0

where the functions £, eI! (R*), t > 0, are defined by

k

[0 e di=e"* 1,230,
0

1t follows that £ >0 and [ f®(4)dA =1 (cf. [21], Chap. IX).
0

ExampLE 2.20. Let G be a Lie group and @ its Lie algebra. Elements of
® are right-invariant vector fields on G and every X e® defines a distri-
bution supported at e:

C*(G)af —Xf(e)

We shall denote this distribution still by X, so we have Xf= Xxf for
feC™(G). Also, X?f= X X xf and so on. If X e ®, then the distribution X
is dissipative, however not symmetric, for X* = — X. On the other hand, X?
defines a dissipative and symmetric distribution on G. Starting from this
point we construct the class of dissipative distributions and hence dlso the
class of semi-groups of measures which is of particular interest for us.
Specifically, denote by () the smallest class of dissipative distributions.on G
which contains X? for Xe® and is closed with respect to taking sums and
fractional powers as well as to multiplication by strictly positive reals. Let (S)
denote the corresponding class of semi-groups of measures. Using the
formulae (2.18), (2.19) one can easily see that if {u}&(S), then p, are
symmetric. Note also that (S) contains all Gaussian semi-groups ie., the
semi-groups whose generators are of the form P =) X?, where X;e®, cf.
[13], § 6.

For Pe(¥) let us define inductively the Lie subalgebra (ﬁ,. of ®
associated with P: .
() p=RX if P=X2, Xe®,
(ii) Gp.q = Lie(Gp U Gy), P, Qe(5),
(i) © 4 = G,p = Gp, Pe(#), >0, 0 <k <1.
(We denote by Lie() the Lie subalgebra of ® generated by a subset 5 of ®.)

From Lemma 2.16, Prop. 2.17 and (2.18), (2.19) we get

ProrosiTioN 2.22. Let {u}e(S) .and let PeZ*(G) be its infinitesimal
generator. Then the support of the semi-group {1} is equal to the subgroup of
G generated by exp(Gp).

In Section 5 we are going to characterize the class of stable seml-groups

(2.21)
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of measures {y} (cf. Section 3 for the definition) on the Heisenberg group G
for which all g are absolutely continuous with respect to the Haar measure
dg on G. It turns out that the “easy part” (that is, the necessary condition) of
the characterization can be proved in much more general setting, as it is
shown by the next lemma.

LemMa 2.23. Let G be a connected Lie group and |y} a continuous semi-
group of symmetric measures on G. Let P be the infinitesimal generator of {u}.
Then each of the following conditions implies the next one:

() y, are absolutely continuous with respect to the Haar measure on
G,t>0.

(i) The support M of {w} is equal to G.

(iii) ;U;) is injective for non-trivial irreducible unitary representations
n of G.

Proof. (i) = (ii): By (i) and Lemma 2.16 M is a closed subgroup of G of
positive Haar measure. This implies M is open and hence M = G since G is
connected.

(1) = (iii): Let —ﬁ & =0 for some ¢ of norm one in the doma_ig_gf (P),
where 7 is a non-trivial irreducible unitary representation of G. As 7 (P) is the
infinitesimal generator of the strongly continuous semi-group of contractions
{m(w)} we have m(u)é = ¢ for t> 0. Set @(g) = (m, &, &) for geG. Then
o) =1, |p@) <1 for geG and

fo(g)m(dg) = <m(u)&, &> =1

for t > 0. Since supp y#, = M = G it follows that (u, are probability measures
and) ¢ =1. This, in turn, implies 7,& =¢ for geG. In view of the fact
that = is irreducible this is impossible unless ¢ = 0 or = is trivial and thus the
proof is complete.

Another conclusion can be drawn if the densities of u, are square-
integrable. But first let us recall the definition of an analytic vector for a
densely defined operator A on a Banach $§pace H. By this we mean a vector
e H such that & is in the domain of A" for ne N and the formal series

(24 Tz
has a strictly positive radius of convergence.

PropoSITION 2.25. Let {i} be a continuous semi-group of symmetric
measures on a Lie group G such that u, = f,dg, where f,e I}(G) for t > 0. Let
P be the infinitesimal generator of {1} and © the left regular representation of
G on I2(G). Then each f, is an analytic vector for 7(P).

Proof. By Thorem 2:13 =(f) = = (1) form a strongly continuous semi-
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group of hermitian operators on the Hilbert space I(G) with =(P) as the
infinitesimal generator. Still by Theorem 2.13 =(P) is self-adjoint, so its
spectrum has to be contained in the negative half-line. By using the spectral

resolution for n(P) one can see that for any neN, t >0, n(P)"n(f) is
bounded on I?(G) and

(Pl <t "mre™".
Now, for any feI?(G) we have
(P n(f) f = n(fy)n(PY'(fy2) f = fyz * 0 (P) 2 (fi12) -

Therefore o
[ (P)"x(f) £ ()| = |f2 *m(P)"n(fy2) £ (el
<@/27"m e 2l 2y 1 26

for neN and t >0, so n(P)"f,eI?*(G) and

(P fll 26y < (1/2)7" 1™ [ fgall 26,

which shows that for all t > 0, f,eI?(G) is an analytic vector for n(P) and
the radius of convergence of the series (2.24) for 4 = n(P) and & =f; is equal
to, at least, 2/t.

3. Homogeneous structure on a nilpotent Lie group. Let G be a con-
nected, simply connected n-dimensional nilpotent Lie group and & its Lie
algebra. A family of dilations on ® is a one-parameter family {6,},., of
automorphisms of & of the form

A __ logrd
b,=r=¢e

where A is a non-degenerate semi-simple linear transformation of ® with
positive eigenvalues. Hence for a given family of dilations there exist a basis
{X;} of ® such that

(3.1 85, X; =17 X,

for some a;>0,j=1,...,n and r > 0. If {8,} is a family of dilations, then
so is {8,}, where §, = 6, for any « > 0, therefore we shall always assume the
smallest eigenvalue of A to be 1. The biggest eigenvalue of A will be denoted
by a.

Since the exponential map exp: & — G is a diffeomorphism. (cf. e.g.
[12]), the dilations {§,] lift via exp to give a one-parameter group of
automorphisms of G, which we still denote by {4,}. Let us fix a bi-invariant
Haar measure dg on G ‘(which is transported by exp from a Lebesgue
measure on ®). Then for fe I} (G)

(3-2) [f(Cg) = r“ng(g)dg,

G

9 o Qtndia Mathematica T YXIX 2
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Z a

respect to the dxlatlons 8,0).
A measurable function f on G is said to be homogeneous of degree

PeR if

(3.3) 169 =r"1

almost everywhere in G. If f is also locally integrable, then

[f @) oG.91dg=r"2""[f(g) ¢(9)dg

for @& %(G). This motivates us to call a distribution Te f‘/”*(G) homogeneous
of degree 0 if

34 (T, 906,> =r"27(T, 9>
for e %(G) and r > 0. Let us also define
(3.5 6, T, 0> =<T, pod,>

for Te *(G) and @e@(G). Since every Xe® can be regarded as a
distribution supported at e, (3.5) can be understood as an extension from ®
to 9*(G) of the dilations {3,}. It follows immediately from (3.4) and (3.5) that
Te 9*(G) is homogeneous of degree —Q—0 if and only if §, T=rT for
r > 0. In particular, the elgcnvectors X; of A are, by (3.1), homogeneous of
degrees —Q—a;, j=1,

The exponentlal map mduces an 1somorph1sm

2(G)af rfoexpe 2(6)
9*(G) and 2*(®). The distribution

where Q = Tr(A) > n is called a homogeneous dimension of G (with

and hence also an isomorphism between %
corresponding to Te 2*(G) is
(3.6) D (G)afi> (T, foexp ' HeC

and it will be denoted also by T. A Te 9*(G) is said to be temperate if it is
temperate as a distribution on ®, in the above sense.

The group of dilations {§,} on ® induces a group of dilations {6} on
the dual vector space ®* by °

&7 BFE X> =4, 6, X)
for Xe®, £e®* and r > 0. We also have
(38) (fod)* =r 2fosy

for fe It (®) and r > 0, where f denotes the Fourier transform of f; as defined
in Section 1. Using the above definitions it is elementary to prove that if Tis
temperate and homogeneous of degree 6 with respect to {6} then T is
homogeneous of degree —Q—6 with respect to {6*}.
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A homogeneous ‘norm on ® is defined to be a continuous positive
function || on ® which is smooth away from 0, homogeneous of degree 1,

and such that | —X| = |X] and |{X| =0 only if X = 0. Any such a norm satisfies
(3.9 /onxi <ixi<clxjs  for  1X|I<1,

(3.10) (/O +IXIDY < 1+1X] < CA+(IXD,

(3.11) | X+Y| < C(X|+]Y])

for X, Ye® and some positive constant C. By ||+]| we denote an Euclidean
norm on G (cf. [10]). To show that homogeneous norms exist define
(3.12) ‘ (X[=¢ if [I9-,XI=1.

The implicit function theorem implies smoothness of || on ®\{0} and the
other properties are obvious. Note that by a proper choice of an Euclidean
norm in (3.12) we can make the homogeneous norm defined by (3.12) to be
invarianf under reflections with respect to the eigenvectors X; of 4. More
precisely, if ||-|| is such that {X;} is an orthonormal basis, then the homo-

geneous norm (3.12) satisfies
(3.13) p; (I = |X],

where p; are linear transformations of & defined by
n

pi( T wXy)=
k=1

for X =) o, X, € ® and 1< j <n. We also define a homogeneous norm on &

by lexp X| = |X| for Xe®. It is clear that |-]| is continuous and positive on
G, and smooth away from 0. It is also homogeneous of degree 1 and satlsﬁes

Z a Xy —a; X;
k#j

“lg” Y =lgl, and |g| =0 only if g =e for geG.

The following definition seems to be a natural generalization of the
notion of a stable semi-group of measures on the Euclidean space (cf. [9],
Chap. IX, § 6).

DeriNITION 3.14. Let G be a connected, simply connected' nilpotent Lie
group with a family of dilations {J,}. A continuous semi-group of measures
{1} on G is said to be stable (in the strict sense) with respect to {3,} if there
exists @ > 0 such that '

(3.15) O by = lg,
for r, t > 0. If it is so, @ is called the characteristic exponent of the semi-
group {4}

This property can be also formulated in terms of the infinitesimal
generator:

PrOPUSITION 3.16, Let {1} be a continuous semi-group of measures on G
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and let P be its infinitesimal generator. Then {y} is stable with the characteris-
tic exponent O if and only if P is homogeneous of degree —Q—0.

Proof. For a given r > 0 let us consider the distributions &, P and ’ P,
It is clear that they both are dissipative and the semi-group generated by 4, P
is 15, 14}, while the one corresponding to r* P is {v,}, where v, = p, for ¢ > 0.
By the uniqueness theorem (cf. Section 2) §, P =r' P if and only if 3,4 =,
= py, for every ¢ > 0. Since this holds for every r > 0, the proof is complete.

Remark 3.17. If a continuous semi-group {4} of measures on G is
stable, then g (t > 0) are probability measures. In fact, (3.15) implies 4,
=0,y for 1>0, 50

L (G) =<, 1) = {py, 1) = const.

Hence, by (2.3), 1(G) =1 for t > 0.

The definition of a dissipative distribution on a Lie group (cf. Section 2)
is given in terms of the underlying manifold, so it does not depend on the
group structure. We shall make use of this simple observation in the
following

ProrosiTioN 3.18. Let G be a connected simply connected nilpotent Lie
group and & its Lie algebra. Let P be a dissipative distribution on G. Then P
is temperate and the Fourier transform = P of it is a continwous function on
®* such that
(3.19)

(3.20)

Re (&) <0 for

&' is positive definite in G*.

fe G*,

Proof. According to the above remarks, it follows from (3.6) that P
regarded as a distribution on & is dissipative, so Lemma 2.4 implies P is
temperate. Then (3.19) follows from (2.5) applied to the characters of the
abelian vector group ®. Further, let {4} be the continuous semi-group of
measures with respect to the abelian convolution on & whose infinitesimal
generator is P. Then i, (£) =¥ and since y, are positive, we get (3.20).

4. Estimates for the Fourier transform of a dissipative distribution. In this
section we work in n-dimensional real vector space Vendowed with a family of
dilations {6,}. We choose a basis {¢;] of the eigenvectors of {4,}, so that

(S,. (fj = raj ej
for 1< j< n The non-isotropic length of a multi-index « is defined by

[o] = _Zl 4,9
i=
We shall also denote
=
n

for Vax =Y x;e, We start with recalling a well-known fact.
i=1
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ProrosiTION 4.1 Let K e 9*(V) be homogeneous of degree —Q—0 and
such that restricted to V\{0} is a Radon measure. Then there is a measure ¢
on the unit sphere ¥ = {xeV: |x| = 1} such that for all f locally integrable on
v\ {0}

[ f(x)K(dx) =}r"1“"dr { f(8,5)0(ds),

as|x|<h >
where 0 < a < b < oc. Moreover,

4.2) . fx*o(dx)=0

for all [a] = 0.

Recall that by a cut-off function we mean a [0, 1]-valued pe ¥ (V)
which is equal to 1 in a neighbourhood of 0.

ProrosiTioN 4.3. Let K satisfy the assumptions of Proposition 4.1 and let
¢ be a cut-off function. Then

10%(6 + B)(&)] < Co(1 +1E)° =+
for all & such that [o]# 0 and ¢eV*. Here t, =max (1, 0), teR.

Proof. First assume [a] < 6. Then the distribution x*K is homoge-
neous of degree —Q—0+[a] < —Q and so by Prop. 41 x*(K—¢K) is a
bounded measure. Hence its Fourier transform

Emd (R—¢+K)(0)
is a continuous and bounded function. Since (/3*13 is smooth, K is a

continuous function, too. As it is, of course, homogeneous of degree 6—[o]
we have

(@ * K) ()] < G (1+[8)° "™

for some C, >0 and &e V*.

The case [a] > 0 is similar. In fact, then x* K is by Prop. 4.1 a bounded
measure on any compact neighbourhood of 0. This implies x*@K is a
bounded measure, so

1@+ K) (&) < C,

for some C, >0 and &eV*. This ends the proof.

The case when [«] = 0 is a little bit more complicated and the estimate
obtained is worse. Nevertheless it is sufficient for our purposes. We shall
need the following easy lemma.

LEMMA 4.4. Let u be a compactly supported distribution on V, f a function
in & (V) and h a smooth function of polynomial growth on V. Then

(uxf)xh=ux(fh).


GUEST


126 P. Glowacki

If, moreover, u is a measure such that
FIRG) |l (dx) < oo,
then also
(uxf)xh = p*(f*h).
Note that if P = P* is a dissipative distribution on
(P9~ (&) = (= P@) = P©F
for £eV* and 0 <k <1 (cf. (2.18), (3.19)).
PrOPOSITION 4.5. Let P = P*e &* (V) be dissipative and homogeneous of
degree —Q—0 and let ¢ be a cut-off function. Then
lim [ |x|*leP—8"(dx) < o
210 e<|x|<1/e
for a> b0, 0<b<1
Proof. For r > 0 set ¢,(x) =
integral

¥, then P(£) < 0 and

@(d,x). We have then to show that the

Ly = J1x*(@1n— @) () [P — 5" (dx)

has a fipite limit when n tends to infinity. Denote by K, the Fourier
transform of the locally integrable function x—|x|*. K, is homogeneous of
degree —Q—0 and smooth away from the origin, and so by Prop. 4.1 it
decomposes

. K, = Ka'l'maa
where K, is compactly supported and m, is a measure such that
[P Im,| (dE) < oo

for p <a. Therefore, taking the Fourier transforms of the distribution
|@P—6| and of the function

XX (10— @) ()
2(V), and applying Lemma 4.4 we get
I, = {K,, (@1/n“¢n)*|1»“7’*ﬁ]b>
= (Ray Guyu*lL =G x P>+ (g, By xI1—G 2 PPy~
— <Ky, Guxll—G PP,
Since @,,, is an approximate identity in & (V*) and the function
EmLl—g PP

is smOch and bounded by (1 +|¢))*°, b6 < a, the first two terms of the right-
hand side of (4.6) tend to <K,, |1 —@ »P|*>, so that we have to deal only with

which belongs to
(4.6)
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the last one. Because @, =3, and §,(¢ * P) =
have

4.7

8, ¢ %6, P (cf. (3.5), (3.8)), we

Ky Gurll =G % PIP> = (K,, 3,(¢ x|1—n2+05,, 6% PP

b .1 -~
= P8 (K (p*|—-——ng+0—(p‘,,,*P]”>.

Of course, we have made use of homogeneity of both K, and P. Using again
the fact that ¢,,, form an approx1mate identity and decomposmg K, as above
we can see that
' b

lim <K,, fr >= (Kan & %1PP

n—w
and consequently by (4.6) and (4.7)

lim I, = <K,, [L—@* P>

n o

1 . .
Q+0 ¢1/n*P

which ends the proof.
Before drawing conclusions from the above proposition we shall state a
lemma. The proof of the lemma which we omit is based essentially on (4.2).
LemMMma 4.8. Let P be a dissipative distribution on V. Assume P to be
homogeneous of degree —Q—0. If 6 = 2a, for some 1 < k < n, then P admits a

decomposition
49) ==Y C;07+8,
Jjely
where I, = {j: ayj=a}, C; >0, and § is dissipative and such that the semi-

group generated by it is supported in the linear space spanned by e;, j¢l.
ProposITION 4.10. Let Pe %*(V) be dissipative and homogeneous of

- degree —Q—0. Let @ be a cut-off function. Then for every e > 0 there is a

constant C such that
1% (¢ * P) (O < C(1+]¢lF
Jor [«] =6.
Proof. There are only two possibilities: either 6 =a, for some
<k<n or 0 =a,+a; for some 1 <i, j<n. Assume first & =a,. For a

given ¢ > 0 set b= l—g. Then by Prop. 4.5

Bl-@=PPEI<C
for some C >0 and &eV*, whence

136 % P < (%)Il—(ﬁ*f’(é)l“" <C(+ily

for ¢ V* and another constant C' > 0. '
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Now, let 0 =a+a; for some 1<i, j<n. Since 0<2a, for every

1 <r < n(see eg. [9]) it follows that a; = a; = g for some 1 < k < nand we
can apply Lemma 4.8 to obtain the decornposnlon (4.9). According to the
same lemma

R(*8)(&) =
for {eV* and so we get
(¢ P)(&) = ~2C,
_where C, is the constant occurring in (4.9). The proof is now complete.

5. The main theorem. The Heisenberg algebra of dimension 2n-1 is

defined to be a (2n+1)-dimensional Lie algebra (5 with one-dimensional |

center 3 and such that [®, B] = 3. On the Heisenberg algebra there exists
an alternating (symplectic) form ¢ such that [x, y] = o(x, y)zo, Where z, is
a fixed non-zero element of 3. (Henceforth we shall use small letters x, y, z to
denote the elements of ®.) Let us choose a linear complement Wto 3 in ®.
By the above, o restricted to Wx W is non-degenerate. From the properties of
alternating forms it follows that there exist n-dimensional subspaces ¥, V* of
W such that W= V®V* and ¢|Vx V=0, ¢|V*xV* =0. Then

5.1) Vx V¥a(x, &) xt =a(x, £)eR

defines a duality between V and V*, and

(52) o(w, v) = yd—x1,

where w = (x, §), v=(y, e W=V@RV*
Having chosen 0 # z, € .3 and the complement Wto 3 we can identify &
with its dual &* by means of the non-degenerate bi-linear form

(5.3) Bw+tzy, v+520) = o (W,v)+1s,

where w, ve W, t, se R. Moreover, both & and &* can be identified with
W®R. In terms of the above identification the annihilator‘

3r={xe®x6G* f(x,2)=0, ze3)

is equal to Wand the Fourier transform of a function f& % (%) (cf. Section 1)
is given by the following formula

(5.4) flw, 1) = [ [e#esiwn f (v, 5)dvds
W R
for (w, e WOR = 6 x~ G*.
It can easily be seen that & admits dilations. In fact, choose a basis
{x;}}=y in V and a basis {x,4;}]~; in V* dual to {x;} with respect to the
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pairing (5.1). Put also x3,41 =2o€J3. Then {x;}#21! is a basis for the vector
space ® and satisfies

(8-5) [xj’ Xn+j:|=x2n+1: j=1..,n
the other brackets being zero. Now we define a family of dilations in & by
(5.6) 8% =1Tx;,  I<j<2n+1,

for r > 0 and positive numbers g; satisfying: min a;=1 and

1sjs2n+1

(5.7) At Que;=agper =4, 1<j<n

This is in fact a general form of dilations in ©®.

The homogeneous dimension of % with respect to the dilations (5.6) is
2nt+1

0= Z a; =(n+1)a. Note that ¥, V* (and hence W) are invariant under

the dllatlons According to (3.7) and (5.3) we have

S¥x;=r"tx, 1<j<n,

(5.8) 5% =1 %0, 1<j<on

a1 r>0

OF Xapt1 =T
From now on let & be the (2n+ 1)-dimensional Heisenberg algebra with
a fixed family of dilations {§,}. Suppose that 0 # z,e 3 and a complement
W=V@®V* to 3 in ® are chosen and fixed. We shall assume V'and V* to be
invariant under {4,] and such that g{VxV=0=¢|V*x V* Note that a
choice of W and z, determines the bi-linear form g (cf. (5.3)) so the meaning
of the identifications & = G* =~ WOR is clear. Moreover let |-| be a homo-
geneous norm invariant under reflections with respect to the eigenvectors of
the dilations (cf. Section 3).
The simply connected, connected Lie group G corresponding to ® is
called the Heisenberg group. According to the Campbell-Hausdorff formula
the group law in G is

exp (w+1zo) exp (v+5z0) = exp (W+v+(t+s+30(w, 1)) 2),

Xyney fOr

where w, veW, s, teR.
The irreducible unitary representations of G are described in the fol-
lowing way. The one-dimensional ones are just the characters:

(5.9) Xw(eXp (0+2)) = €7,

where we 3* = W< 6%, ve Wand ze 3. The other irreducibles are infinite-
dimensional. They can be realized on I?(V) and parametrized with 1€ R\ {0}.
The following realization is convenient for our purposes. For A= +1 set

(5.10) Thmen @ (1) = e 3 R g (1~ ),
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where (x, &, 2)e VOV*OR = 6, teV, , 9 e2(V). Now for arbitrary non-zero

AeR we define
(5.11) T = Tf'a“'}f(w 1109

(cf. e.g. [20]): Recall that for each 4 5 O the space of smooth vectors for n* in
I2(V) coincides with the Schwartz class &(V). Let us denote by G the set of
all unitary irreducible representations of G. All the above notation of this
section will be kept and often used without any additional explanatlon

The following two propositions give some information about images of
distributions on G in representations

Proposition 5.12. Let P be a dissipative distribution on G. If P is
homogeneous of degree —Q—0, then

n*(P) = [ 4 (P).
Proof. It follows immediately from (2.6), (5.11) and the homogeneity
of P.

ProrosiTION 5.13. Let T be a compactly supported distribution on G. Then
for every real 2 # 0

geG

a*(T) = a3 (x, D)
(see (1. 6), (1.7)), where

a(x, §) =
for (x, eV V* =W.

Proof. Let fe #(G). For real A of modulus 1 and @& % (V) we have
by (5.10)

=" (N el () = £ 1 (9)(mg @)(1) dg

= _"f(x, é; Z) n:‘xp(x,l:,z) (P(t) dx dé dZ
®

T(sgn A8t 1% 017065 A)

§f(x, ¢ 2) ""“é"“"’(p(r—x)dxdz;dz
R

[
v*
1,4
j [f(t—x, & 2?7352 o (x) dx dé dz
V%R
)
.

X F (x, p)dx dn,
where

211(;+t)§‘ii.yn-0-ilz dydf dz

&z

fw, ¢ 2) eU’(.M =|2‘-(x+1) 'bl)dy dtdz

!
1.l
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£

Hence by (1.1) the symbol of n*(f), 1= +1 is
' a,(x, &) =JUx, &, 3).
Now, by (3.8), (5.11) and the above the symbol of =*(f), AeR\{0}, is
a,(x, &) =47V (f08,,1,,)" (sgnix, ¢, sgnd)
=f (5;l1,,,(sgnlx, ¢, sgn l))
=f(sgn/15;';|x,,, X, 6;‘;11,,, g, ).

To deal with the case of compactly supported distribution T note first
that the Fourier transform of T is a smooth function on ®* and satisfies

1% & Tow, D) < Cope (1A + 1wl

for aeN*, keN, (w, )e WDR and some C,,>0, NeN.
T(-, )eS(n,) for every AR\ {0}, where

na (W) = (L+ A1+ [wl™)
is a weight. It is clear that there exists a sequence f,& ¥ (G) satisfying
(5.14) lim {fp, 0> =<T, ¢>

Therefore

for eC%(G) and such that for each AcR\ [0} the sequence f,(-,4) is
bounded in S(ny). (5.14) implies =*(f;) converges weakly on &(¥) to 1:"(T)
for 4 # 0. On the other hand it implies /,(-, A) converges pointwise to (-, 4)
on W for all 1# 0. Therefore, in view of Cor. 19 and the above, our
assertion follows.

In what follows we shall need weights related to the homogeneous
structure of G. Let us restrict the dilations {6,} to W< ®. Then the
homogeneous dimension of Wis g =(n/n+1)Q =na and (w| =|w, 0) is a
homogeneous norm on W. Set

(5.15) m; (w) = |(w, 4)|

for we W, Ae R\ {0}. It is not difficult to see that due to (3.10), (3.11) m, is a
weight in W. Moreover, all the weights m,;, A # 0 are equivalent. We shall
work with m; = m. From now on m is fixed.

Let us remark that if p> g, then 1/me E(W). Note also that m is
smooth and belongs to S(m). Moreover, it satisfies (1.18), (1.19), so the
hypothesis of Cor. 1.24 is fulfilled.

Now we are going to prove our main theorem.

THEOREM 5.16. Let {p,} be a stable semi-group of symmetric measures on
the Heisenberg group G. Let Pe %*(G) be its infinitesimal generator. Then the
following conditions are equivalent:

(i) n(P) is injective for neG\{1}.
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(i) p, are absolutely continuous (with respect to the Haar measure on G)
for t>0 and their densities are square-integrable.

(iii) p, are absolutely continuous for t > 0.

(iv) supp p, =G for t > 0.

Proof. Denote by @ the characteristic exponent of [ ]. We begin with
the most important implication (i) = (ii) the proof of which will be carried
out in several steps. The first step is to show that there exists €' > 0 such
that

(A) |P(w, ) = Cw’

for AeR and |w| sufficiently large. We shall prove (A) only for positive 4 as
the same proof is valid also for A < 0. Set Y (w, A) = P(w, A). ¥ is a continuous
function on G* = Wx R. It is homogeneous of degree () and ¢ is positive
definite (Prop. 3.17). Suppose first i (w, 4) # 0 for all (w, ) such that 2 > 0.
Then
W (w, Al = Clw, 2)°
for (w, A)e Wx R, 1= 0, where C = inf
{(w,)|=1,420

and (i) applied to one dimensional representations of G, C is strictly positive.

Let us now assume there exists a pair (wy, 4g)e Wx R such that 15> 0
and Y (wg, Ao) = 0. Then the inequality valid for any positive definite func-
tion f:

|y (w, 4)|. By our assumption

(= W2 <2 OLS (O —~Re £ (x—)]
applied to f(w, ) =e&'™A x=(wg, dg), ¥ =(W—wo, 0) yields ¥ (w, i)
= (w—wy, 0) for we W whence.

W (w, Ao)l = I (w—wo, O)] = Clw—wol°
for we W. As above, (i) implies C = inf |¢(w, 0)) > 0. Finally, by homogene-
ity of Y we get =

W (w, Ao)l = I (w—wo, O)] = Clw—wo|’
for we W and A2 0. Thus for |w| sufficiently large (A) holds. *
(B) For every real A#0

m*(P) = a}(x, D)+ T,

where a,€S(m’) and T, is a bounded operator on I?(V¥). Moreover, a,
satisfies (1.18), (1.19).

Let ¢ € 2(G) be a cut-off function. Set § = P. By Lemma 24 y= P~S§
is a bounded measure, and so T; = n*(y) is a bounded operator on I?(V) for
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J€R\{0}. Now, look at the symbol of =*(S). Since S is compactly supported,
the symbol is by Prop. 5.13 smooth and equal to
(5.17) 4 (x, &) = G P(sgn 268 110%, 8%y1as )

for xe ¥, £eV*. Since P is homogeneous of degree 0 with respect to the
dilations {§¥}, it satisfies

|P(w, 2) < Cmi(w)
for we W, AeR\ {0). Hence for any fe & (Wx R)
[/ P(w, A) < C'mi(w) < C"m®(w)

which implies a, €S (m®). The Fourier transform of the measure = P—S is a
continuous and bounded function. Therefore also § satisfies (A) and by
homogeneity and invariance of |-| under reflections we obtain

la, (W) = Cwl®

for |w| sufficiently large and some C > 0 which proves (1.18). At last, Prop.
4.3, Prop. 4.10 and (5.17) show that a, satisfies (1.19).

(C) For every A # 0 n*(P) is essentially self-adjoint, its spectrum is discrete
and

(5.18) Y

z ESpn"( Py

2|77 < o0

for p > nQ/(n+1)8 = na/d. The domain of n*(P) is equal to H(m).
Fix 1 # 0. Denote by R the resolvent operator for n*(P) at z = 1. By (B)
and Prop. 1.25 (i) n*(P) is self-adjoint if only 1/m®e I?(W) for some 1 < p < c0.
This is the case for p > nQ/(n+1)0. Moreover, by Prop. 1.25 (iii), Re C, (I (V))
for such p. Hence the spectrum of n*(P) is discrete and by (1.20)

2 ldTP<C(R)? <o
0#=zESp1c}“(P)
for p > nQ/(n+1). But since n*(P) is injective, 0 ¢ Sp n* (P) and so (5.18) holds.
The last assertion follows from (B) and Proposition 1.25 (ii).
Denote by z} the eigenvalues of n*(P). Due to Prop. 5.12 we have
(5.19) = (A L0, j=1,2,...

By our assumption on P, z} are real strictly negative numbers.

(D) For every t > 0 y, is absolutely continuous, its density f; is square-
integrable and .

kel
illZ2gy = Ct™%° 3 2172 +1z7 17",
i=1
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where

_ Q
Y

In fact, n*(P) is the infinitesimal generator of the strongly continuous
semi-group of contractions {m*(w)} on IZ(V) for every A # 0. Thus, by (C),
7*(u) is a Hilbert-Schmidt operator (¢ > 0, 4 # 0) and

Z ez:zj

Hence, by the Plancherel theorem for the Heisenberg group, it is sufficient
to show that the integral

(5.20)

C=

rQ/o).

Nl (il =

o lim? (ullis 1417 dA
Ri(0}

-is convergent. Then its value will give a square of I*-norm of f;. We have

! Il ()i 141" dA = j Z e 4 da

—wj 1

= j" Z ‘,c.ZIIi-lw"'z‘jE"'lM"nd}h
oy j=1

%

- z ([ ez:A"/l’z} A+ [ g2y An di)

j=1 0

After thc change of variables v = 2M“"’ (5 20) is equal to

S92 3 (=211 [votevay
j=1

1
+10

By (C) the series on the right-hand side is convergent and so (D) is proved.
This also ends the proof of the implication (i) =-(ii). The remaining impli-
cations either are trivial or were proved under much more general assump-
tions in Section 2 (Lemma 2.23). Therefore the proof. of the theorem is
complete.

Remark 5.21. The proof of (C) shows that assumption (i) can be
replaced by the following, a priori weaker, conjunction:

r(Q/6)(26)7% Z (21790 +|zj 172").

(5.22) Pw,00#0 for O#weW
and
(5.23 7*(P) restricted to H(m’ is injective for A = +1.
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In the following corollaries we assume that a stable semi-group of
measures g, =f,dg with a characteristic exponent 6 and its infinitesimal
generator P satisfy the hypothesis of Theorem 5.16 together with one of the
equivalent conditions (i)}—(iv).

Let Q be a dissipative distribution on G. In the sequel the operator
of left convolution with Q will be denoted also by Q ie, we shall write

Q =f = Qf for functions f on G.

CoroLrARY 5.24. Each f,, t >0, is an analytic vector for P actzng on
Z(v).
Proof. It follows immediately from Theorem 5.16 and Proposition 2.25.

CoroLLARY 5.25. Let Q€ 9*(G) be dissipative and homogeneous of degree
0. Then there exists a constant C such that

(5.26) 101,26, < CIIPfl 206,
for fe 2(G).

Proof. By the Plancherel Theorem and homogeneity of P and Q (cf.
Prop. 5.12), it is sufficient to show that

7 (@Nlas < Cllm (P

for fe 2(G) and some constant C, where the unitary representation n of G is
equal either to n' or to =~'. This, in turn, is implied by the inequality

(5.27) @ ull, 2, < Clim (Pl 5,
for ue 2(Vv) E'LZ(V). We shall show that the operator 7(Q) ;z—(l—’j“ (cf. (C)

is bounded on I?(V) which, of course, will give (5.27).
Let ¢ be a cut-off function on G. Then by (B)

n(P) =n(pP)+T,

where n((pP)é_T(m”), Te £ (IZ(V)). Again by (B)vand Cor.1.17 there exists
Be #(m™% such that

Br(oP) =I+5,
where Se % (m™°. Therefore ,
B=Br(P)n(P)~! = 'i(‘zﬁ*ﬁsﬁ-?wrﬁﬂ
whence | ' ‘
#(P~* = ST, +BT,,

where B, Se #(m~% and T, T, are bounded on I?(¥). This together with

Theorem 1.13 implies n(Q) =(P)~! is bounded and thus the corolliry is
proved.
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The estimate (5.26) implies that the densities f;, ¢ > 0, are smooth to a
certain degree. In fact, let {X;}2"* ! be a basis of the Lie algebra (% such that (5.6)
holds and, moreover, Xj*f Dif, f*Xus;j=Duejf, Xons1*f=Dspuy,
1 <j < n, where D, stands for the usual partial derlvatlve Then (5.26) together
with Cor.5.24 imply

D" f, e I2(G),

where |D,J* = [D|¥* (see (2.18)). In other words, if || denotes a homogeneous
norm on G*, cf. (3.7), then the functions

G*3¢-18°0(8), >0,
are square-integrable on &* and therefore f; belong to the Sobolev space H*
with ¢ = 0/a.
We do not know whether it is generally true that eg. f,e C*(G).
COROLLARY 5.28. Let Qe ¥*(G) be dissipative, symmetric and homoge-
neous of degree 0. Then the semi-group of measures generated by P+ Q consists of
absolutely continuous measures.

Proof. According to Remark 5.21 it is sufficient to show that P+Q
satisfies (5.22) and (5.23). By (3.19) we have

(P+Q)" (w, 0) = P(w, )+ 0 (w, 0) < P(w, 0) <0

for w 5 0 and so (5.22) is satisfied. Now, let = = n*! and suppose there is a

function ue H(m? such that n(P+ Q) u =0. Then by Lemma 2.4, (2.7) and
Cor.1.24

t>0, 1<k<2n+1,

. (%T}T)u, u>+<;@u, uy = <n(P+Q5u, uy =0.

By (2.11) this implies <{m(P)u,u) =0 and since n(P) is self-adjoint and
negative definite, we get m(P)u =0 and consequently u =0 which proves
(5.23) for P+Q.

The next corollary shows how to produce a good deal of semi-groups
satisfying the conditions of Theorem 5.16. It gives a partial answer to
Problem 1 of [13]. It also improves significantly the result of [11],
Theorem 4.2.

+  CorOLLARY 5.29. Let {u,}€(S) be a stable semi-group of measures on G.
Let P be its infinitesimal generator. Then y, (t > 0) are absolutely contimuous
with square-integrable densities if and only if Gp = & (cf. (2.21)).

Proof, This is an immediate consequence of Proposition 2.22 and
Theorem 5.16.

We end with two simple examples. Let {X;}3"*! be a basis for the Lie
algebra satisfying (5.5). Set

2n

(5.30) P=-% }ng“f,i
j=1
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where 0 < o; <2 and 1/g+1/o,; = Lo,y for 1<j<n Let
6 = max {x;). Then P is homogeneous of degree —Q—0 with respect to

1<j<2n . .

the dilations
5,Xj—r6/“X 1<j<

It is clear that Pe(%) and Gp= 6.
Another example is that considered in [11], Theorem 4.2. Set

P= (jz:l X-’?)(u)+(j§1 X3+j)(ﬁ)’

1. Let 8 = max(«, B) and define the dilations in G by

5r Xn+i = rO/ZK Xn+i: 6r X2n+1 = r9(1/21+1/2ﬁ) X2n+1

2n+1.

(5.31)

where 0 <o, f<
5rXi =r0/2¢Xia

for 1 < i< n Then P is homogeneous of degree —Q—6, Pe(¥) and Gp = 6.
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On the order-topological properties of
the quotient space L/L,

by
WITOLD WNUK (Poznat)

Dedicated to Professor Wladyslaw Orlicz
on the occasion of his 80th birthday

Abstract. The first part contains some theorems about the order-topological properties of
the quotient space of a o-Dedekind complete and intervally complete locally solid Riesz space
(L, ) by the largest ideal L, such that 7]L, is a Lebesgue topology. These theorems are a
generalization of some Lozanovskii’s results from [7] and our proofs are slight modifications of
Lozanovskii’s methods. In the second part it is presented a very simple proof of the fact that I/L¥ is
an abstract M-space (I¥ denotes a Musielak-Orlicz space and I its subspace of elements with
absolutely continuous norm). A broad class of Orlicz spaces I? whose quotients L7/L%, have no weak
units is also indicated.

Let (L,t) always denote a Hausdorff locally solid Riesz space. As
concerns the terminology of Riesz spaces (= vector lattices) and locally solid
Riesz spaces, we refer to [1]. Moreover, for xeL, let C(x) be the set of
components of |x|, i.e,

C(x) = {peL: p n(x|—p) =0}.

The projection onto the band generated by an element xeLwill be denoted
by P,.

1. General case. The theorems presented below were formulated, for
Banach lattices, by G. Ja. Lozanovskii in [7]. It appears that Lozanovskii’s
results remain true also for intervally complete (L, 7) with L being o-Dedekind
complete. Lozanovskii uses in his proofs some facts which are interesting in
themselves and which are not proved in [7]. We separate these facts and give
their complete proofs under essentially weaker assumptions (Lemmas 1, 3 and
6). The main parts of proofs of our more general theorems are practically the
same as Lozanovskii’s proofs, but for convenience of the reader we indicate
them.

Distinguish the largest ideal L, in (L, 1) such that 7L, is a Lebesgue

.topology, ie.,

L, ={xeL: lx'l > x, | 0 implies x, 5 0}..
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