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On weighted norm inequalities for the Riesz
transforms of functions with vanishing moments

by
ERNST ADAMS (Austin, Texas)*

Abstract. Let R,f be the k-th Riesz transform of f and 1 <p < 0.
A necessary and sufficient condition is obtained for a weight function u to satisfy

§IRS (Pu(x) dx < CJIf GaPu()dx, k=1,...,n

for all f with jx“ f(x)dx =0, |f]| < N for some fixed nonnegative integer N.

This characterizes all doubling weights u for which the Riesz transforms are bounded on
So.0 in Lf norm.

1. Introduction. This paper contains the generalization to higher dimen-
sions of the results of [1]. We refer the reader to that paper for historical
remarks. Before we can state the main theorem we need some notational
background.

A weight w is a nonnegative measurable function. For 1 < p < oo it is
said to belong to the class A, if

sup Q™ P(fw)(fw* 7P~ < o0,
2 o
the sup being taken over all cubes Q in R", p’ = p/(p—1).
For k>0 we let P, be the set of polynomials in R* of degree not

exceeding k and P_; = {0}.
To a given set of points p; and positive integers my, j=1,...,J we
J

associate the space Py with M= ) m;—1.
By Ry we denote the set of 1j)=o]1ynomials R in P, that satisfy
D'R(p) =0, Pl <my,j=1,..J.
For a nonnegative integer N we let

Ly={feL': [If (1 +[x)¥dx < o0, [xf(x)dx =0, |f| < N}

* This paper containg the main results of the author’s doctoral dissertation written under
the direction of B. Muckenhoupt.
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and L_, = L. The subspace of Schwartz functions whose Fourier transform
has compact support not including the origin shall be called S, .
The k-th Riesz transform of f, R, f, is defined by

Rf () = Jf(x—y)my,,—’;—ldy.

Now we can state our main result.

THEOREM. Given p, 1 < p < o0, and a nonnegative integer N, a weight u
satisfies
(L1) JIRf (x)Pu(x)dx < CfIf (Pu(x)dx, k=1,...,n
for all fin Ly if and only if u is of the form

(1.2) u(x) =(1 +IXI)””""'M’jI_J_[1 [x—pj|P™ w(x)
for some positive integers m;, —1 < N, S‘N, p; in R, j=1,..J, M
= Zj_‘, m—1,
=1
(1.3) Py,URy  spans Py,
where Ry corresponds to {(pj, m): j=1,...,J}, and
(1.4) w s in A,
(1.5 wiA+xPC™ s in A, if Ny=0,
1.6 - wXx—pfPt=" s in A, j=1,..,J.

Note. If No= —1, Py, = {0} and (1.3) forces M = —1, hence J =0
and u is in A,, which is the well-known case.

To see that this theorem is indeed a generalization of the one-
dimensional result, we first remark that Ry, = {0}, if n =1 or J = 1. This will
be shown in' Section 2. Hence (1.3) can only hold if Ny > M, so that m,

J

= Ny—M is nonnegative, my+ Y. m; = Ny+1 < N+1, and
i=1

J
u(x) = (1+|xl)""‘°}lj[1 Px—pj""iw(x).

In one dimension this is equivalent to |gq(x)Pw(x), g a polynomial of
degree No+1. Also the three conditions (1.4), (1.5) and (1.6) coincide if n = 1.

Condition (1.3), which is nontrivial only if Ng <M, n>1 and J > 1, is
somewhat obscure, and it seems hard to determine, whether Py URy spans
Py for a given N, and a set of pairs (p;, m;).
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In general it does not limit the number of zeros to N+1 as in the case
of one dimension. If the p;'s are distributed appropriately and if the cor-
responding orders m; are not too big, then Ry, is a rather large subspace of
Py, since the number of conditions on R in Ry, depreases as the ms
decrease. Thus it is conceivable that R,, together with P,‘,o spans P,,.

An example of such a situation is given in R® by No=1,p,=(1,0,0),
p2=(0,1,0), py =(0, 0, 1), mi=1,j=1,2,3, hence M = 2. First we can
easily determine the dimensions of P, and P, as 4 and 10, respectively.
Counting conditions we see that R, has dimension 7. Since, up to a constant
factor, there is only one polynomial, p(x)=1-x;—X;—x3, in P, that
vanishes at the p/s and hence is in R,,

dim (P; UR,) = dim P, +dim R, —dim (P, ARy) = 10,

so that PyUR, spans P,.

Although the number of p;s is not limited a priori, the orders m; cannot
exceed Ny + 1. If otherwise, say m, > N+ 2, we use Lemma (2.10) of Section
2, which for given y, |y| < m,, guarantees the existence of a polynomial P in
Py, with D'P(p,) = 1. Taking |y| = No+1 gives a contradiction.

In the special case that all p;’s lie on one line, we can show that as in
one dimension, M <-N,. To see this first note that we can assume that the
pi’s lie on the x;-axis. This follows from Remark (3.9) below.

Then let gq(x;) be an arbitrary polynomial of degree not exceeding M,
and g = P+R, Pin Py, R in Ry, The restriction of P to the x,-axis, p(x,),
is a polynomial in one dimension of degree at most N, and it satisfies

M) =q®@n), k<m,j=1,..,J.

These are M +1 conditions on p(x;), which can in general not be satisfied
unless M < N,. '

Another property of u which was to be expected from the one-
dimensional case, is that u grows slower than [xjpV*+1+m=n 5¢ infinity, in the
sense that

u(x)
(1.7) . J\mmdx < 0.

This follows easily from (1.2) and the fact that T—jf—il)ﬁdx < oc, since w
is in A,. )

Condition (1.7) is also sufficient in a sense made precise by the following
corollary.

CoroLLary (1.8). If a weight u satisfies (1.7) for some integer N = 0, then
(L.1) holds for all f in Sy, if and only if u is of the form as stated in the
theorem. ' )
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If u satisfies the doubling condition, then (1.7) holds for some N, so that
the theorem characterizes all doubling weights for which (1.1) holds for all f

in So,0.

As in the one-dimensional case one can show that some growth con-
dition on u has to be imposed to insure the finiteness of [|f|Pu for any fin
So,0- _

We only mention the result on the unit circle corresponding to the
theorem. The place of the Riesz transforms is taken by the conjugate

function 5
T

f(0)=511—1-Jf(t)cot<0 >dt

0
Then we have the following. Given a nonnegative integer N and p>1, a
weight u on the unit circle satisfies

f Iffru<C flfl"u

for all periodic functions f with f(k) =0, k=0, ..., N, if and only if u(t)
N

=|Z c;ePw(r), where the c;s are complex numbers and w is in A, of
=0

the circle.
For p =2 this was first shown in [4].

2. Preliminaries. Throughout this paper p will be a number greater
than 1.
The class A, was discovered by B. Muckenhoupt in [6]. He showed that

21 wed, if and only if  |If*|lw < CllS My

where f* is the Hardy-Littlewood maximal function of f.
It was soon found that

(22) wed, if and only if |[Ryfll,w <Cllfllpw, k=1,...,n
For a proof of (2.2) see [3].

Some of the consequences of w being in 4, are w'"” ¢ A, and weB,, ie.

|Q}™w (x)
Jlx—qu""+|le dx< C Jw(x)dx,

Q
with C independent of the cube Q and x, the center of Q.
Combining these two facts it follows that

§ wxdx( | w)! "% |x""dxP "t < C for all r > 0.

Il <r Ix[ >

A similar condition is encountered in the characterization of weights u
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and v satisfying either of the following inequalities, both known as “Hardy’s
inequalities”,

(2.3) y[ J" f(y)dy'”u(x)dx C ﬁ £ (X)Pv(x) dx,
(24 I I I f ) dyPux)dx < CI |f (x)Po(x) dx.

In one dimens1on it is well known that u and v satisfy (2.3) or (24), if
and only if for some B

(2.5) [ u(dx( | () rdxpt <
x| >r |x|).<r

(2.6) ) u(x)dx( | v(x)! "Fdxp~! < B,
|x| <r |x]>r

respectively, for all positive r. For a proof see [5].

The same result holds in » dimensions. We do not know of any
reference, so we give a proof of the sufficienty of (2.5) for (2.3) to hold, which
is due to B. Muckenhoupt. Similarly, (2.4) can be shown to follow from (2.6).

We will show that for a given positive function f and p > 1 (2.3) holds if
@7 Ju@dx( | 000" 7 fuppr () dx)P ™1 < C47P.

Ixl <r

|x|>r
Let ¢, be such that | f(y)dy=2*and ¢, = ¢y = ... = 0 if [f< 2%
Iyl <¢
Then the expression on thg left of (2.3) equals

00

28) Y (f fodpuxdx.

k== e <|xl<ep ey Iyl <l

Using that j Sdy < j f(»)dy, (2.8) can be estimated by

Iyl <ex+1 ek— 1 <yl <ei

Yy [ uxdx( [ SOy

k cp<|x| <eg4q Cp—1 <yl <ep
<¥Y | u@de( [ o0 T hupOPT [ (FOIPoG)Y
ke <|x]| Iyl <ex k-1 <iyl<ex
by Holder’s inequality. After using (2.7) and summing over k, (2.3) follows.
The following lemma will be used frequently.
LemMa (2.9). Let E be a measurable subset of R" with positive measure and
O k=1, ..., m be functions in L*(E), linearly independent over E. Then for
every m-tuple (4,)7 of complex numbers there exists « in L®(E) such that

frpk(x)a(x)dx=zk, k=1,....m

If in addition E is compact and the (pks are C*® in the interior of E, o can be
chosen to be C*™.
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The proof is a simple adaptation of the proof of Lemma (2.6) in [2] and
is omitted here.

We will use the following notations.

If not otherwise specified, j, k, I, m, n,J, K, L, M and N will denote
nonnegative integers; f§, y and » are multiindices of order n with nonnegative

integral coefficients f, etc., and for example |f| will mean Y B,.

k=1
We will write the Taylor polynomial of order k of a function g -at x =0
in direction y as

k -~ -~
T(g,y) = Y. (' PVg(0)j!,  where V=(:f~", :(“)
j=0

x4 X
In our terminology a cone around a vector y in R", |y = 1, with openmg

a,0<a<m/2, is the subset of R" containing all x that satisly Z X Ve
k=1

> |x|cosa.

We say that a function f in the Schwartz space § is in S, if {x* f(x)d
=0, |l < k. Note that §,, is a subset of S, for all k.

For + >0 and a function g we set g,(x) =t~ "g(x/1).

The subscripts ¢ and loc as in L! and L}, indicate compact support
or local integrability of the functions considered.

The letter C will always denote a constant not necessarily the same at
each occurrence. We will further need some facts about the existence of
certain interpolating polynomials. Let pj, m;, P, Ry be as in the first section
and {R,: k=1,..., K} be a basis of Ry, We have the following lemmas.

Lemma (2.10). For j=1, ..., J and |y| < m; there exists a polynomial P,
in Py with

211 D'P;,(p) =60y, Iml<my,i=1,..,J.
If PyURy, generates Py, P;, can be chosen to be in PynP,.
CoroLLARY (212). For j=1, ..., J and |y| < M there exists a polynomial

Qj, in Py with

(213) D0, (p) =0, |1l <my,
(219) D"(Q;, = =py) () =0, |yl <my, is].
In other words
197, < Clx”‘Pﬂmj: [x—pj <1
and
10, ) =(x—pPI S Clx~p|™,  |x—p| <1, i#].

If PyURys spans Py, Q,,, can be chosen to be in PynP,,.

icm°
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LemMMA (2.15). A4 basis of Py is given by {P; }, U{R.),.
LemMa (2.16). Ry ={0} if and only if n=1 or J =1.

Proof of Lemma (2.10) and Corollary (2.12). We will prove the
assertion assuming that the first coefficients of the py's are all different. This
can always be achieved by a rotation. A moment’s reflection shows that this
is no loss of generality.

If J =1 the lemma and the corollary are trivial. If J > 1 we fix Jand. y.
Then note that there exist polynomials in x,, g; (x,) and ry(xy), such that
2.17) (x,

—Pj1) Tqi(x) =1+ H (x _P.'1)mi ry(xy)

i#j

and degr; <m;. This is an elementary algebraic fact, which follows from the
above assumption.

Multiplying (2.17) by (x—p;)"/y! gives a polynomial P(x) which can be
written as .

Y (x—p)q,(x) = (x—py)?/y! + n (%4 “Pu)mir(x)-
Inl 2 m; i#j

We can assume that degr <m ;, Otherwise subtract all terms of order > m;
from the last expression on the rlght and include them in the sum on the left.

Then the degree of P does not exceed max(jy|, M). If Ifl<m~1< M,
P(x)—(x—p;)’/y! is the desired P;,, and if we let Q;, =y!P, thcn (2.13) and
(2.14) hold.

The additional assertions are easily verified.

Proof of Lemma (215). Let P be in Py,. Then using (2.11) shows that
7
P—% ) D'P(p)P

sy 18 in Ry. Thus we only have to show that a
=1 |yl <m;

representation P = ZZC“, P;,+Y AR, is unique.
k

But taking D"P at p; gives C;, and the As are unique,

because {R,}, is a basis of R),.

= DP(p)),

Proof of Lemma (2.16). Let C; denote the number of multiindices in
) M

dimension n of order i. Then dimPy = ¥ C;.

i=0
J

M
If Ry = {0}, then by Lemma (2.15) Z C;=Y 3 C, since this is the
i= J=1i<m;
number of P;, s

Since M = Z m;—1, this is only possible if either J = 1 and my =M+

-l-l or 1fn—-1 so that C; =1 for all i.
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On the other hand, if n = 1, then a polynomial R in Ry, has to satisfy

the M +1 conditions

R¥(p)=0, k<myj=1,...,/J,
which implies that R = 0.
Also, if J =1
D'R(p)) =0, Plsm~1=M,

and again R =0.

3. Sufficiency. In this section we show that conditions (1.2) through (1.6)
are sufficient for (1.1) to hold for all fin Ly.

We fix k and let R(x) denote the k-th Riesz kernel, x,/|x|"*!, and Rf
= R«f the k-th Riesz transform of f.

It is easy to verify that for x # 0, [f| < N+1

(3.1 |D# R(x)| < Clx| "7,
This implies that for all k=1,..., N
(32  |[Rx=p)-T(R(x—"),y)| S CIy**Hx7" 5,

We will need the following lemma.

Lemma (3.3). If 1 < p < oo, wed,, then there exists a constant C such
that for all b in R

Iyl < 1.

B4 Jll t I FOIRx—=y)dy|?|x" w(x)dx < C [1f (x)?|x/"w(x)dx.
<yl <2l
Proof. Let I, ={x: 2*<x| <21}, I¥ = {x: 2871 < |x| < 262, f;
=f'X1;~

Then the left side of (3.4) can be written as

fl f

k=l gy <apy

SO R(x=y)dy|?|x" w(x)dx.

Using (3.1) with |f] = 0 this is seen to be bounded by the sum of

(3.5) CY. [IRf . (x)I" 2% w(x) dx,
k
3.6) ) f(l [jl ‘|fk(y)| dyy 24 w(x) x|~ dx,
and
37 c;j(I | fl llfkm» Iyl™" dyf 2% w(x) dx.

Since w is in A,, (3.5) is less than

icm
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(3.8) CY [14,(x)P 2% w(x) dx.
k

The following inequalities hold because wed, and w' P €A, :

[ wds( [ w7 |~ dxpt < C,

|x] <r |x| >
[ w)d™dx( | w9 7dxpt<cC,
[x] >r x| <r

with C independent of » > 0. Thus we can apply Hardy’s inequalities to (3.6)
and (3.7), respectively, to get a multiple of (3.8) as an upper bound for both.

This completes the proof, since (3.8) is less than a constant times the
right side of (3.4).

Now let H(N, R) be the set of weights u such that (1.1) holds for all
in Ly.

Remark (3.9). If u is in H(N, R) with constant C, in (1.1), then every
translation, dilation and rotation of u is also in H (N, R) with a constant not
exceeding nC,. ’

Only the case of a rotation is nontrivial. Let ¢ =(g,;),j=y,.., be the
matrix of a rotation of R". The following formula holds for all functions f
and rotations g:

Rif (@' %)=} eaRi[f(e™")1(x), see [8], p. 58.
k=1
A change of variable and this formula show that

310 [IR ()P ulex)dx = [| ¥ enRi[f (@7* )P u(x)dx.

k=1 .
It is easy to see that f(o~'-)is in Ly, if and only if fis in Ly. Use this,
lenl < 1, to see that if fis in Ly and u is in H(N, R) with constant C,, then
the left side of (3.10) does not exceed

nC, J1f (@™ )P u(x)dx = nC, [|f () u (gx)dx.

We now come to the proof of (1.1). As noted after the theorem, N,
= —1 is the case ueA4,, and we only consider the case N, = 0.

We first treat the case J = 0. Then M = —1, u(x) = (1+|x|}¥o* D w(x)
and (1.4) and (1.5) hold.

Since No < N, H(Ny, R) = H(N, R) and we can assume that N, = N.
Under these assumptions we show that (1.1) holds for fin Ly.

For any f in L!

[ OIRFEIPA+IXPN D w(x)dx < CfIRS (x)Pw(x)dx.

x| €1
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Since w is in A,, this is less than C [|f|”w, which is less than C |/ (x)|P(1+
+ )NV w(x) dx.

Before we estimate the part where |x|.> 1, we introduce the notation

®,(x, ) = Rx—p) = T(R(x= ), k=0, 1, ...
Then we have for f in Ly

(3.11) [ REIPu@dx= [ |[£0)®x(x, ) dyu(x)dx.

x| >1 1x|>1

This is less than a constant times the sum of

(3.12) [ | £O)Byix, )y Ix™ ™ D w(x) dx,
IY|<—J-2C~

(313 § || | [ f0)Bn(x, YAy IxPN D w(x)dx,
Balyl <2l

and

(3.14) [ S0) By, Yyl D w(x)dx.

Ix1>1 |yl >2lx|
Using (3.2) with k = N we have the following estimates for (3.12):
@15)  CI( [ If OV dyp xRN D w (x)dx
1%

[yl <

< C{{Iy"** FONF (O w(xdx < C 1 (AP 1P w () dx,

since w is in A,.
We use (3.1) to get the following upper bound for (3.13):

FO)R(x—y)dy]? |xP¥ D w(x)dx+

Lf G Iy bl == dy)Plxl "V D w (x) dx.

e (|

N
“o i
k=0 Sh<pi<alx

By Lemma (3.3) the first summand is bounded by (3.16). The second one .

is less than Cf( |
Iyl <2|x
(3.15).
Again by (3.1) (3.14) is seen to be bounded by

ci(f

[x|>1 fyl >~

If NN x|~ "dyy w(x)dx, which is treated like
|

N
lIf(y)l VI % Y Ix R dy PP D w(x) dx
k=0

SC [ (§ ISONyNdyP 1xi?t =" w(x) dx

Ixl>1 |yl >

SCI( [ IFONA )V dy) (L +]x)™ =" w(x)dx.

Iy> x|

icm°®
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Hardy’s inequality shows that this is less than C[1f(x)P1+
+ XV D w(x) dx, if

[ we@+PEdx( | w) ™ (1+]x)" dxp <.
|x| <r [xt>r
But this follows from w(x)' ~"(1+|x|y"*" Ve 4, = B,, which is a con-
sequence of (1.5).
This completes the proof of (1.1) for J = 0.

Let now J > 0. As before we can assume that N, = N. By Remark (3.9
we may assume that [p;—p|>5, j#k.

We claim that it suffices to consider the case that M > N. If otherwise
M < N, observe that since

L+ [PV~ (L x— py [PV=M o | e [x— p [PV

u~u; +u, and neither of the u’s has the factor 1+|x|. For these u’s M = N,
and if (1.1) holds with u replaced by u;, then it holds for u also.

We will decompose an arbitrary function f in Ly into a sum of functions
f3 J=0,...,J, each of which is in Ly and supported either in a neigh-
borhood of one p; or away from all Dy's.

J

If M=N, let f = fo+ ) f;, where
i=1

J509 =1 () Xz <1~ | 'ZN“V(X"‘PJ) I o=-p)yfondy
rl<

ly-pjl<2

for j>0, a,eC*{l<ix <2}, [xFa,(x)dx=36, |B, [y <N. Then

{x=p)" f;(x)dx =0, |yl <N, hence f;e€ Ly, and since feLy, also fyeLy. If
J

M > N, we write an f in LynL} as fo+ ), f;, where for j >0

j=1

(3.18) fj(x) =f(x)X(IX'pj[<2)_ .
J . K
-2 Yo, [ fOP,Md-Y dx) [ fOIRG)y,
i=1 |yl <m; U"l’j|<2 k=1 |y-‘pj|<2
O‘{,ya“{cecm {1 <|x—pi<2}, fd{,y Py, =08,6,, _f“;{y R, =0,
Jel Py =0, fofRpy=06pm i,j, I=1,...,J; k,m=1, ..., K.
These functions exist, since {P,,};, and {R,}, are linearly independent. Then
[ 4P, =[f;R,=0. Since {P;,}; U{R,}, spans Py, f, is in L,, hence. in
Ly. This is also true for f,, since fis in Ly.
supp fo < (x: x=plz1,j=1,...,J},
supp f = ix: [x~pl <2}, j=1,...,J),
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and we will show that

(3.19) [IRAPu< ClIffPu, j=0,..,J
and.
(3.20) NfPru<Clifitu, j=1,..,J.

It is in the proof of (3.20), where the arguments are essentially different
according to whether M > N or not. Note that (3.20) implies [|fy"u
< Cf|f|Pu, so that (3.19) and (3.20) will complete the proof of (1.1).
To show (3.19) for j# 0, let j =1 and we can assume that p, =0 by
Remark (3.9). First we have
fIRf1Pu = f 4Ifol”tH-

x| <

[ IRfilPu=A+B.

|x| >4
The following estimate holds for A:
ASC [ |[A0) By (5, Yy X" w(x) dx.
x| <4

We used here that f; is in L, -, since m;—~1< N. This can be treated like
(3.11) to get the upper bound CJ|f;(X)7Ix™™ w(x)dx, if we use
w(x)! P |x]P"""Yed, = B, for the part corresponding to (3.14).

Since f; (y) =0 for |y| > 2, we have

B= [ | | fi0)®ulx, »dIxI"™ Vw(x)dx.

|xf >4 Iyl <_;_
The fact that w is in A, gives as for (3.12) the bound
Clf ()P 1" Vw(x)dx. Thus A+B is bounded by C[|f; (x)"(Ix|""+
+|xPN*Y)w(x)dx, which is less than C[|f,|?u, since f; is supported
around p,.

This completes the proof of (3.19) for j # 0.

To show (3.19) for j = 0 we can again assume that p, = 0. The following
inequalities imply (3.19):

J

(3:21) Y § IRGPu(x)dx < Cflf(aPuadx,

J=1lx—pi <1
TIRf (P u(x) dx < C [ fo ()P u(x)dx,
(3.22) G
G={x:|x—pl=1,j=1,..,J.

The left side of (3.21) is less than C[IRfol’w, which is bounded by
CflfolPw, since w is in A4,. Since f, is supported away from the py's, this is
bounded by

(3.23) Cllfolu.

icm°
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For the left side of (3.22) we get the upper bound
C [ IRGGIP(L+PN* Dy (x)dx < C [|] fo ) By (x, ) dyP XV + 0w (x) dix.
fx] =1

This can be treated like (3.11) to get the upper bound (3.23), using that
w(x)|x"* "™ e A, for the part corresponding to (3.14).

This completes the proof of (3.19).-

To show (3.20) in the case M = N let again j = 1, p, = 0. The definition
of f; shows that we only need to show that

I1 IJ" 2Jﬂf(y)dyl" SCfIfPu, <M.

Fix y and use Corollary (2.12) to get a polynomial P = Q;,, in Py with
(3.24) [P(x)] < Clx™,
(3.25)

X <2,
[P(x)—=x"| < Clx—pj™, |x—p| <2, j#l.

Using that [y” f(y)dy = [ f(y) P(y)dy =0 we have

Iyl <

Use (3.24) in the first summand and then Hlder’s inequality on both
the last two expressions, to see that this sum is bounded by the sum of

|| zy”f(y)dylp < c|l lf JwP (y)dyl"+0!I lj Z(P(y)—y’)f(y)dy}".
¥ < ¥l >

. J
CIfOIPu@dy( | w2 [T ly—p "midyp

Iyl<2 j=2

and

. J
CllfGIPumady( | w) "I1PO)—y"1 [T ly—p 2™ dyp~".
j=1

Iyl>2

The first of these expressions is less than C [|f|Pu, since w'™* is in A4,

hence locally integrable and |pj|>5, j# 1.

To see that the second one has the same bound, note that by (3.25) for

Iyl > 2
J

PO)=y" [Tly=pl "™ < C(1+ )77,

j=1
J

since deg(P(y)~y") < N = Y. m—1. The fact that w(y)! ”|y}" ! is in B,
j=1

and hence j wO) TP (1+]y) ™" dy < oo, gives the desired bound.

y>2

To show that (3.20) holds in the case M > N, recall the definition of J
to see that it suffices to prove
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(3:26) | J fO) PP <CJIffPu, Il <m, i,j<J,
ly—pjt <2
and
[ fORWAYP<CIfFfu, k<K, j<J.

(3.27) ‘
) ly=pjl<2

If i # j in (3.26), we use |P,, ()| < Cly—p|™ and Holder’s inequality to
get the upper bound

Cllforudy( |
ly=pjl <2
for the expression on the left of (3.26). Since the second integral is finite, we
get the desired bound. ‘
If i =, observe that | fP,, = 0, since P, , e PynPy. Then the left side of
(3.26) is seen to be less than

Ccly [ FOIP,O) P+ Clif(y) Py, () dyr,

1%k |y—pyl <2

G={x'|x—pl=22,j=1,..,J}

u(@)' Ply—plmidyy*

(3.28)

The first term is .treated as above. The second one is less than
ClIfPu(fu@) " (1 +|x)*Ndxp~! by Holder’s inequality. This is bounded

G
by Cf|fPu, since the second integral is finite. This completes the proof of
(3.26).

Use D" R, (p) = 0, |y| < m; to see that the expression on the left of (3.27)
is less than

a j
ly=pjl<2
As before this has upper bound C [|f|Pu. This completes the proof of (3.27)
and hence of (1.1).
We remark here that (3.20) also holds if p = 1. Then w and wi(x) (1+
+|x)' " are in A, which is defined as the class of functions v satisfying
v*(x) < cv(x) a.e. This implies that

LSOl ly—py|™ dypp.

1
€55 SUP -

and e e T 0

1
€SS sup ~———
xeQ S (x)

are both finite for any cube Q.

With these two facts in mind only simple modifications of the above
proof show that (3.20) is true for p = 1, too.

4. Preliminaries to the necessity part. We will show the necessity of
conditions (1.2) through (1.6) for (1.1) to hold for more convolutions than the
Riesz transforms. We will assume that for some C > 0 and all Sfin Ly
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(4.1) Jsup|fxe,(x)[Pu(x)dx < C [|f (07 u(x)dx
t>0

either for all ¢ (x) = x/|x|"*!, k=1, ..., n or for some positive ¢ in S, radial

and decreasing in |x].

Note that if ¢(x) = x/|xI"**, then fxg, = R,f for every t >0, if we
interpret the convolution in the principal value sense.
Note also that if ¢ in S is of the above form, then it is easily seen that,
for positive f, sup|f @, = Cf*, with C independent of f.
t>0

For the remaining part of this paper we let H(N) = H(N, R)UH (N, ¢),
where H(N, R) and H(N, ¢) are the sets of weights u that satisfy (1.1) and
(4.1), respectively, for all fin L. ]

If we formally let H(—1, R) and H(—1, @) be the sets of weights that
satisfy the corresponding inequality for all £, then (2.1), (2.2) and the above
remark on the choice of ¢ in S show that H(—1) = H(—1, R) = H(~1, ¢)
=4,

Remark (4.2). By Remark (3.9) H(N, R) is invariant under translation,
dilation and rotation with comparable constants for the transformed weights.
It is easy to see that the same holds for H(N, ¢) if ¢ is radial. Hence it holds
for H(N).

Lemma (43). If u is in H(N, R) or in H(N, ¢) for some ¢ in S with
$(0) # O, then either u is infinite a.e. or it is locally integrable and satisfies the
doubling condition.

Proof. Fix x, in R". Either u is infinite a.e. or we can find a closed set
E of positive measure with (u < oo and xo¢E.

E
If u is in H(N, R), we can show directly that u is locally integrable
at x,.
Let feL®(E)nLy, Ry f(xo) =2. The existence of such a function fol-
lows from Lemma (2.9). .
Since xo¢supp f, R, f is continuous at x, and hence R, f| > 1 in some
neighborhood U of x,. Thus

Jus< [IR fPu< CllfPu<lfiE, fu<oo.
U U E

Since x, was arbitrary, u is locally integrable everywhere.

If u is in H(N, ¢) with ¢ in S, let f be as above. Since f*g, is continuous
and does not vanish identically for all ¢ > 0, we see from (4.1) that there
exists an open ball B such that [u is finite. After translating and dilating we

B
can assume that B = {x: |x| < 1}.
If we can show that for an arbitrary x, in R" there exists g in L*(B)nLy
with g, (x,) # O for some t > 0, then we get from (4.1) with f = g, that u is
locally integrable in a neighborhood of x,. The existence of such a function

2 — Studia Mathematica LXXVIII, 2


GUEST


122 E. Adams

follows from Lemma (2.9), if the functions x*, |B| < N and ¢, are linearly
independent over B for some t > 0.
Assume, to derive a contradiction, that for every positive + we had
numbers C(f, t) with
Y CB, 0xt =), |x<1.
IBI<N
This implies
Y OB 0x =(x), |x <1/t
|81sN
It follows immediately that the C'(f, r) have to be independent of ¢ and that
hence ¢ is a polynomial, which is false.

Thus ¢ exists and since x, was arbitrary, u is locally integrable
everywhere.

It remains to show that u satisfies the doubling condition. Let u be in
H(N) satisfying (1.1) or (4.1) with constant C,. Let Q, denote the cube with
sidelength 1 centered at the origin and x be in 2Q,. By the same argument as
before for ¢(x) = x,/(x)"*! or ¢ in §, (0) # 0, there exists a function f, in
L*(Qo)nLy with sup|fix@) >1 in a neighborhood U(x) of x. This gives

1>0

Ju<sClfL JU.
Qo

Ulx)
We can select finitely many x, in 20, with corresponding functions f,
and neighborhoods U,, which cover 2Q,. Then

(44 ) uSZJ.MSC,,%Hﬁ‘H’&JqugCCMj'u
. 0

200 k Uy Qo
with C independent of u.
For an arbitrary cube with sidelength r and center x,, Q = xo-+rQ,.
Thus . :
fuydx=r" | u(xe+rx)dx.
20 2Q9
By (44) and Remark (4.2) the last expression is less than
r"CC, [ u(xo+rx)dx = CC, fu(x)dx
Q0 Q
with C independent of r, xo and u. This completes the proof of Lemma. (4.3).
The proof of the fact that every u in H(N) if of the form as stated in the
theorem, involves showing that some function related to u is in H(N) or
H(N-1), ie. satisfies (1.1) or (4.1) for all fin Ly or Ly.,. The following
lemma shows that we only have to consider functions f with compact
support.
Lemma (4.5). If u is such that (3.1) holds with ¢ (x) = x/|x|"** or ¢ in §
for all fin LinLy, then (3.1) holds for all f in Ly with the same constant.

@ ©
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The proof is omitted. It consists of approximating fin Ly by a sequence
of functions in L}nLy and using Fatou’s lemma.

We note next that for ¢(x) = x,/|x|"*? or ¢ in S the following estimates
hold which we will use frequently:

(4.6) D o, (x)f = t "I [D g (x/2)l < Clx| =" 181, x 0,
@ ex=p)=Tu(@x= ) Y| < Cl™ =" )yl <41l

The first one is easily verified and the second one follows from the first
and Taylor’s formula. In both inequalities C depends only on ¢, § and m.
We will also need the following fact. If

48) 0,eC*{xl <1}, [XFa,(x)dx=0,, Bl <N,

@ is in S or @(x) = x,/|x|"*", then there exists a constant C independent of x
with

(4.9) sup o, %, (x)f < C(1+1[x) "1
>0

To see this let m = [y|. Using (4.8) we have
loty %0, (0 = [ty (1) [0 (x = 1) = Tou s (@ (= *), )] By
By (4.7) this is less than
Clx|™™ " floe, M " dy  for  |x| > 2.

This together with [la,*@,ll < lloll lloll; for @ in S or Ry, e L” for ¢(x)
=x,/|x|""* proves (4.9).

To show the necessity part of the theorem we will consider three cases
arranged in order of complexity:

(i) u'™ is locally integrable but not in I},

(ii) u'™% is in I},

(il "% is not locally integrable at some ¢ in R".

We will show that for u in H(N)

(i) implies that u is in 4,

(ii) implies that u(x)(1+]x))7? is in H(N~1) and that u(x)(1+|x|)"" is
in 4, if N=0,

(i) implies that u(x)lx—c|™"(1+|x|)" is also in H(N).

This will reduce case (iii) to case (i) and a sequence of simple arguments
will complete the proof.

5. Case (i). We will proceed as follows. If ue H(N) and u' " e L\,
then we show that {u(x)(1+|x])""™*"dx < 0. This is the heart of case (i).
A density argument gives then that u is in H(N —1), so that after repeating
this argument N times we have that u is in H(—1) = 4,,.
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Lemuma (5.1). If u is in H(N) and for all A > 0, large M > 0 there exists a
positive mumber h such that

(5.2 j"u(x)‘“"' |xdPNdx =1,
T
where
(5.3) T={x: M<|x|<M+h Id < (1+4Y)x,},
then
(54) fu(x) (1 +[x)~PV* " dx < c0.

Note. The set T is contained in the come around the x,-axis with
opening arccos(1+4%)7 If u'~?eLi\L, hence u(x)'""|x|"VeLi\L,
we can always find a cone I' with that opening such that

fu()!~7|x/P"Ndx = 0.
r

Applying a rotation we can assume that I' is around the x;-axis. This shows
that the assumptions of the lemma hold.

Lemma (5.5). If u is in H(N) and (5.4) holds, then u is in H(N—1).
Proof of Lemma (5.1). We will choose A€(0, 1] later, depending only
on ¢, n, and N. Let «,eC*{|x| <1} with

(56) fxﬂ ay(x)dx - 5ﬂy: lﬁl: |’Y| \<~ N
We can assume that for all |y| <
5.7 - j"|x|”‘“|azv(x)| dx < A

Otherwise replace o, by pu~M~"a, (x/p), pu = A(jlxl“"“ Joc, (x)| dx) ™.
For a given M > 4 let Tbe as in (5.3) with A > 0 such that (5.2) holds.
Note that for x'in T

(5.8) X < x| < 2x4
Let

and x| <20x, i=2,...,n

f(x) = u(x)! 7P |3 N0

xr(x)— 2

Ivlsn

I, = fu@)' =7 |z)Nr' -2z 4z,
T

ay(x) I,

Then f is in Ly and

(59 jfgglfw,(x)lﬂu(x) dx <

CfIf ()P u(x)dx
The expression on the right is less than

C_[u(xl PixpNdx+ Y j[a,,|"u|fu(z)1“” |z|1+NE = 1) gzpp,
[YIsN
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This is less than some C, independent of M, because of (5.2) and since for z
in T |z < |2V,
To estimate supl fx@,(x)| from below we look at t=|x|, xeX, X

={x: 2<|x < M/2}nF where I' is a cone centered at the origin so that
for xin I'

(5-10) [xI"*¥IDY @, () = DY @ (/] > llnllax DY o).

Let in abuse of notation ay =a, for y = = (N, 0, ...,0). Then using (5.6) we can
estimate |f* @,(t)] from below by the ‘dlffcrence of

(10 |[an) e (x—y)— T(@(x= ), ¥)+(=y1)"DY @, (x)/N!] dylino....00>
qnd the sum of

(5.12) Y ey oG,
[¥}=N,yy #N

(5.13) o, * @, () I1,],
IfsN-1

and

(5.14) Uu(y)l‘f" YN~V g, (x—y) dyl.

In-(5.11) use (5.8) and (4.7) to get the lower bound C|DY ¢, (x)| —
—C Iy oy (p)idy|x] ™" N1, since 27 ¥ g lIn,o0,...0)l Y (5.8) and (5.2). The
last difference is greater than lxl_’" (C—-AC,) for x in I by (5.10), (5.7) and
since |x| > 1.

In (5.12) we use (5.8) and (5.2) to see that |I,| is less than 24. Together
with (4.9) we get that (5.12) is bounded above by Ci|x|™"" ¥,

For (5.13) we get the upper bound C/M, since llot, * @ll, < C uniformly
in t>0 and since for z in T [y <N, [2/" < [z/¥ MM~V < |z/%/M, so that
LI < 1/M.

We get the upper bound C/M for (5.14), too, since for l>M

> 20, o (x-p)l < ClyI™" < Cy"/M.
Altogether we have for x in X
suplf* @ (X)) > |x|7""N(C~2Cy)— Cy/M.

After choosing A = mln(l C/2C,) we see that sup |f* rp,(x)l Ix|"""Nc/4,

= (MC/4C5) M+ ], Usmg this in (5.9) gives

j' u(x)|x| "N dx < CCy.
xeX,|x| €M’
The constants on the right are independent of M, so that letting M
— o0, hence M’ - c0, and observing that u satisfies the doubling condition
completes the proof.

if xis in X and |x €


GUEST


126 E. Adams

Proof of Lemma (5.5). Let a, in C™{l <|x| <2} satisfy (5.6). By
Lemma (4.5) it is enough to consider functions in Ly.; with compact
support. Let f be such a function and for m> 1 let

Su¥) =f ()= 3 m™" Mo, (x/m) [y7 £ (y)dy.

[¥l=N
Then f,, is in Ly and hence

(5.15) fsuplfux@ffu < Cflflu.
1>0

We claim that sup|f, *¢|—=sup|f*p| ae as m-=. I ¢(x)
= x,/|x|"*!, this follow;f(;om the de‘: (;hat
m™ " MRy ol [INM 1S (W dy =0 as
If ¢ is in S, then
fl:gl(f—fmJ 0, (0] < |f=full o llly < ClyENW"'”H%IIW -0,

m-— o0,

implies that the claim holds.
Thus we can apply Fatous lemma to get

[sup|f+ @ u < liminf [sup| f, * o,/ u.
>0 mer o t>0
By (5.15) the last expression is bounded by

Climinf [ |7 u

m=o

j‘ I“y (x/m)‘

< CfIffu+C ¥ lLiminf TR u(x)dx| [y f (y)dy|.

ly|=N m=o m<|x|<2m
This completes the proof, since the last term is zero by (5.4).

6. Case (ii). Let u be in H(N) and u'~" in I!. Let N, be the largest
integer not exceeding N such that

6.1) fu(x)! =7 |xpN¥odx < co.

If No < N, repeated application of Lemmas (5.1) and (5.5) shows that u
is in H(Ny). Hence we can assume that N = No.

With the help of several lemmas we will show that then (6.1) implies
u(x)(1+|x)"Pe H(N—1) and that also u(X)(1+]x))""eH(~1) = A, if

For further use we state the following lemmas in
form than needed here.

Lemma (6.2). If u is in H(N) and if for some Cq,ry>2

a slightly more general
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(63) [ w7 PV dx < G,

|x| >rg

then there exists C such that for all r > r,

64 [ w7 ([ w0t PN dxpTt < C.

ro<ix|<r x| >r

LemMa (6.5). Under the assumptions of Lemma (6.2) there exists C such
that for all r >r,

(6.6) [ u(olx=rmt ¥ gy

|x]>r ro<|xf<r

u(x)i—p‘ 'xlp'(N+l)dx)p—1 < C.

Remark. It follows easily that if ' ™® is in I, then the conclusions of
the two lemmas are equivalent to

(6.4) I w1+ )P M ([ ou() T (L+xPVaxpi< C
|xl <r |x|>r
and ‘
(6.6) | u(x)(1+[x)"H ¥ O gx( [ w(x) TP (L+|x]PEDAxpt g C

|x| >r 1x] <r

with C independent of r > 0. In this form they will allow us to apply Hardy’s
inequalities under appropriate circumstances.
We also have the following lemma which is similar to Lemma (3.3).
LEMMA (6.7). If u is in H(N) and u(x)* " (1+|x|f'¥ is in I}, then there
exists a constant C such that

(6.8) Isglgl [ fO)o(x=p)dyP xIPu(x)dx < C [If (x)|P 21" u(x) dx

X|
7 <lyl<2jx

Jor all f in I! with compact support away from the origin, say, supp f < {x: |x|
=2} and for b=—1,if N>0, and b< —1 if N=0.
With the help of these three lemmas we can do the reduction.
LemMA (69). If u is in H(N) and u(x)' " (A +|x]fY is in I}, then

u(x)(1+|x))~" is in HIN—-1) for a=1,if N>0, and 1<a<n, if N=0.

CoroLLARY (6.10). If u is in H(N) and u'™% is in I}, then u(x)
= (1+[x])PNo+r D w(x), where w and w(x)(1+|x)"*~" are in A,, and Ny is the
largest integer such that u(x)* 7 (1+|x]y'¥o is in L.

Proof of Lemma (6.2). The proof is similar to that of Lemma (5.1)
and we will refer to that one for some parts.

We will choose A€(0, +] later depending only on ¢, N and n. It suffices
to show (6.4) for large r, say r > max(r,, 3/4). All constants appearing below
will be independent of r and 4 until it is fixed.
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Let a,, Yl < N, and f be as in the proof of Lemma (5.1), but with T
= {x: 7 <], ] < (1+4%)x,). o
Then (59) holds again and [|fPu can be estimated by
C fu(x)t 77 |x"¥ dx using (6.3).
T

To estimate sup|f=* @, (x)| from below let t =|x| and xe XnI' with I a
1>0

cone such that (5.10) holds and X = {x: 2 <|x| < Ar}. Then a lower bound
for |f*¢,(x)| is given by the difference of

(6.11) Iiu(y)""'lyl”‘”'"”[(m (x=y)— Ty(o(x— ), y)] dy|
and ‘ ‘
(6'12) II ’Z:Nay(y) [9": (x_y)_ TN(‘P: (X" ')7 y)] dy1y|~

Splitting up (6.11), it is seen to be greater than the difference of
(6.13) | [u) 77 191% = y¥ DY g, (x) dy|/N!
T

and the sum of

(6.14) CluG) M= T |y Dig,(x)dy,
T ‘ [n]=N,ny #N

(6.15) Cfu() =7 [y = 5 |y D g, (x)| dy,

and " e

(6.16) o iu(y)“”’|y|"<"'““|x—yr"dy.

By (5.8) and (5.10), (6.13) has the lower bound
(6.17) C Ju()*™> |y dy|x|="= ",
T

Using (5.8) we see that an upper bound for (6.14) is given by 1 times

(6.17).
We get the same upper bound for (6.15), if we use (5.8) and if we observe
that [y < |yV|x|"=N 1, since [x| < Ar < Ay, <N, A<1.
. This bound holds for (6.16), too, since |x| < 3} |yl. and hence |x-y|
Z 3yl :
Thus (6.11) is greater than

Clu(y)l“”’ (VPN dylx| =" (1~ AC)).

Since |x| > 2[y| in (6.12) we can estimate it from above by

C X (Y oy O dy "N fu (@7 ¥z,
T

<N
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This is less than A times (6.17) because of (5.7) and |x| > 1.
Thus for x in X sup|fx¢,(x) is greater than 1—iC, times (6.17).
t>0 .
Letting A = min(3, 1/2C,) and using this estimate in (5.9) gives

[0 X7 dx( (=7 |5 VPt < C
X T

after we divide by the integral over T on both sides.
Use the fact that u satisfies the doubling condition twice to see that for
a= —p(n+N) '
[ u)x®dx < C [u(x)|x]*dx,
2 <|x|<ar X
and that
[ w@irdx<C | u@pkidx<C |

ro<ixf<r 2<|x]<r 2<|x|<ar

u(x)|x|*dx.

The last inequality uses Ar > 3.

We have now

Ioou@x™P M ax (fu(x) % |xP¥dxp-t < C.
ro<ix|<r T .

By Remark (4.2) the proof is complete since finitely many rotations of T
cover the set {x: r <|x|}. _

Proof of Lemma (6.5). We will again fix 1€(0, §] later depending
only on ¢, N and n. Let o, be as in the preceding proof.

The constants in the following will be.independent of 1 until chosen and
of r >ry, which we now fix.

Let T={x:ro<Ix|<r, |x<(1+A%x;}, so that (5.8) holds.
Let f(x) =u(x)' 7 |x|N* DDy (x)— Y «,(x)],, where I, here denotes

- : | ly|<N
Ju@)' =7 |0 gr gy,
T

Then fis in Ly and hence
(6.18) fsuplf*opu<ClifPu.
t>0

The expression on the right is less than

(6.19) C [u(x)! PPN Vdx+C Y [laful Ju(m)! 7 |z ™+ D=1 dxp,
T T

7| <N

since |z%] < |z|¥ for z in T,
Writing the last integral as

j [u (Z)“ -pip IZI(N+ '~ 1)] [u (z)“ ald |z|N] dz
T

129
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and applying Hélder’s inequality with exponents p and p’ shows that (6.19) is
less than C [u(x)' ™" |x]"™* Y dx using (6.3).
b .
To estimate the left side of (6.18), we look at f* ¢, (x) for t = |x|, x in X
= {x: r < A|x|}T, where I' is a cone centered at the origin such that for x
inI'

(620 "D o (x)) = DY @ (x/|xl)| > fmax DY ().

Iyl =1
Then |f*@,(x)) has as a lower bound the difference of
(621)  [Ju@)' "D [ (x— )= Tyay (@, (x =), y)+
T

+(=y PV @ (xY(N + )] dy|
and

(6.22) | Y Jo,0) Lo (x—y) = Ty(o, (x— ), y)]dyl,|.

7SN

Using that |yl <r < Alx] < }[xl, (6.21) is seen to be greater than the
difference of
(6.23) | [(y)t =7 [yl ¥+ 00~y N1 DN*L G (x) dyl (N +1)!
T

and the sum of

(6.24) Clu@)t =7 y®roe-n YD g, (%) dy
T Jul=N+1,ny #N+1

and

(6.25) c ;'u(y)l-"' [N+ D=1 |+ 2 |y == N2 gy,

By (5.8) and (6.20), (6.23) has the lower bound
(6.26) C [u()! 7 [N 07 gy ===,
T
Using (5.8) again shows that (6.24) is bounded above by A times (6.26).
The same is true for (6.25) since |y| < Alx].

Hence (6.21) is bounded below by Cy—AC, times (6.26).
Since |y| <1 <|x|/2 in (6.22), it is bounded above by

C T Ty ObI™ dylx e .
ys

This is less than 4 times (6.26) by (5.7) and since |2”| < |z[¥*Y for z in T
Altogether for x in X sup|f* ¢, (x)| is greater than
t>0

Clu(y) = |yl ™* D dy [x] =N 1 (1 - 2Cy).
T
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Taking A = min(%, 1/2C;) and using this estimate in (5.9) gives

fu() | “Hm D g ([u(x)! P @D axpt < C.
X T
That u satisfies the doubling condition shows that the set X can be
replaced by {x: |x| > r} and the inequality still holds with a C independent
of r. The same argument as in the proof of Lemma (6.2} then completes the
proof.
Proof of Lemma (6.7). Since u! “? eI, we can use the conclusions of
the two previous lemmas as in (64) and (6.6).
Let I, = {x: 2*<|x] <2**'}, keZ. We can decompose an arbitrary
function fin L} into a sum of functions f,,, which are in Ly. Namely

S (X} =1 (%) 21, (x) +

m+1 om )
£ 3 [%—(3‘/1)% J vy 2 y’f(y)dyJ
Iyf<N |y]>2m+1 Iy] >2m
. om 2m+1
+ 3 {agﬁim) [ »rf (y)dy—%);m) iovrs (y)dy],
lyi=n~1L Iyl <2m Iyl <2m+1

where
a,€C*(I-y), PISN-1, «,eC*(l), [y =N,
[xP o, (x)dx = b4y, 1Bl, W < N.
Note that supp f,, < I,,— 4UI,,Ul,,., and f,eLy.
If f vanishes on {x: |x| <2} the left side of (6.8) can be written as
o
fsup| [ fO)@(x—y)dyl?|xPu(x)dx
k=01 >0 Blopreapy
o k+2
=Y [supl | Y S @ (x—y) dyIP X7 u(x) dx.
. k=01 >0 %<M<2lem=k~2
This is less than a constant times

% k+2

Y Y [suplfurex—- I e x= ) dy e u ) d,
7{x)

k=0m=k-21,1>0

where G(x) = {y: [y| < 4|x| or |y| > 2|x|}. This in turn can be estimated from
above by a multiple of the sum of

o k+2
(6.27) Y Y 2% {sup|fureffu,
k=0m=k~2 - 1>0
o k+2
(628) 3 X 2%TNEDI( | £ ) dyPul) (1 jx]) T NED dx,
k=0m=k-2 Iyl <lxl
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and
o  k+2 . . ‘
(6.29) 2 22OEM (| LD Ay u(x) (14 [x]) P i,
. k=0m=k-2 191> x|
Since u is in H(N) and f,eLy, (6.27) is bounded by

w  k+2 .

(6.30) CYy ¥ 2[|f(x)fu(x)dx.
k=0m=k~2

For (6.28) and (6.29) we observe that u satisfies (6.4) and (6.6, so that
Hardy’s inequalities give the bounds

C f kiz 2kp(b+N+x)hfm(xnpu(x)(]+Ix{)~,,m+1,dx

k=0m=k—2
and
w kt+2 P
CL X 27D f (0 ulx)(1+[x) "V dx,
k=0 m=k—2
respectively.

Since 2*< 4-2™ for m> k—2, the last two expressions are both less

than a constant times (6.30), which in turn is less than C Z 2'””"flf,,,|”u,
. m== ~ 3

after we interchange the order of summation. By the definition of f,, this is

seen to be bounded by the sum of

(631) C ¥ [P uCedx,

) « ’ " om)|p 4

(632 c’":z_me:Nz'"P" % J Y1) dy| u(x)dx,

ind - Ip—1 |yl >2m

63 C,,iz.y.F:NJ%E fyvf(y)dypu(x)dx.
I |y| <2m

We will estimate the last two expressions by a multiple of (6.-31) which
will complete the proof.

Since (6.32) only appears, if N > 0, b equals -1, hence N—|y|+b 32 0,
so that we have the following upper bounds:

C Z Z J 2""1.P(n+N)l J’ m(N= 7] +b) yyf(y) dyl”u(x) dx

me T NIy Iy] >2m
SC X T ([ MO dy)u(o|x ==+ ™ gy
m="2Ineg |yl »2m

<Cf( Jl Ilyl’“”lf(y)! dy)Pu () (L + [x])~ P+ g

Iyt>
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Together with (6.4), Hardy's inequality shows that this is less than a
multiple of (6.31), if we observe that supp f < {x: x| > 2}.
For (6.33) we only use b < —1 to get similar estimates:

c i Z J.:.2_,,»;(,;+1~.'+1)| J‘ 2m(b+l)y7f(y)dy|pu(x)dx

m=-—2y|=NI, |y] <2m

<C i j( I |ylh+N+1If(y)]dy)”u(x)lxl—P(n+N+1)dx

m=-2 Imj |yl <2m
SCI( [ WP L O dyPulx)(L+|xf) ™7 8D g,
Iyl <l .

Using (6.6) and Hardy’s inequality shows as above that this is less than
a constant times (6.31).

This completes the proof.

Proof of Lemma (6.9). As in the preceding proof we will use (6.4) and
(6.6).

Let f in Ly_; have compact support and write f = fy+f,, where

Jo=Ftm<a— X a [ yf()dy, ¢,eC* {2 <|x| <4},

I7l<N  |yl<4
[x*a,(x)dx = 8, IBl, b < N.

Then f, and f; are in Ly_,nL! and it suffices to estimate

(634) ffgglfow,(xx”u(x)(l +Ix]) 7P dx
and -
(635) sup|fy » 0, (9P u (A (1 +1x) ™ dx
by
(6.36) C [1£ (P u(x) (1 +[x]) "™ dx.
To estimate (6.34) let g =fo— Y ocyj"‘yyfo(y)dy. Then g is in Ly and
hence =
(637) fsuplg»fu < Cflghu.

First, (6.34) is less than
Clsuplg* @ fu+C Y [supla,* @ (x)"u(x)(1+]x])"?dx| [ yfo () dyjF.
t>0 lyl=N >0 |

Using (6.37) this is seen to be less than
(638) CflglFu+

+C Y A+ [y Vo, * wt(X)H‘éoju(x)(l +[x]) RN x| 'lfy’fo(y)dyl”-
Iy|=N :
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Since (1 +|x))" Mo, » @, (x) is in L by (4.9) and u(x)(1 +|x]) 2478 s jn
L, which follows from (6.6), the definition of g gives the following upper
bound for (6.38):

CllfePutC( Y flPut)(fly" /o)l dyp

I7I=N
< CoPult-+(fum) = [y dyp-1)
by Holder's inequality. By assumption this is bounded by

Cl1foPu < Cf|fo )Pu(x)(1+|x))™dx,

since f, is supported in {x: |x| < 4}.

The definition of f, gives the upper bound

CIILS GIPu(x) (14 |x) ™™ dx +

+C Y [l CIPul(L+Ix)™dx] [ y*f () dyP.
Il <N-1 Iyl <4
Since the second summand is bounded by
C [ IfOIFum) @+ dy( [ u@)' ™ (1+ly) dyp~*
Iyl <4 [yl <4

by Holder's inequality, (6.34) is less than a multiple of (6.36).

Since |f;| < |f1+]1fol, it will complete the proof to show that (6.35) is
bounded by C[|f; (¥)IPu(x)(1+]x))"*dx. This can be done by subtracting
Ty-1(@:(x~+),y) from ¢,(x—y) in the convolution integral, dividing it into
the usual three parts, and applying the appropriate Hardy’s inequalities as
was shown in previous proofs.
~ Proof of Corollary (6.10). Since u(x) 7 (1+|x|)" ™o D is not in I!
but locally integrable, Lemmas (5.1) and (5.5) show that u is in H (Ny).

"Lemma (6.9) implies that u(x)(1+]x]))~" is in H(Ny-1).

Since [u(x)(1+[x)77]* "7 (1+4|x]'Mo=1 js in I!', Lemma (6.9) can be
applied again and eventually yields the desired result.

7. Case (jii). Here we assume that u in H (N) is such that u'~# has a
singularity at x =0, ie. that for all positive numbers t [ w() P dx =0,

A _ Jx/ <
It is shown in the next section that then u(x)|x|~7(1 +]jcl)” is also in H(N).
The following lemmas will be needed.

Lemma (7.1). If u is in H(N) for some N and if’ for some k

(7.2) [ u@ 7 |xf*dx = 0 for all 1> 0,
|x] <t
then
(7.3) [ u(x)|x]=rm+R gy < o,
|x] <1

e ©
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LemMa (7.4). Under the assumptions of Lemma (7.1) there exist positive
numbers t, and C such that for 0 <r <1,
(7.5) [ a7 0dx( | w7 [xPrdxp < C.

|x| <r r<ix|<zq

The proof of Lemma (7.4) will show that in case k = N, any 1, > 0 can
be taken and C does not depend on t,. This gives the following corollary.

CoroLLarY (7.6). If u is in H(N) and | u(x)' " |x["Ndx = oo for all

[x] <z

© >0, then u' =7 has only a singularity at x = 0, i.e. is locally integrable away
from x = 0.

Lemma (7.7). If u is in H(N), then '™ has only isolated singularities.
Moreover, for every singularity z there exists a number t >0 such that
' [ u@E) T x—zF @D gx < o0,

|Jx—z| <z

Lemma (78). If u is in H(N), then u'™% has only a finite number of
singularities.

Lemma (7.9). If u is in H(N) for some N, u'~? has a singularity at x = 0
and k is the largest integer such that (7.2) holds, then there exists 75, C>0
such that 0 <r <tq

(7.10) [ou@ox| etk gy (| u(x)! 7P X ET D axpt < C.
r<ix| <tg [x| <r
Note. By Lemma (7.7) this k exists and does not exceed N.
Lemmas (7.4) and (7.9) correspond to Lemmas (6.2) and (6.5). As in case
(i) they are the key lemmas which allow the use of Hardy’s inequalities.
In the next lemma we assume that

(7.11) { u@)'~?|*¥dx < C for some ry > 2.
1% >rg

This is not a serious restriction, since if this would not hold, Lemmas (5.1)
and (5.5) would show that ue H(N—1).

By Lemma (7.8) u*~# has only finitely many singularities p, =0,
Pa. ---» py- After a dilation we can assume that |p;—p,| >3, j # m.

LemMa (7.12). Under the assumptions of Lemma (7.9), if the singularities of
u satisfy |p;—pml > 3, j # m, and if (7.11) holds, then there exists C such that
(7.13)

[sup| [ fO)e(x=y)dy|? X~ u(x)dx < C {1 (" ]x] P u(x) dx

>0 By <oy

Jor [ in I! with supp f = {x: |x| < 2}.
Proof of Lemma (7.1). We will show that (7.2) implies (7.3) by
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induction on k. This is possible since (7.2) for a given k implies (7.2) for all
smaller k. The proof of the implication for k = 0 is contained in the proof
‘below, since for that case the induction step will not be used.
Hence we assume that
(7.14) [ u@x""*mdx<C, m=0,... k—1.
|x[ <1
Since ue H(N) implies ueH (max(k, N)), we can assume that k < N.
We will choose (0, 1] later depending only on ¢, n and N. It follows
from (7.2) that there exists a cone I' centered at x =0 with opening
arccos(1+42) such that
[ u)* P xP*dx =0 for all 1> 0.
Xel x| <t
After a rotation we can assume that I“=.{x: Ix] < (14+ A% x, ).

For >0 let uy(x) =max(5, u(x). It follows now that for every
e€(0, 4/2) there exists (0, &) such that

(7.15) [us (017 |xP* dx = 1,
T

where T= {x: § <|x| <&, |x| <(1+4%x;}. Then (5.8) holds again for x
in T

Finally, let ue(0, 49), a,eC® {jx| <1}, |5 oy (x)dx = 84, IBl, Y < N
and

SO =w()" W0~ Y e - Y a1,

|y Sk—1 k<|y| €N

where I, = j us(2)' 77 |z/*”' =D 27 47, Then f is in Ly and hence
T

(1.16) fsuglf* @l u < Cf|f1Pu.

All constants appearing below will be indeperident of ¢, 8, u and also of
A, until we fix A.

The expression on the right of (7.16) is less than the sum of

(7.17) C Jug(0) =7 x*d,
T
(1.18) c ¥ oty Cofpl w40y () e 1.,
yl€k-1
and
(7.19) C Y [lalulrp.

k< SN

By (7.15) (7.17) equals a constant.
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Since p <1 and T< {x: x| < 1}, (7.18) is less than
(7.:20) C [ u(x)|x ™71 g ([ ul=rp.
T

Ixl<u
For |yl 2 k, |I| < fus(2)* 7 |z"*dz = 1, so that (7.19) is also bounded

T .
by a constant. Thus an upper bound for {1fPu is given by the sum of (7.20)
and a constant.

To estimate the left side of (7.16) we look at f+¢,(x) for t =|x|, xe X
= {x: 26/A < |x| < 1}nTI,, where I'y is a cone centered at the origin such
that for x in I, :

(7.21) X" *IDY @, ()] = D @ (x/Ix])| > + max D o (y)].

Iyl=1

Since f is in Ly, f*¢,(x) is equal to the sum of

iua O P Loy (x— )= T (0, (x— -), ¥)+(—y - )0, (/K] dy,

- ¥ [0 e =)= Ty (00— ), Y]y T,

7| <k—1
and
- Y axe (01,

k<jyl <N

Hence |f*¢,(x)| is greater than the difference of

(7.22) [ s ()~ [y = yk Dk 0, (%) dyl/k!
T

and the sum of
(7.23) C Y [us Yy D g, ()] dy,

Inl=k,ny #k T
(7.24) i us ()" F Y Vg, (x— y)— T (o (x— -), y)ldy,
(7.25) | |<‘\;-1 Jloy G/l ™" | (x = 3) — Trey (@0 (x ~ ), y)|ayir,),
and
(7.26) Yl ()

k<|y| SN
By (5.8), (7.15) and (7.21), (7.22) is greater than Clx|~" K
Again from (5.8) and (7.15) we get for (7.23) the upper bound

(7.27) CAlx|="k,
Since in (7.24) |y] <& < A|x|/2 < |x|/4, it is less than
C Jus ()t =7 [y D jys x|~k gy
By |y < A|x| aan (7.15) this is less than a multiple of (7.27).

3~ Studia Mathematica LXXVII, 2
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In (7.25) we have |y| < p < Ad <& <|x|/2. Also note that for |y| < k—1,
L < 8% fug(2)! 7|2/ dz = 6" ~*. Hence (7.25) is bounded above by
T

C ¥ floy G/l ==yl |x = n=* dy oY=,
Iyl<k—1
Changing the variable of integration gives the bound C (u/8)*~ " |x|="~*,
which is less than a multiple of (7.27), since u < A5 and |y| < k.
For (7.26) note that a,* ¢, is in I and that [I,] <1 for |y| > k. Thus
(7.26) is bounded by a constant.
. Altogether for x in X sup|f*¢,(x) is greater than C|x|™""*(1—AiC)—
t>0

—C,. This exceeds C/4-|x|""7*, if we let 1=min(}, 1/2C,) and if x|
< (C/AC )Mt = ¢,

Using this estimate in (7.16) we get

[ uC™ P dx SC+C | u() x| dx | fuf e,

xeX,|x]<Cq |x]<p T

Observe that the last expression only appears, if k > 0.

Use the induction assumption (7.16) and let u—0 to get

[ u@)|x~r**gx < C.
xeX,|x] <Cgq
Let £ —0 in the definition of X to see that
[ u@)x"" " dx < C.
xelg,|x| <Cgp

Thus (7.3) holds, because u satisfies the doubling condition. }

Proof of Lemma (74). Since ueH(N) implies ue H(max(k, N)), we
can assume that k < N. Since (7.5) for a given k implies (7.5) for all smaller
k, we may assume that either k = N or that k < N and that there exists
70€(0, 1), such that
(7.28) fou() 7| < C.

|xl <zg

If k=N, let 7, be arbitrary but fixed. .

We will choose 4.€(0, 4] later depending only on ¢, nand N. Let 0 <r
<10 be given and ¢&(0, Ar/2), ve(0, Ae/2), p=2Ar.

Let T={x:r<|x <ty X <(1+4%x,}, so that (5.8) holds. Let
4, (x) = max (g, u(x)) and .

02) aeC{i<ix <2}, [xa(ddx=06;, [f, <N
Finally, let
) =u, () 7Dy (- Y oty (/) =11

vl <k—1
—I;kay(x/v)v“""'"-lv—— k+;<)va7(x”v’
"N= B
where I, = [u,(z)177 |20~ 1 57 g
T
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The constants appearing below will be independent of o, r, &, v and
also of A, until A is chosen.
Since f is in Ly we have

(7.30) fsug] frofu<Cllffru.
>
The right side is less than the sum of
(7.31) C [u, ()7 |xfr* dx.
T

(732 C 2 ey (/) w1+ my (x) dx| L,

Il <k-1
(7.33) C Y [l PP y=25 () dx |1, Jp,

7=k
and
(7.34) C Y floPulrp.
k+1<[y|SN

Observing that |z| > r for z in T, and that |y| < k—1 in (7.32), we see that
it is less than '

C ¥ [ ulx ™ dx(fu, (27 xe® dz) (urpt 1,
IMSk-1p<|xl<2n ‘ T
This is bounded by
(7.35) Ch [ u(x)[x|=ptkrn dx ([ u,(2) 77 |2 dzfp,
n<lxl<2p T
since p=2Ar and p(k—|y) > 1.
The following bound for (7.33) is immediate:
(7.36) C [ w0 dx(fu, ()7 |2 dzp.
4 .

v<|x| <2y

Note that (7.34) only appears, if k < N. Hence Holder’s inequality
applied to |1,|” together with (7.28) and |z| <7, < 1 shows that (7.34) is less
than a multiple of (7.31).

Altogether, [|fIPu is bounded by a constant times the sum of (7.31),
(7.35) and (7.36).

To estimate sup|f*o,(x), take t=|x|, xeX = {x: ¢ < |x| < Ar}nT,,

>0
where [ is as in (7.21). We can then estimate | @, (x)| from below by the
difference of

(7.37) | 3 v e, (), () 1)

Ivi=k

and the sum of

(7.38) [ (0)' 2 =0 g, (x~ y) dy),
T
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(7.39) WM (/) kg, (X))
7l <k~1
and
(7.40) o, * 0, (0)1,).
k+1<[pI<N
In abuse of notation let o, denote a, for y =(k, 0, ..., 0). Then using

(7.29), (7.37) is seen to be greater than the difference of

(741 [fap)y™ (g (x=2)~ |

~ Ty (@e(x— ), ))+(= 1) DX @, (k! dyly,...0
and
(742 | % [o,0m v (@i (x=p)= Tiey (@i (x—= ), y))dy L.

Yl =kiyy #k
Since [y < 2v < 4s < |x|/2 in (7.41), and because of (7.29), (7.21) and (5.8),
(7.41) is greater than the difference of

(7.43) C [u,(z)' ™ |zP* dz |x| %"
T
and
44 Cllolm ™Iy xR Ly g (2) 7 .
T

Using that |y| < 2v < le < A|x| in (7.44) and changing the variable of
integration show that (7.41) is greater than (7.43) times 1-1C;.
Since |y| < |x|/2 in (7.42) and because of (5.8), (7.42) is bounded above by

¢ X

Tl /Y™ y1¥ o+ dy 4 [y (27 2]z,
Irl=kyy #k A

which is less than a multiple of 4 times (7.43).
Hence (7.37) is greater than 1—AC, times (7.43),
In (7.38) use |x| < Ar < A|x| to get the upper bound

C [u 0! [y (Xl dy x| =%,
T

which is less than 1 times (7.43).
For (7.40) note that it only appears, if k < N, hence 79 < 1. This implies
that |I,] < [u,(2)' 7|z dz, since [y| > k and |z < 1,. ‘
T

Since also ||, * @,l,, < C, uniformly in ¢, (7.40) is bounded above by
C [ u,(2)' 7 |zl dz. This is less than a multiple of 4 times (7.34), since |x**"

T
< (ir)"*” <1k+n < ;{
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Altogether we have for x in X
Sulglf* @9 = C [u, ()7 |yP*dy |x| 51~ ACy).
> T

For A < min(}, 1/2C;) we can use this estimate in (7.30), to get that

]{u(x)lxl'”**"’ dx ([ u, ()7 |y dy)p
T

is bounded by (7.31) times the sum of a constant and (e (x)* 77 |xfP* dxyp
T

times the sum of

(7.45) Ch o[ u(x)x ="+ dx
r<|x|<2u

and

(7.46) C | u(x P g,
v<|x|<2v

Let v—0 in (7.46), which by Lemma (7.1) tends to zero.
Since p = 2Jr, & < ir/2 and u satisfies the doubling condition, (7.45) is
bounded by

AC,
S<Ixl<ar
Let A = min (4, 1/2C5, 1/2Cs). Then after dividing by (7.31) and subtract-
ing the nonconstant term on both sides we get that

(747) J0e) o 7P gl ( [y ()1 77 xR dxp i< cC.
X T

u(x)]x TP dx < ACs [ (x) X~ dx.
X

Let ¢ >0 in the definition of X and u,. The fact that u satisfies the
doublirig condition shows then that we can extend the range of integration in
the first integral first to {x: [x| < Ar} and then to {x: |x| <r}, so that the
new constant on the right is still independent of r.

Since finitely many rotations of T cover the set {x: r <|x| <70} the
proof is complete by Remark (4.2).

Proof of Lemma (7.7). The first assertion follows immediately from
Lemma (7.4). To show the second one, let z =0 without loss of generality.

In order to derive a contradiction, assume that [ u@E)! =7 |xF N+ gx
|x| <z

=00, 1> 0. Lemma (7.4) shows then that
(1.48) T u() xRN gy < oo
lxl <tg
Let aeC™{|x <1}, [xPa(x)dx =0 for |f| <K N+1, f#n, X" o (x)dx
=1 for some fixed #, |g| = N+1.

for some 7, > 0.
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For m>1 let f(x) = m"*"* o (mx). Then f is in Ly and

[suplf*@fu< CfIfPu=C [ mPN*"*D o (mx)?u(x)dx.
>0 Ix] <5
The last expression tends to zero as m — oo by (7.48).
But for 2 <t =|x|, x in I', where I' is a cone centered at the origin in
which |x|V*"*1 D", (X)) = D" @ (x/|x)| > ilrxlla)lﬁlD" ¢@(y)| holds, we have that
=

1f* @ ()] = | fm"*"* Lot (my) [p, (%= 3) = T 1 (0 (x = ), )+
+Cy ¥ D" o, ()N + 1)1 dy|
> ClM = C fm ()| Y 23]~ 2 dy,

since then |y| < 1/m < 1 < |x|/2.
Changing the variable of integration gives
Clx|™¥" " 1(1—=Cy/m|xf) = C|x~¥"""1/2, if m> C,.

the lower bound

Since all constants are independent of m, we arrive at a contradiction, if

we let m— co. This completes the proof.

Proof of Lemma (7.8). Lemma (7.7) shows that there can only be a
finite number of singularities in any ball.

Assume now that u'~” has infinitely many singularities. Then for every
4> 0 there exists a cone I'; centered at the origin with opening arccos(1+

+2)7%, such that [ u()'"dx=o0 for all M >0. Otherwise we
xelz,|x| >M
could for some A > Olcover R" with finitely many cones I'; with opening

arccos(1+4)™" and for all j there would exist M; with [ u@)7dx
. xel'},lx] >Mj
< oo. This would imply that

u(x)! " dx < o0,
|x|>muxMj
J

with contradicts the assumption that 4!~ has infinitely many singularities
and the above remark.

Using a compactness argument we can assume that Iyl ford <X
Thus after a rotation the assumptions of Lemma (5.1) are satisfied, so that an
application of Lemma (5.5) shows that u is in H (N-1).

Repeating this argument we eventually arrive at ueH(—1) =A,. But
then u' ™% is in A, and has no singularities at all.

This contradiction completes the proof.

Proof of Lemma (79). After a dilation of u, if necessary, we have

(7.49) § u@)t=7 | xpre+ gy < .

|x] <1

We will show that then (7.10) bolds with 7o =1.
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We will choose A€(0, 4] later depending only on ¢, n and N. It suffices
to prove (7.10) for small r, so fix r in (0, 4/2).
Let ee(0,7), T={x: e <|x| <7, |x] < (1+1%x,}. As before (5.8) holds.
Let a, be as in the proof of Lemma (5.1) with (5.6) and (5.7) and set

SO =l I ()~ B (e, -,

¥l <k k+1S|y| <N

o, (x}1,,

where I, = [u(z)' ™7 ||** V¥ =D 57 gz
Since u!~" is integrable over :I"by (7.49),Tf is in Ly and

(7.50) ) sup|f*f'u<C fIf17u.

All constants appearing below will be independent of ¢, r and also of A,
until it is fixed.
The right side of (7.50) is less than the sum of

(7.51) C [u(@)* =7 |x*+ D dx,
T
(7.52) C Yl § u(alxi=M*mdx|r e
l7lsk |x| <e
and ‘ )
(7.53) C ¥ flPulLp.

o k+1<|y|<N
By Hélder’s inequality |I,J does not exceed
[u@ 7P d( [ @) gy
T e<|z| <1

Next we note that (6.5) certainly holds with k replaced by [y, |y < k.
The number 7, in (6.5) can be chosen to be 1 by (7.49). This shows that (7.52) -
is bounded by a multiple of (7.51). o

This is also true for (7.53), since

(7.54) ILIP< Clu(z)! 2|27 **Vaz =k for || 2k+1,
T

using the above sstimate on L, (7.49) and r < 1. ]
To get an estimate for the expression on the left sidé of (7.50), we look
at t=|x|, xeX = {x: £< |x| <1}~I, where I" is a cone centered at the

origin such that (7.21) holds with k replaced by k+1 and xer.
Using that fis in Ly and (5.6) we see that f*¢,(x) equals the sum of

(7.55) [uQ)t 7 D= (g PR+t () dyje+ 1)1,
T
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(7.56) Ju@) = I [ (x~p) = Ty 1 (@ (x— ), ¥)],
;
(1.57) —”Z Jo, Gy e =" [, (x— )= T (x= *), y)]dy-1,
<k
and
(7.58) - Y (01,
k+1<[y| <N

In (755 we split (—y-P}*' into (—p,cD**'  and
C, )" D" and use (5.7) and (7.21) to see that (7.55) in absolute

W=k 1ng #k+ 1
value is greater than

Clu@) 7 [y ** D dy x| =" k=1 (1-2C,).
) .
Since |y] <7 <Alx| < |xI/2 in (7.56), it is less in absolute value than
(7.59) AC [u(y)t=7 [y|P e D gy |xjn—k=1
T

In (7.57) ¥l <e<r<|x/2 and |x] >¢ for z in T show that (7.57) is
bounded in absolute value from above by

C Y [l (vfelle™ 1= yk* 1 [x|=n=k=1 gy
17l <k )
times g1~k [y (z)1~F |zt 1) g
T

After a change of variable in the first integral and by (5.7) this is less
than a multiple of (7.59).

The same is true for the absolute value of (7.58) by |le,x )], < C,
uniformly in t, (7.54), and since "= <7 < A|x|=""k=1 for WM=k+1,r<i,
|x| <1.

Altogether for x in X sup|f*¢,(x)| is greater than
t>0
Clu@) ™2 |y ® D dy x|~ "=k~ 1(1 = 1,
T

Letting 4 = min(4, 1/2C,) and using this estimate in (7.50) shows that
(7.60) fu(x) le""("“““"’dx(_l'u(x)l”"Jxl"'“""“dx)""1 <C.
X T

The usual arguments used before then complete the proof.

Proof of'Lemma (7.12). The proof is similar to the one of Lemma
(6.7) and we will sometimes refer to that one,

We re‘markec! before the statement of the lemma that we can assume
that the singularities of w!~? satisfy [p;—p.l >3, j#m. After a further

e ©
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dilation we can assume that there exists a cone I" centered at the origin such
that for x in I, |x—pj| > 1, j=2,...,J. .

Let a,eC®({x: 1 <|x| <2}nI) with [xPo,(x)dx =3, |Bl, )| < N.
Hence for any A >0

; .
suppa(d-) = I'c R\ {J {x: [x—p;| <1}.
i=2

Let I,, denote the set {x: 2" < |x| < 2"*'}. We decompose fin L. into a

«

sum of functions in Ly, namely f= 3 f,, where f,(x) is the sum of

m=-—o

1 2m—1
CTACIED) [%;fui{z—,’ f v o)y ) f y’f(y)dy]

| €k~1
Iy| >2m+1 |y >2m
and
o, (x/27) , o, (x/27" 1)
X [2);"(17“") I dy*2(7lm—1)(|y|+n) Vimdy |
k<PI<N
Iyl <2m |yl <2m+1

Note that f, is in Ly and that f,, is supported in
(I,,,hlul,,,ul,,,ﬂ)n(R"\Q ix: |x—pj| <1}),
if fis supported in {x: |x| < 2}. J=2
If y, denotes the characteristic function of the set R"\.LJ) {x: [x=pj
<1}, then we show that the following inequalities hold: =

(7.61) fou@) ™ ax( [ u()t 7 [xP* o (x)dxpP ! < C,
Ixf <r Ixf>r
(7.62) - | w(™ N D dx( [ u(t P 3PNy () dap T < C
x| >» |xf <r
C independent of r > 0. .
For r>r, (7.62) follows from Lemma (6.5) and the fact that
)T xP Wy (x)dx < C, since g, is supported away from Pi»
jx|<r0
Jj=2,...,J and u(x)' 77 |x["¥* 1 js integrable at x = p, = 0 by Lemma (7.7).
Thus we only have to show (7.62) for small r <1, where 7, is given
by (7.9). o
Again by Lemma (6.5) the first integral is bounded by

C+ [ ulx)|x| Ptk D) gy ppte=H),
r<|x| <zg
For r <1 the second integral is less than

{ u(x)! 7 |xp' D gy o=k,
|x| <r
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Since this is uniformly bounded in r <1, and by Lemma (7.9), (7.62)
follows.

Similarly, using Lemmas (6.2) and (7.1), as well as (7.11), we see that
(7,61) holds.

Analogous to the proof of Lemma (6.7) the left side of (7.13) can be
estimated by a multiple of the sum of

(7.63) j:w mf , 27 f sup [f @l u,
1 i+2 .
(.64 DRI AT
. and
(765) zm z 2T RO

Using similar arguments as in the proof of Lemma (6 7) and (7.61),
(7.62), the last three sums can be seen to be less than C Z 2 ""‘jl SulPu.

The definition of f,, and Hardy’s inequalities show that Ilns is bounded
by Cf1f ()P (x| P u(x) dx.

8. Case (iii) (continued). This section contains the reduction of case (1)

to case (i)). We let p;, j =1, ..., J be the singularities of u' ™" uin H(N), ie.

[ ul+p)Pdx =0

Ixf <t

for all = > 0.

After a dilation we can assume that Ipj—pl > 5, j#1i.
If we denote by m; the largest integer such that

8.1 [ ulx+p) P xP™M-Dx = 0o, 10,

Ix[ <z

then by Lemma (7.7), 1 <m, < N+1, and we have

(8.2) f M(X+p;)‘“" [x"™idx < C
|xl <1

and

(8-3) § ulxtp)x=rm= 1t gx < €

x| <1
by Lemma (7.1).
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We cannot a priori give dn estimate on the number of singularities p; or

the sum of the orders m;, but we have the following interesting result, which
J

says in effect that M = Y m;—1 cannot be too large. The notation is as in
i=1
the introduction. )

LemMa (8.4). If u in H(N) satisfies (8.3) for j=1, ...,
PyURy,

Proof. If M < N, (8.5) holds trivially.

If M > N, assume (8.5) does not hold. Let L, N+1<

smallest integer such that P, is not spanned by PyUR,,.
Then by Lemma (2.9) there exists a function f in C® satisfying

[¥f(gdx=0, IB<N
[f(x)R(x)dx =0, R in Ry,

J, then

(8.5) spans  Py,.

L <M, be the

and
j:x‘“f(x) dx = g,

and a fixed #, |7| = L. Otherwise all x7, |y|
the span of PyUR,,.
Let P;, be as in Section 2 and set for r> 0,

£ % nn(S2)vg,,

=1y <m;
a,eC*ixl <1}, [xfa,()dx=45;, |Bl, <M

for all B, |B] =

= L, and hence P, would be in

h(x) =

Since P;,(x) can be written as

(x—pyit+ ¥
jy lar, (x

& |<Mci,v-n(x_pj)"’
m;<|n| <

"”f>r-lr'—"P,.,,,(x) dx = 6,05, Il <my, Bl <m;.
.

Hence [h P;, = [fP;,.
Also, R(x)= Y C;,(x—p)" and jay<H)R(x)dx=0, thus
my<nl M r
[RR=0=[fR, R in Ry.

The fact that {P;,} and Ry span P, shows that [x"h(x)dx
= [x"f(x)dx =4, for |y} = L, since x” is in Py,. '

Also, h, is in LL 1, since by the choice of L every P in P,_, can be
written as Q+R, Q in Py, R in RM and [k, P=[h(Q+R)=[f(Q+R)
= 0.
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Since L,_, is contained in Ly, ’
(8.6) suplh,*@ffu < C |l u.
t>0

The right side tends to zero with r, because

- +
" x=p; pr=pllyl+n
"\ r

u(x)dx—»0 as r—0
|x= pjl <r

by (8.3) and since |y| < m.
But as shown in the proof of Lemma (7.7), there exists a constant C
independent of r and x such that sup|h, ¢, (x)] = C|x|"""* for large |x| and
t>0

x contained in a cone depending on ¢.

Together, the last two facts contradict (8.6), and hence (8.5) holds.

Now we note that unless u is also in H(N—1) Lemmas (5.1) and (5.5)
show that
(8.7) [ u@) P xfNdx < C, ro= m}ax|pj] +2.

|xl>rg

Then we have

LemMA (88). If u is in H(N), (8.1), (8.2), hence (8.3), and also (8.7) hold,
then u(x)|x—p)|"?(1+|x])* is also in H(N).

Proof. Without loss of generality let j=1, p; =0.

We will distinguish between the cases M < N and M > N. In either case
J

we will write a function fin Ly as fo+ Y. f;, with f; supported around p; and
j=1

fo away from all p;s.
We will show that with v(x) = u(x)|x|7?(1 +]|x])*

(89) § suplfy» 9l v < C 1o,
>
(8.10) Jsu}o)lfx *olfv< CllfilPo,
>
and
8.11) _fsEIO)UI xoffo < Clffo, j>1.
t

Then we can appeal to arguments used before to complete the proof.

If M < N let f; be as in (3.17), otherwise as in (3.18). Then f;, and f) are
in Ly.

To show (8.9), consider

(8.12) . juzfggwo () @, (x—=y) dylP u () x| =P dx

and

8.13) | suplfo* @) v(x)dx.
|x|>1/21>0
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Since [yl > 2|x| in (8.12), |o,(x—y) < C|y|"", and Holder's inequality
gives the upper bound

(8.14) C| |f<1"(x)le“’dxjlfo(y)!”u(y)dyfu(y)l""'Iyl“""‘xsuppfo(y)d%

The fact that u'~#" is locally integrable on supp f,, (8.3) and (8.7) show
that (8.14) is bounded by C[|f,Pu, which is less than C | folPv.

For (8.13) we simply use v(x) ~ u(x) on {|x| > 4!, ue H(N) and f,e Ly,
to get the desired bound.

By the same argument it will be sufficient to estimate

| |'[<1§ulgl‘rf’ M@=y dyPu(x)|x|"Pdx by  C[If,(x)Pu(x)|x|""dx.
x >
This is done by subtracting T,, _;(¢,(x— "), y) from ¢,(x~}) in the inner
integral and using a three parts proof as before.

Similarly we subtract T,,,j_,((p, (x~pj—-), y—p;) in the inner integral
of (8.11) and use a three parts proof.
' This completes the proof of (8.9), (8.10) and (8.11).

It remains to show that

flfFo<Cliffro, j=0,1,...,J.

But the proof is virtually the same as that of (3.20) with only obvious
modifications.
This completes the proof of Lemma (8.8).

9. Completion of the proof of the theorem. We will show that any u in
H(N) satisfies (1.2) through (1.6).
By Lemma (7.8) u* "% has at most a finite number of singularities Djs
i=1,...,J. Let ry = max|p]+2.
o
I § u(x)'"Pdx=oo, then u is in H(~1) =4, by repeated appli-
' x| >r
cation of L%mmas (5.1) and (5.5). Hence J = 0 and (1.2) through (1.6) hold
with No = = —1.
If | u(x)'""dx < oo, let N be the largest integer with
€ >rg
(9.1) v [ u@x)7|x]P"¥odx < co.
1] >rg
That N, exists and does not exceed N is seen as follows. Assume that
[ u@)~?|x"™* D dx < co. Then since H(N) is contained in H(N+1),

|x| >rg

Lemma (6.5) implies that also

[ u(x@) x|~V dx < 0.
Ixf >rg
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But Holder’s inequality gives

W = j‘ 'xl—ndx=( j‘ u(x)‘x|~p(n+N+l)dx)l/p( J' u(x)l‘ll"xlﬂ'(N-I-l)dx)llp'.

% >rg |x| >rg |x]>rg

" This contradiction shows that N, < N.
Since [ u(x)' ¥ |x"Wo*Vgx = o0, u is in H(No) be repeated appli-

cation of Ifgmrrglas (5.1) and (5.5). Thus it will suffice to show (1.2) through
(1.6) with N = N,.

IfJ =0, u(x)' % (1+xP"" is in L' and Corollary (6.10) gives (1.2), (1.4)
and (1.5) with No =N, M = —1, and (1.3) is triviaily true.

If J >0, let m; be as in the previous section, M = Y m;—1. Applying
i=1

J
Lemma (8.8) M+1 times shows that v(x) = u(x) [ |x~ pj| =™ (L 4|x|)M+ 0

j=1

is also in H(N).

Since (9.1) holds with u replaced by v and No =N, Lemma (6.10) shows
that v(x) = (1+[x)'™* Y w(x), with w satisfying (1.4) and (L5).

Since (1.2) follows from that and (1.3) was shown in Lemma (8.4), it only
remains to show (1.6).

Without loss of generality let j = 1, p; = 0. We first show that for some
C>0

.2 j‘w(x)lx|“’“"")dx( [ w@' " Ix"PdxpP 1< C  for r>0.
i [x] <r |x|>r

Note that both integrals exist, since

J
w () [x|P1 7 = 1 (30) (14 |x]) P [ == m) T [xe— | = Py
j=2
is locally integrable by (8.3), and the second integral is finite, since
w()' P (14 x| s in B,.

So we only have to check (9.2) for small r and for large r. The former
case is taken care of by Lemma (7.4) with k =m, —1. The latter one by
w(x)(1+|x)" "4, and W) TP (L) Ve B,

Hence (9.2) holds.

Now we can show that w(x)|x|" is in A4, for 0<a< n—1, which
implies and is actually equivalent to (1.4) and (1.6).

We will show that for any function f

3) ffggif* @O w () X" dx < Cf1f (0P w(x) |x] = dx,

where ¢ is a fixed positive function in §, radial and decreasing in |x]|.
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For such ¢, su}; [f*@) = Cf* if f>0, so that (2.1) then implies that
>
w(x)|x|® is in 4,.

It suffices to estimate the following integrals by a multiple of the right
side of (9.3):

©4 I, 3, 0NN dypwinxi=eras,
y[<lx|/
) fsupl T £O)S D)o (x=p)dylPwix)Ix = dx
5 <Iy] <2|x
and :
©.6) I I, TN P sl .
Y| > 2| x|

Hardy’s inequalities can be applied to both (9.4) and (9.6), respectively,
to yield the desired bound, since

{ w(x) x| TP g (| w () | dx1 < C,

|x|>r |x| <r
since a > 0, wed,, hence w!""eB,, and

[ eI dx( | w7 [xpemaxpt < c,
| <r || >r
since a < n—1 and by (9.2).
Since ¢ is bounded, (9.5) is seen to be bounded by

CII ST w(x)dx.

The fact that w is in A, completes the proof of (9.3) and hence of the
theorem,

. 10. Proof of Corollary (1.8). Let u satisfy (L7) and (1.1) for all fin S .
As in the necessity part of the proof of the theorem we will assume that

(10.1) j‘fgglf*%l"u < Cfifpu

for all fin S ¢ and either for all o(x) =x/Ix|"**, k=1, ...,n, or for some @
in § with nonvanishing integral.

We will prove the corollary by showing that (10.1) actually holds for all
Sin LnLy.

We first note that (1.7) implies that every f in Sy can be approximated
by a sequence of functions £, in So,0 in the norm of IZ and I2. This follows
from Theorem (6.13) in [7]. The proof given there is in one dimension, but
the generalization to higher dimensions is straightforward.

Now let f be in LynL}, #cC™*{|x| <1}, f®¢=1. Then for &¢>0
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Sy =f*®, is in §y. Hence there exists a sequence of functions f,, in So.0
converging to f, in Lf and I? as k — 0.

We claim that after selecting a suitable subsequence of {f,,}, .., for
every 6 >0 and ae. x

(10.2) lim lim su163 [(f—=for) * @ ()] = 0.

g0 k- t>

This will follow from

(103) lim sup|(f—£) » ¢ () =0,
&0 >
and
(104) lim sup|(f,—fui) *@,(x)) =0 = for every ¢ > 0.
k=x t>d

We first consider the case that ¢ is in S. To show (10.3), observe that for
fixed y in R", § >0,
lim sup| f (v/t) [1— & (ey/1)] 6 (y)

. &m0 t>d

<lim sup || fllolI@llo |t =S (ey/s) =0, since B(0) = 1.
Since the left ;;5682?5(10.3) is less than
c 31_{% S‘I:I;,f [FO) L - ()] ¢ (t3)] dy
< Climsup [|/(y/) [1~ B (ey/0] & ()] dy-t ™,

and since the last integrand is bounded by ||fl|.(1+]1®|l,)l (y), Which is

integrable, we can use the above observation and apply Lebesgue dominate

convergence theorem to get (10.3). '
For the left side of (10.4) we have the upper bound

Jim supllfe—fulalled < Jim SN fo=funlllloll, = 0.

To show (10.3) and (104) in case ¢ (x) = x,/|x|"*", note that f, —f in L}
and f,, —f, in I?. Using that the Riesz transforms are of weak-type (1.1) and
of strong type (2.2), both equalities follow and hence (10.2) holds, if we select
an appropriate subsequence first from {f},», and then from { Jukheso for
every &.

From the above we get for every 6 >0 and a.c.

sup|f* @, ()| < liminflim infsup [ fook * 0, ()]
t>4 2=+Q >0

k=

Since 6 >0 was arbitrary, Fatow’s lemma shows that

_[sup[f*(p,l"usIiminfliminffsuplﬁk*(p,l”u.
>0 =0 k= T om0

@ ©
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By assumption the last expression is bounded by
Climinfljminffffg,kl"u = Climinf[| £ u.
T e=0 k=0 e—~>0 .

It remains to show that this equals C [If1Pu. But this follows from
I =fllpu < lS}lp e —z))—fHM 1®]l;, and the last expression tends to zero
z| <g

with & by standard arguments, since u is locally integrable.
This completes the proof of the corollary.
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