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Non-commutative probability limit theorems
by
K. URBANIK (Wroctaw)

Abstract. A non-commutative analogue of limit probability distributions of sums of
independent random variables forming a uniformly infinitesimal array is considered. We give a
complete deseription of all possible limit probability operators being a quantum analogue of
infinitely divisible and sell-decomposable probability distributions, respectively.

1. Preliminaries and notation. In the quantum probability theory the o-
field of random events is replaced by the lattice I of orthogonal projectors
in a separable infinite-dimensional Hilbert space H. A countably additive
function from this lattice to the unit interval comstitutes a state, the non-
commutative analogue of a probability measure. The Theorem of Gleason
[4] asserts that every state is of the form

(1.1) Pt PT (Pell),

where Tis a probability operator on H, ie. a positive operator of unit trace.
Conversely, every probability operator determines a state by (1.1). From now
on let # stand for the set of all probability operators on H. We shall denote
by .#; and .#,, respectively, the set of all nuclear and Hilbert-Schmidt
operators on H. With the norm [|T1ls =tr/T-T* %, becomes a Banach
space. Furthermore, with the norm |||, = /tr T- T* &, becomes a Hilbert
space. Obviously, P = %, = %, and ||Tll, < || T}y for Te Z;.

In the classical case the physical object is determined by its symmetry
properties, ie. by a group G. In this paper we restrict ourselves to the
canonical non-relativistic case when G is the vector group R¥® (s=1,2,..).
The quantum analogue of this object is defined by a representation of R* in
the group of automorphisms of the lattice I1, ie. according to the Theorem
of Wigner [9] (p. 170) and the theorems on multiplier representations ([1],
[107, Chapter X) by a projective unitary representation V (z) (zeR%) on H'
satisfying the Weyl-Segal commutation relation
‘ V() V(Z) = 245 Y (z42)) (2, 2 €R¥),
where

Az, 2= Y, V=XV

k=1
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and
z= <x1’ Yis X2s Vas -o s Xg, ys>7
a Y / ’
7= <x'lv ,V'1, x,Za Y2y ooy Xss ys>'

By D we shall denote the operator on R* corresponding to the skew form 4,
ie. (z, Dz') = A(z, z') for all z, z’eR*, where (-, ) is the Euclidean inner
product in R*. It is known ([5], p. 240) that the map T — T (Te.#,), where
T(z) = tr TV (z), extends uniquely to a linear isometric transformation from
&, onto the space L,(R*) of all complex-valued square integrable (with
respect to the Lebesque measure) functions f on R* with the norm

112 = (@0 J 1f (2 dz)2,
R2S

A complex-valued function f on R is said to be A-positive-definite if for
arbitrary complex numbers ¢, ¢,, ..., ¢, and vectors z;, z,, ..., z,e RY the
inequality

(1.2) Y TS (zj—z,) A 2

Jde=1
holds. An analogue of Bochner’s theorem asserts that f= 7 for a certain
probability operator Tif and only if fis 4-positive-definite, continuous at the
origin and f(0) =1 ([5], p. 243). The function T'is called the characreristic
function of the probability operator T. It will be one of the main tools in the
analysis of probability operators. .

A probability operator T is said to be Gaussian if T'(z) = e~ ¥/ 2qz,2) +ilz.z)
where zoeR* and g is non-negative self-adjoint operator on R?. The
operator g is called the covariance operator for the Gaussian operator T. A
necessary and sufficient condition for ¢ to be the covariance operator for a
certain Gaussian probability operator is given by the inequality

(1.3) (gz, 2)+(gz', 2) = A(z, 2)

for all z, 7 e R* ([5], p. 252).

It is evident that for Te&# both function T(z) and T(~3:) fulfil condition
(1.2). Thus there exists a probability operator Tsuch that T{(z) = T(—z). We
say that a probability operator T is symmetric whenever T= T ie. the
characteristic function of T'is real. A projector is said to be a ground state il
it is a symmetric Gaussian probability operator.

Let M(R%) denote the set of all Borel probability measures on R%, By
d, (ac R®) we shall denote the probability measure on R* concentrated at
the point a. For any Te# and ue M(R%) we put

Tou= [ V(Dz) TV*(Dz) u(dz),
R2S
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where the integral is taken in the weak sense. It is clear that To ue? and

@= Tfi, where ji denotes the classical characteristic function of 4, ie. the

Fourier transform of u. Hence it follows that (Togu)ov = To(u*v), where the
asterisk denotes the convolution in M (R*). Moreover, we have the following
proposition.

ProvosirioN 1.1. Let Te# and pe M(R*). Then Tou is a projector if
and only if T is a projector and u =93, for a certain vector ae R,

Proofl. The sufficiency is evident. To prove the necessity we note that
always [A(z) < 1L, |T()] <1 (zeR™) and ||T|,<1. If Tou is a projector,
then

U=ITou}=0m™ | IT@AaG)d
R2s
<@m7 [ T2z =||T|3,
R2s
which yields [|T]|, = 1 and |fi(z)] = 1 (z& R*). Consequently, by Corollary 3.1
([51, p. 241), Tis a projector and u is concentrated at a single point.

The projectors belonging to # will be called pure states. The probability
operators of the form Q ou, where Q is a ground state and pe M(R%), will
be called quasi-clussical probability operators. From Proposition 1.1 we get
the following corollary. .

CoroLLary 1.1, A pure state is quasi-classical if and only if it is of the
Jorm Qod,, where Q is a ground state and aeR?:.

Moreover, from the description of eigen-values of Gaussian probability
operators ([5], p. 255) we get the following corollary.

COROLLARY 1.2. A probability operator is Gaussian if and only if it is of
the form Q oy where Q is a yround state and vy is a Gaussian measure on R*.

2. A convolution algebra. Let B be the subset of L?(R?) consisting of all
continuous functions vanishing at oc. The set B with pointwise addition,
scalar multiplication, multiplication and the norm

/11 = max |/ ) +11/12
2eR 2

becomes a Banach algebra without the unit. It is very easy to check the
inclusion

(2.1) P B,

In fact if Te:2, then T? is continuous and positive—deﬁnile ([3], p. 464).
Consequently, % = fi for a certain pe M(R). Since Tgl?(Rz”), we have
fie L{R*) which yields that u is absolutely continuous with rtispect. to the
Lebesgue measure on R3*. By the Riemann-Lebesgue Theorem ji vanishes at
. Thus T vanishes at oo, too, which completes the proof.
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From (2.1) we get the inclusion
!Z‘l < B.
Furthermore, we have the proposition.
ProrosirionN 2.1. The set B is the closure of %, in the norm || |

1
Proof. Let Q be a ground state, O (z) = ¢ =), Then for any t > |
and zoeR? the functions :

(22

being the characteristic functions of Gaussian operators belong to 2. It is
easy to check that functions (2.2) separate points of the one-point compactifi-
cation of R* and form the set invariant under complex conjugation, The
algebra generated by these functions over the complex field is contained in
Z,. Consequently, by the Stone-Weierstrass Theorem ([7], 1. 4), the uniform
closure of this algebra contains all functions from B. Hence it follows that for
every positive number & and every function feB the functions

(2.3) f(z)es4?,

where |2? = (z, z), belong to the closure in the norm II'll of the algebra
generated by functions (2.2). Since functions (2.3) form a dense subset of B in the

norm || ||, we conclude that the closure of ., in the norm [| || contains B which

completes the proof. .
Let o be the set of all Hilbert-Schmidt operators T' for which T B. We
define the convolution  in .o/ by setting

N P
L+T,=TT1,.
Moreover, we put |[T]| =||T||. Then
1T+ Tl < [T IT)

and, consequently, the convolution algebra < is a Banach algebra without the
unit. A sequence {7} of elements of .o/ is said to be an approximate unit il
for every Se.«/, T, %S - S in the norm || || when n — 0. It is easy to verily
that {T,} is an approximate unit if and only if T, tends to I uniformly on
evzery compact subset of R* and the functions T, are bounded in common on
R3,

From (2.1) we get the inclusion

Pl cdacd,.
Moreover, by Proposition 2.1, « is the closure of &, in the norm || ||. It

was proved in [3], p. 462, that if T, e and ’7}, converges pointwise to a limit
function f on R which is continuous at the origin, then there exists T'e:#
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. such that T =f. Moreover, on the set & the following convergences are

equivalent:

(i) T,— T in the norm || ||.

(ii) T,— T uniformly on R,

(iii) T, — T pointwise on R,

(iv) T, T in the norm || ||,

(v) T,— T in the norm | ||,.

In fact, the implication (i)=>(ii) is a consequence of the inequality
max |T,(z) = T(z)| < ||T,— TI|. The implication (if) = (iii) is obvious. The con-
ifiﬁz@nce (iii) by Theorem 2 ([3], p. 462) yields the weak convergence of T, to
T in %, which, by the Theorem of Wehrl ([2], p. 287), implies the
convergence (iv). Further, by the inequality ||S|l, < ||S|l; (S€.%;) we get the
implication (iv) =>(v). Conversely, the convergence (v) implies the weak
convergence T, to Tin .2, which by Proposition 7 in [3], p. 465, yields the
weak convergence T, to T in %,. Applying the theorem of Wehrl ([2],
p. 287) we get the convergence (iv). Finally, by the inequality
IISI < 211811, (Se.#,) we get the implication (iv)=>(i) which completes the
proof. ‘

P By virtue of the isomorphism T— T between ., and L*(R%) for each
positive number « we define a linear transformation U, of &, by -setting

24 U D@ =T (R
It is clear that U, =U,U,,
(2.5) Uy Tlz = a™* || T2,

the algebra ./ is invariant under all transformations U,

Uu(Ty % Ty) = Uy (T1) % Uu(To),
and
U, Tl < max(1, a”)||T}.

An a-tuple (¢, dy, ..., d,) of positive numbers is said to be admissible if

n
j:ki UuJ
denote the set of all admissible n-tuples (n=1,2, ...).
Provosition 2.2, We have

Tye:# for every choice of probability operators Ty, Ty, ..., T,. Let A4,

n

A, o {(a,,‘, Uy, ey Gy): Z

J=1

af = 1}

n
Proof. Let Q be a ground state. Then :kUan=U,,Q, where

Jj=1
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n

52= Y. af. Suppose that U,Qe#. Then ||U,Qll, < 1. Since {|Ql, = 1, we
i j=1
have J(by (2.5)) b = 1 which completes the proof.

ProrosiTioN 2.3. We have

4,

Proof. Let T be an arbitrary probability operator for which T is not
positive-definite on R%*. As an example of such operator we can take the
operator T with the characteristic function

(3.

1
,A,|,|2
e 4 ’

(2.6) T(z) = (1-§(xF+ D)

where z = (X, Y1, X3, Ya, +ers Xgy Y- SiDCE

@ 2
= 2 e X1 X\ —2-ILs Lty
T(z) =-*\/‘E et (1= e dljl:]ze e,

we ‘conclude, by a simple calculation, that T is d-positive-definite. In other
words T'e#. Suppose that T is positive-definite. Then its Fourier transform f
is continuous and non-negative. But, by a simple calculation, we have f(0)
= —(4n)* which shows that T is not positive-definite. It is clear that the set
A of all positive numbers a for which U, Te# is closed and non-empty
because 1eA. It is also bounded. Indeed, if there exists a sequence «,&A
tending to oo, then T(a,z) is A-positive-definite and setting f(z) = T(a, 2), 2,
= wy/a, into (1.2) we get the inequality

e(l'lZﬂrz)/l(w_l.wk) >0

M=

Cj Zk T(Wj'“wk)
1

i

ik

which yields, when a, — oo, the positive definiteness of 7. This contradiction
shows that the set 4 is bounded. Let ¢ be the greatest element of 4. Put §
=U, T Of course, S¢# and U,S¢# for all a> 1. Thus 4, < (0, 1] which
together with Proposition 2.2 completes the proof.

ProrosiTiON 24. We have
(1, )¢A,.

' Proof. Let T be the probability operator with the characteristic func-
tion (2.6). Suppose that (I, 1)eA,. Then, in particular, T Te .2 Con-

seqpéntly, by Proposition 5 ([3], p. 464), 7]*? T, or equivalently, 7° is
positive definite. Thus its Fourier transform gy is continuous and non-
negative. But, by a simple calculation, g(0) = —(4n/9)* which yields the
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contradiction. Our statement is thus proved. Proposition 2.4 shows that the
set # is not closed under the convolution.

PROPOSITION 2.5. Given an arbitrary n-tuple (¢, ¢,

' sens &), Where ;= —1
or 1 (j=1,2,.., n we have the inclusion

n
{@y, a2 ..sa): Y ga? =1} < 4,
J=1

Proofl. From the fact that f is A-positive-definite it follows that Fis
also A-positive definite. Consequently, we may conclude that for arbitrary
Ty T oos Ty, 2y, 29, ., 2, € R¥, positive numbers ay, ay, ..., a, and
g=-—1or 1 (r=1,2, ..., n) the matrices

- 2 4tm

(T (4 2y 20) 21 420
are positive-definite. Since the entry-by-entry product of such matrices is
again positive-definite, we have that

(nl T.(ay (2 — )

n n
is positive-definite. If 3" #,a? =1, then [ T;(a,z) is 4-positive-definite or in

ra] re=l

n
other words * U, T.e # which completes the proof.
=1

Jk=1,2,...,m

n
(i/2) le,.a,?d(z 22k)
&
Hk=1,2,...,m

po
Taking ¢/ =1 il 1<j<n—r and g = —1 if n—r <j<n for every
integer r satisfying the inequality 0 <r < n/2 we have, by Proposition 2.5,

1

1 1
e, . Ay
<\/n-2r Jn-2r \/n-2r>e

ProPOSITION 2.6. The set of all quasi-classical probability operators is
invariant under transformations U,(a = 1).

Proof. Let @ be a ground state and pe M(R%). Then (by (2.4))
UgQop) = U,(Q)ou, where fi,(z) = ji(az). By virtue of (1.3) the operator
U,(Q) is Gaussian for a 2 1. Consequently, by Corollary 1.2, it is of the form
Q,0v,, where Q, is a ground state and v,e M(R*). Thus U,(Qouw)
= Q,0(p, *v,) which completes the proof.

3. Statement of the problem. Let {T,,}, {a,}(k=1,2,...,k;n
=1, 2,...) be triangular arrays of probability operators and positive num-
bers with the property

(3~1) (ﬂl,,, a2na (AR ak"n)EAk,, (n = 1; 2: .. -),

5 = Studin Math. 78.1
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respectively. Then of course

kVI
* U, T,e? (n=
k=1 kn

1,2,..).

The triangular array {U,, T} (k=1,2,...,k;n=1,2,..) of operators

from A is said to be uniformly infinitesimal if for every choice of

rwy 1 <1y < ky the sequence {U, T .} (n=1,2,..) forms an approximate
n

unit in the convolution algebra .« or, equivalently, in terms of the character-

istic function

lim max [1—-7T,(d,2)] =0

n= 1 €k Sky

(32

uniformly on every compact subset of R*. Then lay,} (k=1,2,...,k,;n
=1,2,..) will be called a norming array. Suppose that for a uniformly
infinitesimal triangular array there exists a sequence {c,} of vectors from R
such that the sequence of probability operators

k"
(% U
k=1

(33) Tin) 06

kn n

converges to an operator T in .o/, Of course T'e#. What can be said more
about the limit probability operator T being a quantum analogue of a
classical infinitely divisible probability distribution? Let # denote the set of
all such limit probability operators T. By ¢, we shall denote the subset of &
corresponding to the quantum analogue of classical self-decomposable prob-
ability distributions, ie. to the case k, =n, a;, =ay, =...=ay Ty =T,
(k=1,2,...;n=1,2,..). Further, &, will denote the subset of %, cor-
responding to the case T; = T, =... From the Cushen-Hudson Quantum
Central Limit Theorem [3] it follows that &, contains all Gaussian prob-
ability operators. Our aim is to characterize the sets &, %, and %, of limit
probability operators.

We recall that u from M(R®) is infinitely divisible if for every positive
integer n there exists a measure u,€ M (R%) such that u = u*", A measure g
from M (R™) is self-decomposable if for every real number « from the interval
[0, 1] there exists a measure v,& M(R™) such that u = u, %v,, where fi,(z)
= fi(az) (ze R®).

Tureorem 3.1. The set & consists of all quasi-classical probability oper-
ators Qop, where Q is a ground state and p is an infinitely divisible probability
measure from M (R™).

From this theorem and Corollary 1.1 we get the following statement.

CoroLLARY 3.1. The probability operators of the form Q o4,, where Qisa
ground state and aeR* are the only pure states in .
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THeoREM 3.2. The set @, consists of all quasi-classical probability oper-
ators Qou, where Q is a ground state and p is a self-decomposable measure
from M (R%),

Tueorem 3.3. The set %, consists of all Gaussian probability operators.

Before proceeding to prove the theorems we shall establish auxiliary
propositions.

LimMa 3.1. For each norming array of a uniformly infinitesimal triangular
array (U, Tiab (k=1,2,..  kin=1,2,..) the formula

lim max g, =0
n 1€k <k,

holds.

Proof. Suppose the contrary. Passing to a subsequence if necessary we
may assume without loss of generality that for a sequence {r,} (1 <r, <k,),
lima, , > 0.

i n=rou
By (3.2) we have then the convergence T:",,(z)—ﬂ uniformly on every
compact subset of R*. The limit function 1 being A-positive-definite is the
characteristic function of a probability operator belongs to L?(R*) which
yields the contradiction. The lemma is thus .proved.
LeMMA 3.2, For each norming array corresponding to a convergent

sequence (3.3) the inequality

—— kn

lim Y af, <

n~oo k=1

holds.

Proof. Suppose that the sequence (3.3) is convergent to a probability

k"

operator T Put b2 =Y af, b, >0, d,=b; ¢y, byy=b7 ay, (k=1,2,...,k,;
k=1

n=1,2,...). Then, by Proposition 2.5

ky
Sy = k;kl Ubk,, Tne?

and Uy, S, T in &/ . Suppose that for a subsequence {m,} b,, — cc. Then
the relation §,(h,z) — T'(z) uniformly on every compact subset of R? yields
S',,(z) — 1. The limit function 1 being 4-positive-definite is the characteristic
function of a probability operator belongs to LZ(R*) which gives the
contradiction. The lemma is thus proved.

By Lemma 3.2 (passing to a subsequence if necessary) we may restrict
ourselves to norming arrays for which the limit
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k,l
(3.4) lim Y af,=a<w
B o= |

exists. Moreover, by Proposition 2.2 and (3.1), a > 1. Let us denote by %,
the subset of % consisting of limits of sequences (3.3) with the norming
arrays satisfying (3.4), where a = 1. From (3.1) and Proposition 2.5 we get the
following corollary.

COROLLARY 3.2. For every Te there exists Tye 4y and a 2 1 such that
T=U,T,.

By a simple calculation we get the following lemma,

LemMa 3.3. Let {¢,} (k=1,2,..., ky; n=1,2,...) be a triangular array
of positive numhers with the properties

k'l
Voew=1 (n=1,2..)
k=1

and

lim max ¢, =0,

nvon 1§kSk,
Then for every positive integer m there exist indices 1 = 5o, <81, < .o < Spy
=k, such that

Sent

im ¥

A= G0 (= S g k1
Lemma 3.4. Let T,, S,€ 2. Suppose that for some positive numbers a, and
b, with the property

Cu=1/m (r=1,2,...,m.

lim a,> 0

n-roo

(35)

and for some vectors z,€ R, the sequence

(U, T,% U, 808, (n=1,2,..)

is convergent in of. Then the sequence U, s (T, Ty m=1,2,...) is con-
ditionally compact in 2.

Proof. Let us denote by G, and H, the operators Uy, ,(T,* T,) and
U, ﬁ(S,,mS’,,), respectively. By Proposition 2.5, G,, H,e #. Moreover, by the
assumption, the sequence U, G,*U, H, is convergent in .o/, Thus the
sequence

G, (a,2H,(b,2) (n=1,2,..)

is convergent uniformly on every compact subset of R%. Since G,(2)

=T,z/\/2) 7},(2/\/5), A,(2) =5,(z/\/2) §,,(z/\/5), we infer (by Proposition 5
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in [3]) that both functions G,, H, are positive definite. Consequently, there
exist symmetric measures , and v, in M(R?) such that G, = i, and H, = 7,.
Thus the sequence f,(a,z)¥,(b,2) (n=1,2,...) is uniformly convergent on
every compact subset of R**. Hence by the symmetry of u,, v, and inequality
(3.5) we infer that the sequence {4} is conditionally compact in M (R?) ([8],
Theorem 2.2). Consequently, the sequence #, or, in other words, G, is
conditionally compact in the topology of the uniform convergence on every
compact subset of R*, Hence by the equivalence of the convergences (i)}-(v)
on # we get the assertion of the lemma.

Lemma 3.5. Let Te%o. Then for every positive integer m there exist
symmetric probability operators L(G=1,2,...,m) in %, such that

Uy s (T* = .*1 Uyin T
j=

Proof. Suppose that T is the limit of the sequence (3.3) where the
norming array fulfils condition (3.4) with a = 1. By Lemmas 3.1 and 3.3 for
every positive integer m there exist indices 1= so, <59, <... < Sn = kyy
(n=1,2,...) such that setting

Srn
Gh= Y al, >0 (r=1,2,...m
k=sp gt 1
we have
(3.6) limed =1/m (r=1,2,..,m

neren

Moreover, setting by, = ayu/Cuy (Sy- 14 < k < 5,,) We infer that the triangulat
arrays {U,,km Tin} (Sm1n <k <83 n=1,2,...) are uniformly infinitesimal.
Further, setting ‘

Sen
S, = * U, T,
" k=$p— gyt 1 krn
we have
m
(3.7) (* U, Smod, —»T
r=1

in .. Taking into account (3.1) we conclude, in view of Lemma 3.4, that for
every r the sequence U,, (S, *8,,) is conditionally compact in 2. Passing to
a subsequence if necessary we may assume without loss of generality that

Ul/\/z(Srn * grn) - Tr"
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when n— 2. Of course T; is a symmetric probability operator from %, and,
by (3.6) and (3.7),

m
UI/JZ(T* T) = ik-l UI/\/m ’I;

which completes the proof.

It is well known that the characteristic function 4 of an infinitely
divisible measure g from M(R*) can be written in the Lévy-Khinchine
canonical form

- . - i(z, u) \1-|ul?
A2y = exp{l(z, z0)—%(gz, 2) + J (ff“" -1 **"f’;;“l‘t‘ll“z‘) lullzl

R2S

G(du)},

where zoeR%, ¢ is a covariance operator on R* and G is a finite non-
negative Borel measure on R* vanishing at the origin ([8], p. 181). The
correspondence between [ and the triple [z, g, G] is one-to-one which
enables us to use the notation = [z, ¢, GJ. It is clear that

(3.8 21,41, G122, 42, Gal = [y +22, ¢y +43, G+ G,

Lemma 3.6. For every Te 4y there exists an infinitely divisible measure
v from M(R*) such that T = 9. Moreover, if ¥ = [zq, q, G], then q is the
covariance operator for a Gaussian probability operator.

Proof. Let T be the limit of sequence (3.3) with the norming array
satisfying (3.4), where a = 1. Then
k’ll

(39) [T Ta (@2 ™™ > T2(2)
k=1

uniformly on R*. Since by Proposition 5 in [3] the functions T2(z2) are
positive-definite, there exist y,,e M(R%) such that
(@) = T (@z) k=12, kin=1,2,..)

Of course, {y,} form a uniformly infinitesimal array of probability measures
and, by (3.9),

kll
( * ‘ukn) * (SZc" = Wy
k=1
where
(3.10) A2 =Tz (zeR™).

Cpnsequent]y, by the classical limit theorem ([8], p. 199) w is infinitely
divisible which yields the Lévy-K hinchine representation i = [2z,, 2¢4, 2G).
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Put ¥ =[z4, ¢, G]. Since the function T is continuous, T(0) =1 and, by

*(3.10), does not vanish, we get the formula T'(z) = #(z) on R%. It remains to

prove that ¢ is the covariance operator for a Gaussian probability operator.
Put §= Uy, ;5(T* T). Then

(3.11) 8@ =20,

where 1= [0, ¢, H] and the measure H is symmetric on R?*. Further, by
Lemma 3.5, for every positive integer m, there exist symmetric probability
operators T, (r=1,2, ..., m) belonging to &, such that

(3.12) S= % Ullv'/»i T
r=1

We already know that

Ton(2) = Jym (2),

where 1,,, = [0, 4ym» H,n] and the measures H,, are symmetric on R,
Taking into account (3.11) and (3.12) we get the equations

1 m
313) = Grm»
( q mrgl

m(1+u?
= | ———— d
(3.14) H(E) e H, (du),
JmE

where

1 m
(3.15) H, = ;"-y; H,,.

Put for any positive number ¢, E, = {z: |z| < (‘/;} Then, by (3.14),
Hm (Em) < H(Ei/m)
and

H,(E) < m 't\[’_’.l__ H(R?%),
m(1+ \/;z)

where E¢ denotes the complement of E in R?*. Since H({0}) =0, the' last
inequalities yield

(3.16) lim H,,(R*) =0.

mer o
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Let z,, 25, ..., 23, be an arbitrary system of linearly independent vectors

in R*. Put

2s
h = Z (CIZJ: Zj)7 g = (qzla Zl)+(q22a 22)7
j=1

2s

hrm = Z (qrmzja Zj)a Jrm = (qrmzl: zl)+(qrm22ﬁ ZZ)'
J=1

By (3.13) we have the equations

m

(3.17) b= }j homs 9 = Y Grme

m, =y ral

Moreover, since ¢ and g,,, are non-negative operators, all numbers h, g, h,,
and g,, are non-negative. Consequently, for arbitrary positive number ¢ we
can find a positive number 5 such that

(3.18) hyp < .

Put

Then, denoting by card A the number of elements of A4, we have, by (3.17),
—rlﬁcardA,,,z 1-hn (m=1,2,..).
Further, by (3.15) and (3.16),

lim —1—cardB,,,,, =1 (n=12..)

and consequently, by (3.18),
1
lim —card A,, " B, > 1—h >1——~»«~« =
lim mn 2 1—h1 pas (n=1,2,...)
Finally, by (3.17),
8

1
~-card Cpy=z—
t]-H

From the last two inequalities it follows that for every positive integer n the
set A, N B, " C, is non-void for sufficiently large indices m. In other words
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we can find integers m,, r, with the properties m; <m, <...,1<r, <m,
and r,€ A, O By Cp . Then

(3.19) By <1 (n=1,2,..),
(3.20 H, . (R¥<ln (n=1,2,..)
and

(3.21) Gy <g+e  (m=1,2,...).

From inequality (3.19), by the linear 'independence of the vectors
24, Zz» +0aZ2y WE get the boundedness and, consequently, the conditional

. compactness of the sequence of covariance operators rpm, OT R?*, Passing to

a subsequence if necessary, we may assume without loss of generality that the
sequence ¢, ., converges to a covariance operator go. By (3.21) we then have
the inequality

3.22) (o215 21) +(qo 23, 22) < (421, 21) +(qz3, 25) +e.

Finally, inequality (3.20) shows that the sequence of the characteristic func-
tions T, tends to the function [0, go, 0] uniformly on every compact

1
subset of R¥. Hence it follows that the function e”7%0%? is A-positive-
definite and, consequently, is the characteristic function of a Gaussian
probability operator. Thus g, fulfils condition (1.3) which, by (3.22), yields

A(zy, z3) < g2y, 2() +(q22, 22)+¢
for every positive number ¢. Consequently,
A (Zh 22) S (qzh Zl)+(q227 ZZ):

where z,, z, are arbitrary linearly independent vectors from R*. For linearly
dependent vectors z,, z, the last inequality is evident because in this case
A(z,, z;) = 0. Thus ¢ is the covariance operator for a Gaussian probability
operator which completes the proof.

Now we are ready to prove the theorems.

Proof of Theorem 3.1. Sufficiency. Suppose that Q is a ground state and
4 is an infinitely divisible measure from M(R™). Let u}"= u. Put ¥,(z)
= ﬂ,,(\/nz) and Ty, =Qov, (k=1,2,...,n n=1,2,...). The triangular ar-
ray  {Uy Tb(k=1,2,...,n,n=1,2,..) is uniformly infinitesimal
because T, (z/\/ n) = Q(Z/\/;l) Q/ﬁ(z) -1 uniformly on every compact subset
of R*. Moreover, (U, /, hi)*"=Qop (n=1,2,...) which shows that
Qoue .

Necessity. First suppose that Te%,. By Lemma 3.6 there exist an
infinitely divisible measure v from M(R%) such that T =%, 9= [z, g, G]
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and ¢ is the covariance operator for a Gaussian probability operator. Let §

1

be a Gaussian operator with the characteristic function § (z) = emf(qz'”. Put
1 =124, 0, G]. Then (by (3.8)) T= S0 . Further, by Corollary 1.2 8 = Qoy,
where Q is a ground state and y is a Gaussian measure on R,
Consequently, T= Qo(y4). The measure y*4 is infinitely divisible which
completes the proof in the case Te Xy, For arbitrary probability operator
from & our assertion is a consequence of Proposition 2.6 and Corollary 3.2.

Proof of Theorems 3.2 and 3.3. Sufficiency. We already know, by
Cushen-Hudson Quantum Central Limit Theorem, that %, contains all
Gaussian probability operators. Given a ground state @ and a self-
decomposable measure u from M (R*), we have to prove that Qoue ¥, . By
the self-decomposability of u for every positive integer k there exists a
measure v, in M(R%) such that

= ,a(\/(_qul)/l: z)¥,(2)  (zeR>).
Let u, be the measure from M(R*) defined by the condition

(Vkz).

i (z) = 1,

Put T,=Qopu (k=1,2,..

). Then k["[ Tulz/ /M =02 j(z) (n=1,2, ..
=1

n
or, in other words, Qopu = % Uy T (n=1,2,...). Moreover,
k=1

INENGE

that the

which
=1,2,.

shows triangular

array
..) is uniformly infinitesimal. Thus Q oue ¥,.

Necessity. Suppose that Te; and Tis the limit of a sequence

lUI/’uTIL} (knlvzv--wn

(* U, T)og,
Put e

Se=Upy (T % Ty)  (k=1,2,...).

Then, by Proposition 2.5, S,e:# and, by Proposition § in [37, S, is posl-
tive-definite. Thus there exist probability measures & M (R?) such llml i
=$,. Moreover, the triangular array of probability measures | Len)

(k = L2 ..,mn=12..) where f,(z) = 2/ n), is uniformly infini-
tesimal and

n
(% W) %65, — v,
k=1 "

icm°®
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where
(3.23) 7=T2

It is well known that the limit measure v is self-decomposable ([6], p. 323).
On the other hand (by Theorem 3.1) T= Qopu, where Q is a ground state
and p an infinitely divisible measure from M (R%). Put fi = [z,, o, Go] and
= [z, ¢1. G{]. Then, by (3.23), 2G, = G, which shows that the measure u
is also self-decomposable which completes the proof of Theorem 3.2.

In order to prove that %, consists of Gaussian probability operators
only, we note that in the case T, = T, =... we have u; = y, = .., and,
consequently, the limit v is a stable probability measure having (by Theorem
3.1 and (3.23)) a non-trivial Gaussian component. Thus v itself is Gaussian
which (by (3.23) and Theorem 3.1) shows that T is a Gaussian probability
operator which completes the proof of Theorem 3.3.
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