

Non-commutative probability limit theorems

b

K. URBANIK (Wrocław)

Abstract. A non-commutative analogue of limit probability distributions of sums of independent random variables forming a uniformly infinitesimal array is considered. We give a complete description of all possible limit probability operators being a quantum analogue of infinitely divisible and self-decomposable probability distributions, respectively.

1. Preliminaries and notation. In the quantum probability theory the σ -field of random events is replaced by the lattice Π of orthogonal projectors in a separable infinite-dimensional Hilbert space H. A countably additive function from this lattice to the unit interval constitutes a state, the non-commutative analogue of a probability measure. The Theorem of Gleason [4] asserts that every state is of the form

$$(1.1) P \to \operatorname{tr} PT (P \in \Pi),$$

where T is a probability operator on H, i.e. a positive operator of unit trace. Conversely, every probability operator determines a state by (1.1). From now on let $\mathscr P$ stand for the set of all probability operators on H. We shall denote by $\mathscr L_1$ and $\mathscr L_2$, respectively, the set of all nuclear and Hilbert-Schmidt operators on H. With the norm $||T||_1 = \operatorname{tr} \sqrt{T \cdot T^*} \mathscr L_1$ becomes a Banach space. Furthermore, with the norm $||T||_2 = \sqrt{\operatorname{tr} T \cdot T^*} \mathscr L_2$ becomes a Hilbert space. Obviously, $P \subset \mathscr L_1 \subset \mathscr L_2$ and $||T||_2 \leqslant ||T||_1$ for $T \in \mathscr L_1$.

In the classical case the physical object is determined by its symmetry properties, i.e. by a group G. In this paper we restrict ourselves to the canonical non-relativistic case when G is the vector group R^{2s} (s=1,2,...). The quantum analogue of this object is defined by a representation of R^{2s} in the group of automorphisms of the lattice Π , i.e. according to the Theorem of Wigner [9] (p. 170) and the theorems on multiplier representations ([1], [10], Chapter X) by a projective unitary representation V(z) ($z \in R^{2s}$) on H' satisfying the Weyl-Segal commutation relation

$$V(z) V(z') = e^{(i/2)A(z,z')} V(z+z') \qquad (z, z' \in \mathbb{R}^{2s}),$$

where

$$\Delta(z, z') = \sum_{k=1}^{s} (x_{k} y'_{k} - x'_{k} y_{k})$$

and

$$z = \langle x_1, y_1, x_2, y_2, \dots, x_s, y_s \rangle,$$

$$z' = \langle x'_1, y'_1, x'_2, y'_2, \dots, x'_s, y'_s \rangle.$$

By D we shall denote the operator on R^{2s} corresponding to the skew form Δ , i.e. $(z, Dz') = \Delta(z, z')$ for all $z, z' \in R^{2s}$, where (\cdot, \cdot) is the Euclidean inner product in R^{2s} . It is known ([5], p. 240) that the map $T \to \hat{T}$ ($T \in \mathcal{L}_1$), where $\hat{T}(z) = \operatorname{tr} TV(z)$, extends uniquely to a linear isometric transformation from \mathcal{L}_2 onto the space $L_2(R^{2s})$ of all complex-valued square integrable (with respect to the Lebesque measure) functions f on R^{2s} with the norm

$$||f||_2 = ((2\pi)^{-s} \int_{\mathbb{R}^{2s}} |f(z)|^2 dz)^{1/2}.$$

A complex-valued function f on R^{2s} is said to be Δ -positive-definite if for arbitrary complex numbers $c_1, c_2, ..., c_n$ and vectors $z_1, z_2, ..., z_n \in R^{2s}$ the inequality

(1.2)
$$\sum_{j,k=1}^{n} c_{j} \, \overline{c}_{k} \, f(z_{j} - z_{k}) \, e^{(i/2) A(z_{j}, z_{k})} \geqslant 0$$

holds. An analogue of Bochner's theorem asserts that $f = \hat{T}$ for a certain probability operator T if and only if f is Δ -positive-definite, continuous at the origin and f(0) = 1 ([5], p. 243). The function \hat{T} is called the *characteristic function* of the probability operator T. It will be one of the main tools in the analysis of probability operators.

A probability operator T is said to be Gaussian if $\hat{T}(z) = e^{-1/2(qz,z)+i(z,z_0)}$, where $z_0 \in R^{2s}$ and q is non-negative self-adjoint operator on R^{2s} . The operator q is called the covariance operator for the Gaussian operator T. A necessary and sufficient condition for q to be the covariance operator for a certain Gaussian probability operator is given by the inequality

$$(1.3) (qz, z) + (qz', z') \ge \Delta(z, z')$$

for all $z, z' \in R^{2s}$ ([5], p. 252).

It is evident that for $T \in \mathscr{P}$ both function $\hat{T}(z)$ and $\hat{T}(-z)$ fulfil condition (1.2). Thus there exists a probability operator \hat{T} such that $\hat{T}(z) = \hat{T}(-z)$. We say that a probability operator T is symmetric whenever $T = \hat{T}$, i.e. the characteristic function of T is real. A projector is said to be a ground state if it is a symmetric Gaussian probability operator.

Let $M(R^{2s})$ denote the set of all Borel probability measures on R^{2s} . By δ_a ($a \in R^{2s}$) we shall denote the probability measure on R^{2s} concentrated at the point a. For any $T \in \mathscr{P}$ and $\mu \in M(R^{2s})$ we put

$$T \circ \mu = \int_{\mathbb{R}^{2s}} V(Dz) \, TV^*(Dz) \, \mu(dz),$$

where the integral is taken in the weak sense. It is clear that $T \circ \mu \in \mathscr{P}$ and $\widehat{T \circ \mu} = \widehat{T} \widehat{\mu}$, where $\widehat{\mu}$ denotes the classical characteristic function of μ , i.e. the Fourier transform of μ . Hence it follows that $(T \circ \mu) \circ \nu = T \circ (\mu * \nu)$, where the asterisk denotes the convolution in $M(R^{2s})$. Moreover, we have the following proposition.

PROPOSITION 1.1. Let $T \in \mathcal{P}$ and $\mu \in M(R^{2s})$. Then $T \circ \mu$ is a projector if and only if T is a projector and $\mu = \delta_a$ for a certain vector $a \in R^{2s}$.

Proof. The sufficiency is evident. To prove the necessity we note that always $|\hat{\mu}(z)| \leq 1$, $|\hat{T}(z)| \leq 1$ $(z \in R^{2s})$ and $||T||_2 \leq 1$. If $T \circ \mu$ is a projector, then

$$1 = ||T \circ \mu||_{2}^{2} = (2\pi)^{-s} \int_{\mathbb{R}^{2s}} |\hat{T}(z)\,\hat{\mu}(z)|^{2} dz$$

$$\leq (2\pi)^{-s} \int_{\mathbb{R}^{2s}} |\hat{T}(z)|^{2} dz = ||T||_{2}^{2},$$

which yields $||T||_2 = 1$ and $|\hat{\mu}(z)| = 1$ ($z \in \mathbb{R}^{2s}$). Consequently, by Corollary 3.1 ([5], p. 241), T is a projector and μ is concentrated at a single point.

The projectors belonging to \mathcal{P} will be called *pure states*. The probability operators of the form $Q \circ \mu$, where Q is a ground state and $\mu \in M(\mathbb{R}^{2s})$, will be called *quasi-classical* probability operators. From Proposition 1.1 we get the following corollary.

COROLLARY 1.1. A pure state is quasi-classical if and only if it is of the form $Q \circ \delta_a$, where Q is a ground state and $a \in \mathbb{R}^{2s}$.

Moreover, from the description of eigen-values of Gaussian probability operators ([5], p. 255) we get the following corollary.

COROLLARY 1.2. A probability operator is Gaussian if and only if it is of the form $Q \circ \gamma$ where Q is a ground state and γ is a Gaussian measure on R^{2s} .

2. A convolution algebra. Let B be the subset of $L^2(R^{2s})$ consisting of all continuous functions vanishing at ∞ . The set B with pointwise addition, scalar multiplication, multiplication and the norm

$$||f|| = \max_{z \in \mathbb{R}^{2s}} |f(z)| + ||f||_2$$

becomes a Banach algebra without the unit. It is very easy to check the inclusion

$$(2.1) : \hat{\mathcal{P}} \subset B.$$

In fact if $T \in \mathscr{P}$, then \hat{T}^2 is continuous and positive-definite ([3], p. 464). Consequently, $\hat{T}^2 = \hat{\mu}$ for a certain $\mu \in M(R^{2s})$. Since $\hat{T} \in L^2(R^{2s})$, we have $\hat{\mu} \in L(R^{2s})$ which yields that μ is absolutely continuous with respect to the Lebesgue measure on R^{2s} . By the Riemann-Lebesgue Theorem $\hat{\mu}$ vanishes at ∞ . Thus \hat{T} vanishes at ∞ , too, which completes the proof.

From (2.1) we get the inclusion

$$\hat{\mathcal{L}}_1 \subset B$$
.

Furthermore, we have the proposition.

Proposition 2.1. The set B is the closure of $\hat{\mathcal{L}}_1$ in the norm $\| \cdot \|$.

Proof. Let Q be a ground state, $\hat{Q}(z) = e^{-\frac{1}{2}(qz,z)}$. Then for any $t \ge 1$ and $z_0 \in \mathbb{R}^{2s}$ the functions

(2.2)
$$e^{-\frac{1}{2}t^2(qz,z)+i(z,z_0)}$$

being the characteristic functions of Gaussian operators belong to $\hat{\mathscr{P}}$. It is easy to check that functions (2.2) separate points of the one-point compactification of R^{2s} and form the set invariant under complex conjugation. The algebra generated by these functions over the complex field is contained in $\hat{\mathscr{Q}}_1$. Consequently, by the Stone-Weierstrass Theorem ([7], I. 4), the uniform closure of this algebra contains all functions from B. Hence it follows that for every positive number ε and every function $f \in B$ the functions

$$(2.3) f(z) e^{-\varepsilon |z|^2},$$

where $|z|^2 = (z, z)$, belong to the closure in the norm || || of the algebra generated by functions (2.2). Since functions (2.3) form a dense subset of B in the norm $|| ||_2$, we conclude that the closure of $\hat{\mathscr{D}}_1$ in the norm || || contains B which completes the proof.

Let $\mathscr A$ be the set of all Hilbert-Schmidt operators T for which $\hat T \in B$. We define the convolution * in $\mathscr A$ by setting

$$\widehat{T_1*T_2}=\widehat{T_1}\;\widehat{T_2}.$$

Moreover, we put $||T|| = ||\hat{T}||$. Then

$$||T_1 * T_2|| \leq ||T_1|| ||T_2||$$

and, consequently, the convolution algebra $\mathscr A$ is a Banach algebra without the unit. A sequence $\{T_n\}$ of elements of $\mathscr A$ is said to be an approximate unit if for every $S\in\mathscr A$, $T_n*S\to S$ in the norm $\|\cdot\|$ when $n\to\infty$. It is easy to verify that $\{T_n\}$ is an approximate unit if and only if \hat{T}_n tends to 1 uniformly on every compact subset of R^{2s} and the functions \hat{T}_n are bounded in common on R^{2s} .

From (2.1) we get the inclusion

$$\mathscr{Y} \subset \mathscr{L}_1 \subset \mathscr{A} \subset \mathscr{L}_2$$

Moreover, by Proposition 2.1, \mathscr{A} is the closure of \mathscr{L}_1 in the norm $\| \ \|$. It was proved in [3], p. 462, that if $T_n \in \mathscr{P}$ and \widehat{T}_n converges pointwise to a limit function f on \mathbb{R}^{2s} which is continuous at the origin, then there exists $T \in \mathscr{P}$

(i) $T_n \to T$ in the norm $\|\cdot\|_{\infty}$

(ii) $\hat{T}_n \to \hat{T}$ uniformly on R^{2s} ,

(iii) $\hat{T}_n \to \hat{T}$ pointwise on R^{2s} ,

(iv) $T_n \to T$ in the norm $\| \cdot \|_1$,

(v) $T_n \to T$ in the norm $\| \cdot \|_2$.

In fact, the implication (i) \Rightarrow (ii) is a consequence of the inequality $\max |\hat{T}_n(z) - \hat{T}(z)| \le ||T_n - T||$. The implication (ii) \Rightarrow (iii) is obvious. The convergence (iii) by Theorem 2 ([3], p. 462) yields the weak convergence of T_n to T in \mathcal{L}_1 which, by the Theorem of Wehrl ([2], p. 287), implies the convergence (iv). Further, by the inequality $||S||_2 \le ||S||_1$ ($S \in \mathcal{L}_1$) we get the implication (iv) \Rightarrow (v). Conversely, the convergence (v) implies the weak convergence T_n to T in \mathcal{L}_2 which by Proposition 7 in [3], p. 465, yields the weak convergence T_n to T in \mathcal{L}_1 . Applying the theorem of Wehrl ([2], p. 287) we get the convergence (iv). Finally, by the inequality $||S|| \le 2||S||_1$ ($S \in \mathcal{L}_1$) we get the implication (iv) \Rightarrow (i) which completes the proof.

By virtue of the isomorphism $T \to \hat{T}$ between \mathcal{L}_2 and $L^2(R^{2s})$ for each positive number u we define a linear transformation U_a of \mathcal{L}_2 by setting

(2.4)
$$\widehat{(U_a T)}(z) = \widehat{T}(az) \quad (z \in R^{2s}).$$

It is clear that $U_{ab} = U_a U_b$,

(2.5)
$$||U_a T||_2 = a^{-s} ||T||_2,$$

the algebra \mathcal{A} is invariant under all transformations U_a ,

$$U_a(T_1 * T_2) = U_a(T_1) * U_a(T_2),$$

and

$$||U_n T|| \leq \max(1, a^{-s})||T||.$$

An *n*-tuple $(a_1, a_2, ..., a_n)$ of positive numbers is said to be *admissible* if $\underset{j=1}{\overset{n}{=}} U_{a_j} T_j \in \mathscr{P}$ for every choice of probability operators $T_1, T_2, ..., T_n$. Let A_n denote the set of all admissible *n*-tuples (n = 1, 2, ...).

Proposition 2.2. We have

$$A_n \subset \{(a_1, a_2, ..., a_n): \sum_{j=1}^n a_j^2 \geq 1\}.$$

Proof. Let Q be a ground state. Then $\prod_{j=1}^{n} U_{a_j}Q = U_bQ$, where

65

ien

 $b^2 = \sum_{j=1}^n a_j^2$. Suppose that $U_b Q \in \mathcal{P}$. Then $||U_b Q||_2 \le 1$. Since $||Q||_2 = 1$, we have (by (2.5)) $b \ge 1$ which completes the proof.

PROPOSITION 2.3. We have

$$A_1 = \{1\}.$$

Proof. Let T be an arbitrary probability operator for which \hat{T} is not positive-definite on R^{2s} . As an example of such operator we can take the operator T with the characteristic function

(2.6)
$$\hat{T}(z) = \left(1 - \frac{1}{2}(x_1^2 + y_1^2)\right)e^{-\frac{1}{4}|z|^2},$$

where $z = \langle x_1, y_1, x_2, y_2, ..., x_s, y_s \rangle$. Since

$$\widehat{T}(z) = \frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{iy_1 t} \left(t + \frac{x_1}{2} \right) \left(t - \frac{x_1}{2} \right) e^{-t^2 - \frac{x_1^2}{4}} dt \prod_{j=2}^{s} e^{-\frac{1}{4}(x_j^2 + y_j^2)},$$

we conclude, by a simple calculation, that \hat{T} is Δ -positive-definite. In other words $T \in \mathcal{P}$. Suppose that \hat{T} is positive-definite. Then its Fourier transform f is continuous and non-negative. But, by a simple calculation, we have $f(0) = -(4\pi)^s$ which shows that \hat{T} is not positive-definite. It is clear that the set A of all positive numbers a for which $U_a T \in \mathcal{P}$ is closed and non-empty because $1 \in A$. It is also bounded. Indeed, if there exists a sequence $a_r \in A$ tending to ∞ , then $\hat{T}(a_r z)$ is Δ -positive-definite and setting $f(z) = \hat{T}(a_r z)$, $z_k = w_k/a_r$ into (1.2) we get the inequality

$$\sum_{j,k=1}^{n} c_{j} \, \overline{c}_{k} \, \hat{T}(w_{j} - w_{k}) \, e^{(i/2a_{r}^{2}) A(w_{j}, w_{k})} \geqslant 0$$

which yields, when $a_r \to \infty$, the positive definiteness of \hat{T} . This contradiction shows that the set A is bounded. Let c be the greatest element of A. Put $S = U_c T$. Of course, $S \in \mathscr{P}$ and $U_a S \notin \mathscr{P}$ for all a > 1. Thus $A_1 \subset (0, 1]$ which together with Proposition 2.2 completes the proof.

Proposition 2.4. We have

$$(1, 1) \notin A_2$$
.

Proof. Let T be the probability operator with the characteristic function (2.6). Suppose that $(1, 1) \in A_2$. Then, in particular, $T * T \in \mathcal{P}$. Consequently, by Proposition 5 ([3], p. 464), $T * T \cdot T$, or equivalently, T^3 is positive definite. Thus its Fourier transform g is continuous and nonnegative. But, by a simple calculation, $g(0) = -(4\pi/9)^s$ which yields the

contradiction. Our statement is thus proved. Proposition 2.4 shows that the set \mathscr{P} is not closed under the convolution.

PROPOSITION 2.5. Given an arbitrary n-tuple $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_n)$, where $\varepsilon_j = -1$ or $1 \ (j = 1, 2, ..., n)$ we have the inclusion

$$\{(a_1, a_2, \ldots, a_n): \sum_{j=1}^n \varepsilon_j a_j^2 = 1\} \subset A_n.$$

Proof. From the fact that f is Δ -positive-definite it follows that \overline{f} is also Δ -positive definite. Consequently, we may conclude that for arbitrary $T_1, T_2, \ldots, T_n \in \mathscr{P}, z_1, z_2, \ldots, z_m \in R^{2s}$, positive numbers a_1, a_2, \ldots, a_n and $c_r = -1$ or 1 $(r = 1, 2, \ldots, n)$ the matrices

$$(\hat{T}_r(a_r(z_j-z_k))e^{(i/2)\varepsilon_r a_r^2 A(z_j,z_k)})_{j,k=1,2,...,m}$$

are positive-definite. Since the entry-by-entry product of such matrices is again positive-definite, we have that

$$\left(\prod_{r=1}^{n} \hat{T}_{r}(a_{r}(z_{j}-z_{k}))e^{(i/2)\sum_{r=1}^{n} \epsilon_{r} a_{r}^{2} d(z_{j},z_{k})}\right)_{j,k=1,2,...,m}$$

is positive-definite. If $\sum_{r=1}^{n} \varepsilon_r a_r^2 = 1$, then $\prod_{r=1}^{n} \hat{T}_r(a_r z)$ is Δ -positive-definite or in other words $* U_{a_r} T_r \in \mathscr{P}$ which completes the proof.

Taking $\varepsilon_j = 1$ if $1 \le j \le n-r$ and $\varepsilon_j = -1$ if $n-r < j \le n$ for every integer r satisfying the inequality $0 \le r < n/2$ we have, by Proposition 2.5,

$$\left(\frac{1}{\sqrt{n-2r}}, \frac{1}{\sqrt{n-2r}}, \dots, \frac{1}{\sqrt{n-2r}}\right) \in A_n.$$

Proposition 2.6. The set of all quasi-classical probability operators is invariant under transformations $U_a(a \ge 1)$.

Proof. Let Q be a ground state and $\mu \in M(R^{2s})$. Then (by (2.4)) $U_a(Q \circ \mu) = U_a(Q) \circ \mu_a$, where $\widehat{\mu}_a(z) = \widehat{\mu}(az)$. By virtue of (1.3) the operator $U_a(Q)$ is Gaussian for $a \ge 1$. Consequently, by Corollary 1.2, it is of the form $Q_a \circ \nu_a$, where Q_a is a ground state and $\nu_a \in M(R^{2s})$. Thus $U_a(Q \circ \mu) = Q_a \circ (\mu_a * \nu_a)$ which completes the proof.

3. Statement of the problem. Let $\{T_{kn}\}$, $\{a_{kn}\}$ $(k=1, 2, ..., k_n; n=1, 2, ...)$ be triangular arrays of probability operators and positive numbers with the property

$$(3.1) (a_{1n}, a_{2n}, \ldots, a_{kn}) \in A_{kn} (n = 1, 2, \ldots),$$

66

respectively. Then of course

$$\underset{k=1}{\overset{k_n}{*}} U_{a_{kn}} T_{kn} \in \mathscr{P} \qquad (n=1, 2, \ldots).$$

The triangular array $\{U_{a_{kn}}T_{kn}\}$ $(k=1,2,\ldots,k_n;\ n=1,2,\ldots)$ of operators from A is said to be uniformly infinitesimal if for every choice of $r_n, 1 \le r_n \le k_n$ the sequence $\{U_{a_{r_n}n}T_{r_nn}\}$ $(n=1,2,\ldots)$ forms an approximate unit in the convolution algebra $\mathscr A$ or, equivalently, in terms of the characteristic function

(3.2)
$$\lim_{n \to \infty} \max_{1 \le k \le k_n} |1 - \hat{T}_{kn}(a_{kn}z)| = 0$$

uniformly on every compact subset of R^{2s} . Then $\{a_{kn}\}$ $(k=1, 2, ..., k_n; n=1, 2, ...)$ will be called a *norming array*. Suppose that for a uniformly infinitesimal triangular array there exists a sequence $\{c_n\}$ of vectors from R^{2s} such that the sequence of probability operators

$$(3.3) \qquad \left(\underset{k=1}{\overset{k_n}{*}} U_{a_{kn}} T_{kn} \right) \circ \delta_{c_n}$$

converges to an operator T in \mathscr{A} . Of course $T \in \mathscr{P}$. What can be said more about the limit probability operator T being a quantum analogue of a classical infinitely divisible probability distribution? Let \mathscr{D} denote the set of all such limit probability operators T. By \mathscr{O}_1 we shall denote the subset of \mathscr{D} corresponding to the quantum analogue of classical self-decomposable probability distributions, i.e. to the case $k_n = n$, $a_{1n} = a_{2n} = \ldots = a_{nn}$, $T_{kn} = T_k$ $(k = 1, 2, \ldots; n = 1, 2, \ldots)$. Further, \mathscr{D}_2 will denote the subset of \mathscr{O}_1 corresponding to the case $T_1 = T_2 = \ldots$ From the Cushen-Hudson Quantum Central Limit Theorem [3] it follows that \mathscr{D}_2 contains all Gaussian probability operators. Our aim is to characterize the sets \mathscr{D} , \mathscr{D}_1 and \mathscr{D}_2 of limit probability operators.

We recall that μ from $M(R^{2s})$ is infinitely divisible if for every positive integer n there exists a measure $\mu_n \in M(R^{2s})$ such that $\mu = \mu_n^{*n}$. A measure μ from $M(R^{2s})$ is self-decomposable if for every real number a from the interval [0, 1] there exists a measure $\nu_a \in M(R^{2s})$ such that $\mu = \mu_a * \nu_a$, where $\hat{\mu}_a(z) = \hat{\mu}(az)$ ($z \in R^{2s}$).

THEOREM 3.1. The set \mathcal{D} consists of all quasi-classical probability operators $Q \circ \mu$, where Q is a ground state and μ is an infinitely divisible probability measure from $M(R^{2s})$.

From this theorem and Corollary 1.1 we get the following statement.

Corollary 3.1. The probability operators of the form $Q \circ \delta_a$, where Q is a ground state and $a \in \mathbb{R}^{2s}$ are the only pure states in \mathcal{D} .

THEOREM 3.2. The set \mathcal{Q}_1 consists of all quasi-classical probability operators $Q \circ \mu$, where Q is a ground state and μ is a self-decomposable measure from $M(R^{2s})$.

Theorem 3.3. The set \mathcal{Q}_2 consists of all Gaussian probability operators. Before proceeding to prove the theorems we shall establish auxiliary propositions.

LEMMA 3.1. For each norming array of a uniformly infinitesimal triangular array $\{U_{a_{kn}}T_{kn}\}$ $(k=1, 2, ..., k_n; n=1, 2, ...)$ the formula

$$\lim_{n\to\infty}\max_{1\leqslant k\leqslant k_n}a_{kn}=0$$

holds.

Proof. Suppose the contrary. Passing to a subsequence if necessary we may assume without loss of generality that for a sequence $\{r_n\}$ $(1 \le r_n \le k_n)$,

$$\lim_{n\to\infty}a_{r_nn}>0.$$

By (3.2) we have then the convergence $\hat{T}_{r_n}(z) \to 1$ uniformly on every compact subset of R^{2s} . The limit function 1 being Δ -positive-definite is the characteristic function of a probability operator belongs to $L^2(R^{2s})$ which yields the contradiction. The lemma is thus proved.

Lemma 3.2. For each norming array corresponding to a convergent sequence (3.3) the inequality

$$\overline{\lim_{n\to\infty}}\sum_{k=1}^{k_n}a_{kn}^2<\infty$$

holds.

Proof. Suppose that the sequence (3.3) is convergent to a probability operator T. Put $b_n^2 = \sum_{k=1}^{k_n} a_{kn}^2$, $b_n > 0$, $d_n = b_n^{-1} c_n$, $b_{kn} = b_n^{-1} a_{kn}$ $(k = 1, 2, ..., k_n; n = 1, 2, ...)$. Then, by Proposition 2.5

$$S_n = \underset{k=1}{\overset{k_n}{*}} U_{b_{kn}} T_{kn} \in \mathscr{P}$$

and $U_{b_n}S_n \to T$ in $\mathscr A$. Suppose that for a subsequence $\{m_n\}$ $b_{m_n} \to \infty$. Then the relation $\hat S_n(b_nz) \to \hat T(z)$ uniformly on every compact subset of R^{2s} yields $\hat S_n(z) \to 1$. The limit function 1 being Δ -positive-definite is the characteristic function of a probability operator belongs to $L^2(R^{2s})$ which gives the contradiction. The lemma is thus proved.

By Lemma 3.2 (passing to a subsequence if necessary) we may restrict ourselves to norming arrays for which the limit

$$\lim_{n \to \infty} \sum_{k=1}^{k_n} a_{kn}^2 = a < \infty$$

exists. Moreover, by Proposition 2.2 and (3.1), $a \ge 1$. Let us denote by \mathcal{D}_0 the subset of \mathcal{D} consisting of limits of sequences (3.3) with the norming arrays satisfying (3.4), where a = 1. From (3.1) and Proposition 2.5 we get the following corollary.

COROLLARY 3.2. For every $T \in \mathcal{D}$ there exists $T_0 \in \mathcal{D}_0$ and $a \ge 1$ such that $T = U_a T_0$.

By a simple calculation we get the following lemma.

LEMMA 3.3. Let $\{c_{kn}\}\ (k=1,\,2,\,\ldots,\,k_n;\ n=1,\,2,\,\ldots)$ be a triangular array of positive numbers with the properties

$$\sum_{k=1}^{k_n} c_{kn} = 1 \qquad (n = 1, 2, \ldots)$$

and

$$\lim_{n\to\infty} \max_{1\leqslant k\leqslant k_n} c_{kn} = 0.$$

Then for every positive integer m there exist indices $1 = s_{0n} < s_{1n} < \ldots < s_{mn} = k_n$ such that

$$\lim_{n\to\infty} \sum_{k=s_{n-1}}^{s_{rn}} c_{kn} = 1/m \qquad (r=1, 2, ..., m).$$

Lemma 3.4. Let T_n , $S_n \in \mathcal{P}$. Suppose that for some positive numbers a_n and b_n with the property

$$\lim_{n \to \infty} a_n > 0$$

and for some vectors $z_n \in \mathbb{R}^{2s}$, the sequence

$$(U_{a_n} T_n * U_{b_n} S_n) \circ \delta_{z_n}$$
 $(n = 1, 2, ...)$

is convergent in \mathscr{A} . Then the sequence $U_{1/\sqrt{2}}(T_n * \widetilde{T}_n)$ (n = 1, 2, ...) is conditionally compact in \mathscr{P} .

Proof. Let us denote by G_n and H_n the operators $U_{1/\sqrt{2}}(T_n*\widetilde{T}_n)$ and $U_{1/\sqrt{2}}(S_n*\widetilde{S}_n)$, respectively. By Proposition 2.5, G_n , $H_n\in\mathscr{P}$. Moreover, by the assumption, the sequence $U_{a_n}G_n*U_{b_n}H_n$ is convergent in \mathscr{A} . Thus the sequence

$$\hat{G}_n(a_n z)\hat{H}_n(b_n z)$$
 $(n=1, 2, \ldots)$

is convergent uniformly on every compact subset of R^{2s} . Since $\hat{G}_n(z) = \hat{T}_n(z/\sqrt{2})\hat{T}_n(z/\sqrt{2})$, $\hat{H}_n(z) = \hat{S}_n(z/\sqrt{2})\hat{S}_n(z/\sqrt{2})$, we infer (by Proposition 5

Lemma 3.5. Let $T \in \mathcal{D}_0$. Then for every positive integer m there exist symmetric probability operators T_j (j = 1, 2, ..., m) in \mathcal{D}_0 such that

$$U_{1/\sqrt{2}}(T*\tilde{T}) = \underset{j=1}{\overset{m}{*}} U_{1/\sqrt{m}} T_j.$$

Proof. Suppose that T is the limit of the sequence (3.3) where the norming array fulfils condition (3.4) with a=1. By Lemmas 3.1 and 3.3 for every positive integer m there exist indices $1=s_{0n}< s_{1n}< \ldots < s_{mn}=k_n$ $(n=1,2,\ldots)$ such that setting

$$c_{rn}^2 = \sum_{k=s_{r-1}}^{s_{rn}} a_{kn}^2, \quad c_{rn} > 0 \quad (r = 1, 2, ..., m)$$

we have

(3.6)
$$\lim_{r \to \infty} c_{rn}^2 = 1/m \quad (r = 1, 2, ..., m)$$

Moreover, setting $b_{krn} = a_{kn}/c_{rn}$ $(s_{r-1n} < k \le s_{rn})$ we infer that the triangulat arrays $\{U_{b_{krn}} T_{kn}\}$ $(s_{r-1n} < k \le s_{rn}, n = 1, 2, ...)$ are uniformly infinitesimal. Further, setting

$$S_{rn} = \underset{k=s_{r-1}}{\overset{s_{rn}}{*}} U_{b_{krn}} T_{kn}$$

we have

$$(3.7) \qquad (* U_{c_{rn}} S_{rn}) \circ \delta_{c_n} \to T$$

in \mathscr{A} . Taking into account (3.1) we conclude, in view of Lemma 3.4, that for every r the sequence $U_{1/\sqrt{2}}(S_{rn}*\tilde{S}_{rn})$ is conditionally compact in \mathscr{P} . Passing to a subsequence if necessary we may assume without loss of generality that

$$U_{1/\sqrt{2}}(S_{rn}*\widetilde{S}_{rn})\to T_r$$

when $n \to \infty$. Of course T_n is a symmetric probability operator from \mathcal{D}_0 and by (3.6) and (3.7),

$$U_{1/\sqrt{2}}(T*\tilde{T}) = \underset{r=1}{\overset{m}{\ast}} U_{1/\sqrt{m}} T_r$$

which completes the proof.

It is well known that the characteristic function $\hat{\mu}$ of an infinitely divisible measure μ from $M(R^{2s})$ can be written in the Lévy-Khinchine canonical form

$$\hat{\mu}(z) = \exp\left\{i(z, z_0) - \frac{1}{2}(qz, z) + \int_{\mathbb{R}^{2s}} \left(e^{i(z, u)} - 1 - \frac{i(z, u)}{1 + |u|^2}\right) \frac{1 + |u|^2}{|u|^2} G(du)\right\},\,$$

where $z_0 \in R^{2s}$, q is a covariance operator on R^{2s} and G is a finite non-negative Borel measure on R^{2s} vanishing at the origin ([8], p. 181). The correspondence between $\hat{\mu}$ and the triple $[z_0, q, G]$ is one-to-one which enables us to use the notation $\hat{\mu} = [z_0, q, G]$. It is clear that

$$[z_1, q_1, G_1][z_2, q_2, G_2] = [z_1 + z_2, q_1 + q_2, G_1 + G_2].$$

LEMMA 3.6. For every $T \in \mathcal{C}_0$ there exists an infinitely divisible measure v from $M(R^{2s})$ such that $\hat{T} = \hat{v}$. Moreover, if $\hat{v} = [z_0, q, G]$, then q is the covariance operator for a Gaussian probability operator.

Proof. Let T be the limit of sequence (3.3) with the norming array satisfying (3.4), where a = 1. Then

(3.9)
$$\prod_{k=1}^{k_n} \hat{T}_{kn}^2(a_{kn}z) e^{2i(c_{nn}z)} \to \hat{T}^2(z)$$

uniformly on R^{2s} . Since by Proposition 5 in [3] the functions $\hat{T}_{kn}^2(z)$ are positive-definite, there exist $\mu_{kn} \in M(R^{2s})$ such that

$$\hat{\mu}_{kn}(z) = \hat{T}_{kn}^2(a_{kn}z)$$
 $(k = 1, 2, ..., k_n; n = 1, 2, ...)$

Of course, $\{\mu_{kn}\}$ form a uniformly infinitesimal array of probability measures and, by (3.9),

$$(* \mu_{kn}) * \delta_{2c_n} \rightarrow \mu,$$

where

(3.10)
$$\hat{\mu}(z) = \hat{T}^2(z) \quad (z \in R^{2s}).$$

Consequently, by the classical limit theorem ([8], p. 199) μ is infinitely divisible which yields the Lévy-Khinchine representation $\hat{\mu} = [2z_0, 2q, 2G]$.

$$\hat{S}(z) = \hat{\lambda}(z),$$

where $\hat{\lambda} = [0, q, H]$ and the measure H is symmetric on R^{2s} . Further, by Lemma 3.5, for every positive integer m, there exist symmetric probability operators T_{rm} (r = 1, 2, ..., m) belonging to \mathcal{D}_0 such that

(3.12)
$$S = * U_{1/\sqrt{m}} T_{rm}.$$

We already know that

$$\widehat{T}_{rm}(z) = \widehat{\lambda}_{rm}(z),$$

where $\hat{\lambda}_{rm} = [0, q_{rm}, H_{rm}]$ and the measures H_{rm} are symmetric on R^{2s} . Taking into account (3.11) and (3.12) we get the equations

$$q = \frac{1}{m} \sum_{r=1}^{m} q_{rm},$$

(3.14)
$$H(E) = \int_{\sqrt{m}E} \frac{m(1+|u|^2)}{m+|u|^2} H_m(du),$$

where

(3.15)
$$H_m = \frac{1}{m} \sum_{r=1}^{m} H_{rm}.$$

Put for any positive number t, $E_t = \{z: |z| \le \sqrt[4]{t} \}$. Then, by (3.14),

$$H_m(E_m) \leqslant H(E_{1/m})$$

and

$$H_m(E_m^c) \leqslant \frac{m + \sqrt{m}}{m(1 + \sqrt{m})} H(R^{2s}),$$

where E^c denotes the complement of E in R^{2s} . Since $H(\{0\}) = 0$, the last inequalities yield

(3.16)
$$\lim_{m \to \infty} H_m(R^{2s}) = 0.$$

Let $z_1, z_2, ..., z_{2s}$ be an arbitrary system of linearly independent vectors in \mathbb{R}^{2s} . Put

$$\begin{split} h &= \sum_{j=1}^{2s} (qz_j,\,z_j), \quad g = (qz_1,\,z_1) + (qz_2,\,z_2), \\ h_{rm} &= \sum_{i=1}^{2s} (q_{rm}z_j,\,z_j), \quad g_{rm} = (q_{rm}z_1,\,z_1) + (q_{rm}z_2,\,z_2). \end{split}$$

By (3.13) we have the equations

(3.17)
$$h = \frac{1}{m} \sum_{r=1}^{m} h_{rm}, \quad g = \frac{1}{m} \sum_{r=1}^{m} g_{rm}.$$

Moreover, since q and q_{rm} are non-negative operators, all numbers h, g, h_{rm} and g_{rm} are non-negative. Consequently, for arbitrary positive number ε we can find a positive number η such that

$$h\eta < \frac{\varepsilon}{q+\varepsilon}.$$

Put

$$A_{m} = \{r: 1 \le r \le m, h_{rm} \eta < 1\},$$

$$B_{mn} = \{r: 1 \le r \le m, H_{rm}(R^{2s}) < 1/n\},$$

$$C_{m} = \{r: 1 \le r \le m, g_{rm} < g + \varepsilon\}.$$

Then, denoting by card A the number of elements of A, we have, by (3.17),

$$\frac{1}{m}\operatorname{card} A_m \geqslant 1 - h\eta \quad (m = 1, 2, \ldots).$$

Further, by (3.15) and (3.16),

$$\lim_{m \to \infty} \frac{1}{m} \operatorname{card} B_{mn} = 1 \quad (n = 1, 2, ...)$$

and consequently, by (3.18),

$$\lim_{m\to\infty}\frac{1}{m}\operatorname{card} A_m\cap B_{mn}\geqslant 1-h\eta>1-\frac{\varepsilon}{g+\varepsilon}\qquad (n=1,\,2,\,\ldots).$$

Finally, by (3.17),

$$\frac{1}{m}\operatorname{card} C_m \geqslant \frac{\varepsilon}{g+\varepsilon}.$$

From the last two inequalities it follows that for every positive integer n the set $A_m \cap B_{mn} \cap C_m$ is non-void for sufficiently large indices m. In other words

we can find integers m_n , r_n with the properties $m_1 < m_2 < \ldots$, $1 \le r_n \le m_n$ and $r_n \in A_{m_n} \cap B_{m_n} \cap C_{m_n}$. Then

$$(3.19) h_{r_m m_n} < \eta^{-1} (n = 1, 2, ...),$$

$$(3.20) H_{r_n m_n}(R^{2s}) < 1/n (n = 1, 2, ...)$$

and

(3.21)
$$g_{r_n m_n} < g + \varepsilon \quad (n = 1, 2, ...).$$

From inequality (3.19), by the linear independence of the vectors z_1, z_2, \ldots, z_{2s} we get the boundedness and, consequently, the conditional compactness of the sequence of covariance operators $q_{r_n m_n}$ on R^{2s} . Passing to a subsequence if necessary, we may assume without loss of generality that the sequence $q_{r_n m_n}$ converges to a covariance operator q_0 . By (3.21) we then have the inequality

$$(3.22) (q_0 z_1, z_1) + (q_0 z_2, z_2) \leq (q z_1, z_1) + (q z_2, z_2) + \varepsilon.$$

Finally, inequality (3.20) shows that the sequence of the characteristic functions $\hat{T}_{r_n m_n}$ tends to the function $[0, q_0, 0]$ uniformly on every compact subset of R^{2s} . Hence it follows that the function $e^{-\frac{1}{2}(q_0 z, z)}$ is Δ -positive-definite and, consequently, is the characteristic function of a Gaussian probability operator. Thus q_0 fulfils condition (1.3) which, by (3.22), yields

$$\Delta(z_1, z_2) \leq (qz_1, z_1) + (qz_2, z_2) + \varepsilon$$

for every positive number ε . Consequently,

$$\Delta(z_1, z_2) \leq (qz_1, z_1) + (qz_2, z_2),$$

where z_1 , z_2 are arbitrary linearly independent vectors from R^{2s} . For linearly dependent vectors z_1 , z_2 the last inequality is evident because in this case $\Delta(z_1, z_2) = 0$. Thus q is the covariance operator for a Gaussian probability operator which completes the proof.

Now we are ready to prove the theorems.

Proof of Theorem 3.1. Sufficiency. Suppose that Q is a ground state and μ is an infinitely divisible measure from $M(R^{2s})$. Let $\mu_n^{*n} = \mu$. Put $\hat{v}_n(z) = \hat{\mu}_n(\sqrt{n}z)$ and $T_{kn} = Q \circ v_n$ (k = 1, 2, ..., n; n = 1, 2, ...). The triangular array $\{U_{1/\sqrt{n}}, T_{kn}\}$ (k = 1, 2, ..., n; n = 1, 2, ...) is uniformly infinitesimal because $\hat{T}_{kn}(z/\sqrt{n}) = \hat{Q}(z/\sqrt{n}) \sqrt[n]{\hat{\mu}(z)} \to 1$ uniformly on every compact subset of R^{2s} . Moreover, $(U_{1/\sqrt{n}}, T_{kn})^{*n} = Q \circ \mu$ (n = 1, 2, ...) which shows that $Q \circ \mu \in \mathcal{P}$.

Necessity. First suppose that $T \in \mathcal{D}_0$. By Lemma 3.6 there exist an infinitely divisible measure ν from $M(R^{2s})$ such that $\hat{T} = \hat{\nu}$, $\hat{\nu} = [z_0, q, G]$

and q is the covariance operator for a Gaussian probability operator. Let S

be a Gaussian operator with the characteristic function $\hat{S}(z) = e^{-\frac{1}{2}(qz,z)}$. Put $\hat{\lambda} = [z_0, 0, G]$. Then (by (3.8)) $T = S \circ \lambda$. Further, by Corollary 1.2 $S = Q \circ \gamma$, where Q is a ground state and γ is a Gaussian measure on R^{2s} . Consequently, $T = Q \circ (\gamma * \lambda)$. The measure $\gamma * \lambda$ is infinitely divisible which completes the proof in the case $T \in \mathcal{D}_0$. For arbitrary probability operator from \mathcal{D} our assertion is a consequence of Proposition 2.6 and Corollary 3.2.

Proof of Theorems 3.2 and 3.3. Sufficiency. We already know, by Cushen-Hudson Quantum Central Limit Theorem, that \mathcal{D}_2 contains all Gaussian probability operators. Given a ground state Q and a self-decomposable measure μ from $M(R^{2s})$, we have to prove that $Q \circ \mu \in \mathcal{D}_1$. By the self-decomposability of μ for every positive integer k there exists a measure ν_k in $M(R^{2s})$ such that

$$\hat{\mu}(z) = \hat{\mu}\left(\sqrt{(k-1)/k}\,z\right)\hat{v}_k(z) \qquad (z \in R^{2s}).$$

Let μ_k be the measure from $M(R^{2s})$ defined by the condition

$$\hat{\mu}_k(z) = \hat{v}_k(\sqrt{k}z).$$

Put $T_k = Q \circ \mu_k$ (k = 1, 2, ...). Then $\prod_{k=1}^n \hat{T}_k(z/\sqrt{n}) = \hat{Q}(z) \hat{\mu}(z)$ (n = 1, 2, ...)

or, in other words, $Q \circ \mu = \sum_{k=1}^{n} U_{1/\sqrt{n}} T_k$ (n = 1, 2, ...). Moreover,

$$\hat{T}_k(z/\sqrt{n}) = \hat{Q}(z/\sqrt{n}) \frac{\hat{\mu}(\sqrt{k/n}z)}{\hat{\mu}(\sqrt{(k-1)/n}z)}$$

which shows that the triangular array $\{U_{1/\sqrt{n}}T_k\}$ (k=1, 2, ..., n=1, 2, ...) is uniformly infinitesimal. Thus $Q \circ \mu \in \mathcal{D}_1$.

Necessity. Suppose that $T \in \mathcal{Q}_1$ and T is the limit of a sequence

$$(\underset{k=1}{\overset{n}{*}}U_{a_n}T_k)\circ\delta_{c_n}.$$

Put

$$S_k = U_{1/\sqrt{2}}(T_{2k-1} * T_{2k}) \quad (k = 1, 2, ...).$$

Then, by Proposition 2.5, $S_k \in \mathscr{P}$ and, by Proposition 5 in [3], \hat{S}_k is positive-definite. Thus there exist probability measures $\mu_k \in M(\mathbb{R}^{2n})$ such that $\hat{\mu}_k = \hat{S}_k$. Moreover, the triangular array of probability measures $\{\mu_{kn}\}$ $\{k=1,2,\ldots,n;\ n=1,2,\ldots\}$, where $\hat{\mu}_{kn}(z) = \hat{\mu}_k(z/\sqrt{n})$, is uniformly infinitesimal and

$$(\underset{k=1}{\overset{n}{\ast}} \mu_{kn}) * \delta_{2c_n} \to \nu,$$

where

$$\hat{\mathbf{v}} = \hat{T}^2.$$

It is well known that the limit measure ν is self-decomposable ([6], p. 323). On the other hand (by Theorem 3.1) $T = Q \circ \mu$, where Q is a ground state and μ an infinitely divisible measure from $M(R^{2s})$. Put $\hat{\mu} = [z_0, q_0, G_0]$ and $\hat{\nu} = [z_1, q_1, G_1]$. Then, by (3.23), $2G_0 = G_1$ which shows that the measure μ is also self-decomposable which completes the proof of Theorem 3.2.

In order to prove that \mathcal{D}_2 consists of Gaussian probability operators only, we note that in the case $T_1 = T_2 = \dots$ we have $\mu_1 = \mu_2 = \dots$ and, consequently, the limit ν is a stable probability measure having (by Theorem 3.1 and (3.23)) a non-trivial Gaussian component. Thus ν itself is Gaussian which (by (3.23) and Theorem 3.1) shows that T is a Gaussian probability operator which completes the proof of Theorem 3.3.

References

- [1] V. Bargmann, On unitary ray representation of continuous groups, Ann. of Math. 59 (1954), 1-46.
- [2] M. Breitenecker, On finite approximations of C_p-class operators, Rep. Mathematical Phys. 4 (1973), 281-288.
- [3] C. D. Cushen and R. L. Hudson, A quantum mechanical central limit theorem, J. Appl. Probability 8 (1971), 454-469.
- [4] A. M. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 885–894.
- [5] A. S. Holevo, Probabilistic and statistic aspects of quantum theory, Moscow 1980 [in Russian].
- [6] M. Loéve, Probability theory, New York 1950.
- [7] L. H. Loomis, An introduction to abstract harmonic analysis, Toronto-New York-London 1953.
- [8] K. R. Parthasarathy, Probability measures on metric spaces, New York-London 1967.
- [9] V. S. Varadarajan, Geometry of quantum theory, Vol. I. Princeton, New Jersey 1968.
- [10] Geometry of quantum theory, Vol. II. Quantum theory of covariant systems, New York 1970.