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On polynomial classification of locally convex spaces
by
DINAMERICO P. POMBO, Jr. (Rio de Janeiro)

Abstract. The purpose of this article is to develop a polynomial classification of locally
convex spaces, analogous to the classical linear theory and to the holomorphic theory proposed
recently by Nachbin. :

1. Introduction. In this article we consider polynomially bornological,
polynomially barreled, polynomially infrabarreled and polynomially Mackey
locally convex spaces defined in [1] (see also [2] and [3]). Our purpose is to
obtain a polynomial classification of locally convex spaces, analogous to the
classical linear theory and to the holomorphic theory proposed by Nachbin
in [15] and [16] (see also [4] and [17]). We must emphasize that, besides its
intrinsic importance, the polynomial theory can clarify the holomorphic
theory as was pointed out by Aragona in [1] (see also [2] and [3]). We now
indicate briefly the organization of this article.

In Section 2 we study the (6, ..., 6,)-locally convex topologies in
Z(Ey, ..., E,; F} and the 6,-locally convex topologies in 2("E; F) (see [7],
Chap. 3, for such a study in the linear case). We obtain an Alaoglu—~Bourbaki
theorem for homogeneous polynomials (Theorem 2.11) and Theorem 2.12,
important tools in the subsequent sections.

In Section 3 we study the relationship among the above-mentioned
polynomial concepts. As principal results of this section we obtajn Theorem
3.34 and Theorem 3.37, both well known in the linear theory. As an

- application of such concepts, we prove Theorem 3.17, a generalization of a

classical result of Bourbaki (see Remark 3.19).

In Section 4 we mention some examples of locally convex spaces which
have such polynomial properties considered in the text, and observe that the
linear notions are, really, more general than the corresponding polynomial
ones. :

This paper is based on part of my doctoral thesis ([18]), written under
the guidance of Professor L. Nachbin, to whom I am sincerely indebted.

We shall adopt the notation and terminology of [47, [14], [15] and
[16]. We will also use the following conventions. N, R and C, will denote the
systems of natural integers, real numbers and complex numbers, respectively.
All topological vector spaces will be assumed to be complex. If Ey, ..., E,
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and F are topological vector spaces, Z,(Ei,...,E,;F) (resp.
Los(Ey, ...y Ep; F)) will denote the vector space of all m-linear mappings

(resp. symmetric m-linear mappings) from E,x ... xE, iato F, and
L(Ey, ..., Ep; F) (resp. L, (Ey, ..., E,; F)) will denote the vector subspace
of all continuous m-linear mappings (resp. continuous symmetric m-linear
mappings) from E; x... xE, into F. If E and F are topological vector
spaces and meN, then #,("E; F) will denote the vector space of all m-
homogeneous polynomials from E into F, and P(™E; F) will denote the
vector subspace of all continuous m-homogeneous polynomials from E into
'F; 2,(E; F) will denote the vector space of all polynomials from E into F,
and Z(E; F) will denote the vector subspace of all continuous polynomials
from E into F; 2),("E; F) will denote the vector subspace of 2,("E; F) of
all m-homogeneous polynomials from E into F bounded on the bounded
subsets of E, and 2 (E; F) will denote the vector subspace of 2, (E; F) of
all polynomials from E into F bounded on the bounded subsets of E. When
F =C, it is not included in the notation for function spaces; thus #2("E)
stands for 2(™E; C), etc.

2. Topologies on spaces of continuous multilinear mappings and spaces of
continuous m-homogeneous polynomials. The following proposition is well
known in the linear theory.

2.1. ProrosimioN. Let E and F be locally convex spaces, me N* and
Pe?,("E; F). The following conditions are equivalent:

(i) P-is-bounded on the compact subsets of E.

(i) Pe2?y("E; F).

(iii) For every sequence (x,),.n in E which converges to xeE in the
Mackey sense, the sequence (P(x,)),ev converges to P(x) in the Mackey sense,

(iv) For every sequence (x,),y in E which converges to zero in the
Mackey sense, the sequence (P(x,)),ey converges to zero in the Mackey sense.

(v) For every sequence (x,),v in E which converges to zero in the
Mackey sense, the sequence (P(x,)),ey converges to zero in F,

(vi) For every sequence (x,).n in E which converges to zero in the
Mackey sense, the sequence (P(x,)),en is bounded in F.

Proof. We will prove (ii)=(iii) and (vi)=(). It is obvious that
(iil) = (iv) = (v) = (vi), and the proof of (i) = (i) is similar to the proof of
(vi) = (i).

(i) = (iii): Let (x,),ev be a sequence in E converging to xeE in the
Mackey sense. By definition, we can find a sequence (4,),qy of strictly positive
real numbers, (4,),ey = + 00, such that the sequence (An(Xy— X))y is bounded
in E. Let Ae. %, ("E;F) be such that 4 = P. Then

Px)=P(3) = ¥ (7) A mf 0o,

k=1
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wheré

A, — X))k = A(x,—X, ..
% times (m—~k) times

Sinéé A is bounded on the compact subsets of E™, the set
{A (A (xy~x)f()""*; neN} = {25 A (x,— 2 (x)""*; ne N}

is bounded in F, for each 1 < k < m. Hence (P(x,)).en converges to P(x) in
the Mackey sense. . .

(vi)=(i): Let AeZ,("E;F) be such that 4 = P. If there existed com-
pact subsets K, ..., K,, of E such that A(K; x ... xK,,) were not bound'ed
in F, we could find a balanced neighborhood V of zero in F such that ‘1or
every neN*, there is y,=(dY, ..., xX™eK % ... xK,, for which
A(y,)¢n™"1 V. Hence the sequence

(e = (2
z o =y e, T
n/neN n 3 3 N ) pens

converges to zero in E™ in the Mackey sense but the sequence (A (2, is
not bounded in F since A(z,)¢nV for each neN*. =

2.2. DeriniTION. Let E,, ..., E, be topological vector spaces and F a
locally convex space. Let 0y, ..., 0, be sets formed by bounded subsets of .

2 X% X vy X

E,, ..., E,, respectively. The (0, ..., 8,)-topology in E.(El, vevy Ep; F)is the
locally convex topology defined by the family of seminorms:
AeP(E,, ..., EpF)—» sup  BlA(xy, ..., Xw)ERy,

X1€B 1, XyEBy
where B varies in the set of all continuous seminorms on F, B, varies in
0y, ..., By, varies in 0,,. ‘ . ' .

If 0, ..., 0, are the sets formed by all finite (resp. ﬁmte.dlmenswn.al
compact, or compact, or bounded) subsets of Ey, ..., En, respectively, we will
denote (04, ..., O, by T3 (X€SP. Top, Tos Tn)- _

In the same way, if E is a topological vector space, F is a locally convex,
0 is a set formed by bounded subsets of E and meN, we define Fhe 0,-
topology in #("E; F). We shall use the symbols 7, Tos, 7o and t, with tk'xe
same meaning as in the multilinear case. Obviously, 7, STy ST, 7T, 1N
both cases. .

23. Remark. In Proposition 2.7 we shall prove that t, =71, in
P(E,, ..., E,; F) and 2("E;F).

2.4. ProposiTION. Let E be a topological vector space, F a locally convex
space, me N and & < P("E; F) be equicontinuous. If 0 is a set of bounded

" subsets of E, then & is bounded in (?("E; F), 0,).

Proof. Fix B a continuous seminorm onm F and B.EG. Since & is
equicontinuous, there exists a neighborhood V of zero in E such that
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B(P(x) < 1, for every xe Vand PeZ. Since B is bounded, we can find 1> 0
such that B < AV. Hence B(P(x)) < A" for every xeB and Pe %, and the
proof is complete. m

2.5. ProrositioN. (a) Let E,, ..., E, be topological vector spaces, F

a separated locally convex space and 0y, ..., 0, coverings of E,, ..., E, by
bounded subsets of E,,...,E,, respectively. Then (L(E, ..., E,;F),
0y, ..., 0,)) is a separated locally convex space.

(b) Let E be a topological vector space, F a separated locally convex
space, 0 a covering of E by bounded subsets of E and meN. Then
(!ﬂ’("‘E; F), 0,) is a separated locally convex space.

Proof. We shall prove (a); the proof of (b) is
Ae #(E,, ..., E,; F), A #0. There exists x,€E;,
A(Xy, ...y X,) 7% 0. Since 04, ...
we can find Byefy,..
separated,

B(A(xy, ...

similar. Let
vivs Xw€E,, such that
0,, are coverings of Ey, ..., E,, respectively,
., B,€0,, such that x,eB,, ..., x,€B,,. Since F is
there exists a continuous seminorm f on F such that
, Xm)) > 0. Thus

sup  B(A(, ..

t1€By,....1,eBp,

o tw) = B(A(x, ..ey X)) >0,

and the proof is complete. m
For m=0 or m=1, the mapping
Ae(Z,("E; F),0,)— A e(P("E; F), 0,)
is clearly a locally convex spaces isomorphism, where 0 is an arbitrary set
formed by bounded subsets of E. In general, the following proposition holds.
2.6. ProposiTION. Let E be a topological vector space, F a locally convex

space, me N* and 0 a set formed by bounded subsets of E such that 1,0+ ...

co.+A,0 <8 for every Ay, ..., AneC. Under these assumptions, the vector
spaces isomorphism )

®: Ae %, ("E; F)» Ac P ("E; F)

is a locally convex spaces isomorphism iff £, ("E; F) is endowed with (0, ..”, 0),
and P ("E; F) is endowed with 0,. (We will also denote by (0, ..., 0), the locally
convex topology induced by (£ ("E; F), 0, ..., 0)) on £,("E; F))

_lProof. Since @ is obviously continuous, it remains to show that
o1 (P("E; F), Q,)»(sf,('"E;F), 0, ..., 0)) is continuous. Fix By, ..., B,
€0 and f a continuous seminorm on F. For every Ae ¥ ,("E; F),
(*) sup /3(14(3(1, AR X,,,)) .

X1B s XpyeBy,
1

m!2m

< sup  B(Aley Xyt oo FEm X)),
g;= k1 ¥16By, ... xpeB,),
1<igm
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For each choice of &= +1 (1<i<m), the bounded set {e;x,+ ...
v +EpXm; X1 EBy, ..., Xu€B,} €0, by hypothesis. Hence the mapping

PeP("E; F)r—> sup

X1€B1seens X8y

B(P(ey x4 ... +EmXm)ER,

is a continuous seminorm on (Z("E; F), §,), and inequality (+) guarantees the
continuity of 7 !. =

2.7. ProposiTiON. (a) Let Eq, ..., E,, be topological vector spaces and F a
locally convex space. Then t, =1, on ZL(Ey, ..., En; F).

(b) Let E be a topological vector space, F a locally convex space and
meN. Then t, =1, on P("E; F).

Proof. (a): This follows from the multilinearity and from the fact that
every finite-dimensional compact subset of a topological vector space is
contained in a finite union of compact sets, each one of them being the
convex hull of a finite set.

(b): If suffices to prove that 7, < 7.

By Proposition 2.6, the mapping

AeP("E; F)>Ae ZL,("E; F)= ¥ ("E; F)

is continuous from t, to 1,. By (a), 7, = 1,; on £ ("E; F). Hence the mapping
Ae?("E; ) Ac £ ("E; F) = £ ("E; F) is continuous from 7, to 7,,. Since
the mapping 4AeZ ("E; F)—~Ae®P("E; F) is continuous from 7, to 7,,, We
obtain by composition that the mapping Pe2("E; F) —PecP("E; F) is
continuous from 7, to T,. ®

In the following proposition # (E; x ... x E,; F) will denote the vector
space of all mappings from E;x ... xE, into F, and t, will denote the
topology of simple convergence on F(E;x ... xE,; F) defined by the
family of seminorms

feF(Eyx ... xEp F)B(f (xy, -

where B varies in the set of all continuous seminorms on F, x; varies in
E,, ..., x, varies in E,. :

2.8. ProrosiTioN. Let Ey, ..., E,, be topological vector spaces, F a locally
convex space and & < ¥ (Ey, ..., Ey; F) be equicontinuous. Then & (closure
of X in(F(Ey x ... xEy; F), 1)) is equicontinuous and T cPE,, .. EyF)
if F is separated.

Proof. The equicontinuity of & follows from [8], chap. 10, p. 28,
Proposition 6. :
Now suppose F separated. Using the same argument as in [8], chap. 10,
p. 37, Proposition 4, we get that £, (Ey, ..., Em; F) is closed in (F(Ey X ...
. xEn; F), 7,), and this implies that & < Z(Ey, ..., E,; F). w

o Xm))ER,,
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2.9. CoroLLARY. Let E,, ..., E,, be topological vector spaces, F a separated
locally convex space and & < L (E,, ..., E,; F) be equicontinuous. Then & is
relatively compact in (L(Ey, ..., E,; F), t,) if and only if #(x,, ..., Xp)
={A(x), ..., Xp); A} is relatively compact in F for every
x,€E,, ..., x,€E,.

_ Proof. Let us recall, at first, that (#(E, x ... xE,; F), t,} is isomor-
phic (algebraically and topologically) to the locally convex product space
FEJX“'XEM.

B_)_f a corollary to Tychonoff’s theorem ([8], Chap. 1, p. 100), we get that
TeF(E x ... xE,; F) is relatively compact for 7, if and only if
T(xy, ..., %) = {f (%1, ..., x,); fe T} is relatively compact in F, for every
x;€Ey, ..., x,eE,. Thus, an application of Proposition 2.8 completes the
proof. m

2.10. CoroLLary. Let E be a topological vector space, F a separated
locally convex space, meN and X < P("E; F) be equicontinuous. Then ¥ is
relatively compact in (P("E; F),1,) if and only if #(x) = {P(x); Ped) is
relatively compact in F for every xeE. "

Proof. The corollary is clear for m = 0. Suppose m > 1. Necessity
fol.lows from Proposition 2.6 and Corollary 2.9. Let us prove sufficiency. By
using the Polarization Formula and the fact that every finite sum of
relatively compact subsets of a topological vector space is again relatively
compact, we get that & (xy, ..., X, = {A (X1, s Xp); Ae ) s relatively
compact in F, fo.r. every x, €Ey, ..., x, € E,. Applying, successively, Corollary
2.9 and Proposition 2.6 we finish the proof. m

We are now able to prove an Alaoglu-Bourbaki theorem for homogen-
ous polynomialg‘

2.11. THeoREM. Let E be a topological vector space, F a separated semi-
Montel locally convex space, me N and X « #("E; F) equicontinuous. Then X
is relatively compact in (#("E; F), 1,).

Proof. By Propf.)sition 24, Z'(x) = {P(x); PeZ} is bounded in F for
every xeE. Since F is semi-Montel, % (x) is relatively compact in F, and
Corollary 2.10 guarantees that & is relatively compact in (#("E; F), 7,). w

212 THEO]?EM. Let Ey, ..., E, be topological vector spaces and F
a separated quasi-complete locally convex space. Let 01y ..., 0, be coverings of
Ey,....E, by bounded subsets of E, ..., E,, respectively, and
X = Z(Ey, ..., E,; F) be equicontinuous and closed in (P(Ey, ..., Ey; F),
(01, .., 0))- Then & is a complete subset of (L(Ey, ooy Eys F), (04, ..., 0,),).
“ Proof. Let (4,);4 be a Cauchy net in 4. We must find Aed such that

1iea CODVErges to A in' Z. Since 0, ..., 6 are coveri )
respectively, the mapping ' m e coverings of Ky, ..., En,

Ae(#(Ey, ..., E,; F), 01, -, Op)) > Alxy, ..., x,)€F

icm°®
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is uniformly continuous for each x; €E, ..., x,,€E,,. Thus, using the equi-
continuity of & and the fact that F is quasi-complete, we get that for each
x,€Ey, ..., x,€E, the met (4;(xy, ..., X)es converges to a point
A(xy, ..., x,)eF. Now we need to verify that the mapping

A (x4, ...,(x,,,)eE1 X ... xEmHA(xI,’...,xm)eF
belongs to Z(E,, ..., E,; F).
In fact, by the definition of 4,
AcA)yen =T
(closures taken in (F(E; X ... XEy; F), 1))
By Proposition 2.8, A€ #(E,, ..., E,; F).

Finally, it is easy to verify that (A4;);e4
(L(Ey, ..., Ew; F), By, ..., 0,),)- Thus AeZ since

(0158 [} FLO15 O
A e Z =

converges to A in

(by hypothesis). = .

2.13. Remark. Theorem 2.12 is well known in the linear case ([7],
Chap. 3, p. 30, Theorem 4).

2.14. CoroLLARY. Let E be a topological vector space, F a separated
quasi-complete locally convex space, meN, m> 1, and 6 a covering of E
formed by bounded subsets of E such that 4,0+ ... +1,0 =@ for every
At ov, Am€C. If & < P("E; F) is equicontinuous and closed in (9”(’“E; F), 8,),
then X is a complete subset of (P("E; F), 6,).

Proof. If m =1, the corollary holds for every covering 6 of E. Suppose
m 2. The corresponding ¥ < #,("E; F) is equicontinuous and closed in
(&, (E; F), (0, ..., 6)) (Proposition 2.6). By Theorem 2.12, ¥ is complete for
(0, ..., ), and a new application of Proposition 2.6 completes the proof. m

3. Polynomially bornological, polynomially barreled, polynomially infra-
barreled and polynomially Mackey spaces. ‘

3.1. DeriNmmion ([17). A locally convex space E is said to be polynomially
bornological if for every locally convex space F and every meN, Zy("E; F)
= P("E; F).

3.2. Remark. (a) It suffices to let F be a normed space in Definition 3.1.

(b) Every holomorphically bornological space ([16], Definition 3) is
polynomially bornological but there are polynomially bornological spaces
which are not holomorphically bornological ([4], Example 22). Every poly-
nomially bornological space is bornological, but there are bornological
spaces which are not polynomially bornological (Example 4.8).
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3.3. ProPOSITION. Every metrizable locally convex space E is polynomially
bornological.

Proof. Let F be a locally convex space, me N and Pe#y,("E; F). Let
(xnnen be @ sequence in E converging to zero in E. By [12], p. 149, (X,),ey
converges to zero in the Mackey sense. By Proposition 2.1, (P (x,)).en converges
to zero in F and hence P is continuous. m

34. Remark. More precisely, one can prove that every metrizable
locally convex space is holomorphically bornological ([16], Proposition 1).

3.5. ProrosITION. For a locally convex space E, the following conditions
are equivalent:

(i) E is polynomially bornological,

(ii) For every locally comvex space F, #y(E; F) = #(E; F).

(iii) For every locally convex space F and for every meN, each
Pe?,("E; F), which is continuous from Ep into F for every absolutely convex
closed and bounded subset B of E, is necessarily continuous.

(iv) For every locally comvex space F and for every meN, each
Pe?,("E; F), which is bounded on the sequences in E which converge to zero,
is necessarily continuous.

Proof. (i)=(ii): This follows from the known fact that 2, (E; F)
= @ Zy("E; F).

meN

(iv) = (i): Obvious.

(i1) = (iii): Since the assertion is obvious for m = 0, let us suppose m > 1.
Let Pe&,("E; F) be such that Pe#("(Eg); F), for each absolutely convex
closed and bounded subset B of E. If (x,),v is a sequence in E which
converges to zero in the Mackey sense, there is an absolutely convex closed
and bounded subset B of E such that (x,),.y converges to zero in the normed
space Ej ([13], p. 382). Hence the sequence (P(x,)),ev is bounded in F. By
Proposition 2.1, Pe ?)("E; F), and (ii) assures the continuity of P.

(iii) = (1v): Since the assertion is obvious for m = 0, let us suppose m 3 1.
Let Pe2,("E; F) be bounded on the sequences in E which converge to zero,
and Jet B be an absolutely convex, closed and bounded subset of E. If (XwneN
converges to zero in Eg, then (x,),ov converges to zero in the Mackey sense.
Hence the sequence (P(x,)).y is bounded in F. By Proposition 2.,

Pe?y("(Ep); F), and an application of Proposition 3.3 and (iii) guarantees
‘the continuity of P. m

31.6. P}?OPOITTION. If E is a polynomially bornological space, F is a
compiete, locally convex space and meN, then (P("E;F),t,) and
(2("E; F), v,) are complete. s b

Proof. We will prove it for 7,. The proof is analogous for the other case.
Let (P})ieqa be a Cauchy net in (2("E; F), 7,). Thus for each xeE, the net
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(P;(x))zeq is a Cauchy net in F and, by completeness of F, converges to
P(x)eF. It is casy to verify that the mapping P: xeEr—P(x)eF is an m-'
homogeneous polynomial. By using the facts that (P,),., is a Cauchy net in
(:%("‘E; F), 7,) and that each P,e#(™E; F), we obtain that P is bounded on
the bounded subsets of E and hence Pe#("E; F) since E is polynomially
bornological. Finally, using again the fact that (P,),., is a Cauchy net in
(2("E; F), 7,), we get that (P,),. converges to P in (#("E; F), 7,) as it was
to be proved. w

3.7. Remark. (a) The argument used in the proof of Proposition 3.6
guarantees that, for each meN, (#("E, F), 0,) is complete if E is a poly-
nomially bornological space, F is a complete locally convex space and 0 is a
set formed by bounded subsets of E which contains all compact subsets of E.

(b) In the linear and holomorphic cases Proposition 3.6 is well known
([6], corollary of Theorem 3, and [16], Proposition 3).

3.8. DerNiTion ([1]). A locally convex space E is said to be polynomially
infrabarreled il for every locally convex space F and for every me N, a subset
@ < P ("E; F) is equicontinuous if 4 is bounded on the compact subsets of
E.

3.9. Remark. Every holomorphically infrabarreled space ([16],
Definition 9) is polynomially infrabarreled but there are polynomially infra-
barreled spaces which are not holomorphically infrabarreled ([1], p- 29).
Every polynomially infrabarreled space is infrabarreled but there are in-
frabarreled spaces which are not polynomially infrabarreled (Example 4.8).

3.10. ProprosiTioN. A locally convex space E is polynomially infrabarreled
if and only if for each meN, a subset 4 = #("E) is equicontinuous if &' is
bounded on the compact subsets of E.

Proof. Necessity being clear, let us prove sufficiency. By [12], p. 158,
exercise 1, it suffices to prove that for every equicontinuous subset T of F',
the set ToA = {poP; @eF', Ped'} is an equicontinuous subset of .#("E).
In fact, if T is an equicontinuous subset of F', To# is bounded on the
compact subsets of E, and hence equicontinuous by hypothesis. Thus E is
polynomially infrabarreled. w

As in the linear and holomorphic cases, we have the following.

3.11. Proposimon. A locally convex space E is polynomially hornological
i and only if E is polynomially infrabarreled and for each meN, Py ("E)
= _,/(m];g')‘

Proof. Necessity. Let meN and ' < #("E) be bounded on the compact
subsets of E. We will prove that the corresponding 4" = Z,("E) is equicon-
tinuous. By Proposition 2.6, & is bounded on the compact subsets of E™.

Define  ¢: E" =17 (&) by gl s Xm)(A) = A(xss ooy X, if
Xis ooy XyeE and Aed. Obviously, ge &L ("E; 1 (4)). Moreover, g is
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bounded on the compact subsets K, x. ... x K, of E™ since

sup llg(xy, .

x1eK 1 xmeky

sup JA (xlv vary xm)’»

o Xl =
TR X1 6Ky Xppe Ky Aed

and the last supremum is finite. Since E is polynomially bornological, g is
continuous and the continuity of g implies immediately the equicontinuity of
&. By Proposition 3.10, E is polynomially infrabarreled. The rest of necessity
is clear.

Sufficiency. Let F be a locally convex space, me N and Pe#y ("E; F), '

Fix a continuous seminorm § on F. Consider T= {p&F'; |p(y) < f(y) for
every yeF} and & = To P. By hypothesis, & < #("E), and & is bounded on
the compact subsets of E. Thus ' is equicontinuous since E is polynomially
infrabarreled. By the Hahn-Banach Theorem, fo P is locally bounded, and
since B is arbitrary, P is continuous. m .

3.12. Remark. As we have seen in Proposition 3.11, every polynomially
bornological space is polynomially infrabarreled but there are polynomially
infrabarreled spaces which are not polynomially bornological (Example 4.5).
Under certains conditions, the converse is true.

3.13. ProrosiTioN. Let E be a polynomially infrabarreled space and
(Anen @ sequence in £ (E; E) satisfying the following conditions:

() For each xcE, (A,(X)),n converges to x in the Mackey sense.

(b) For each bounded subset B of E, |) A,(B) is bounded in E.

neN .

(c) For each neN, there exists a polynomially bornological space E,,
and  continuous linear mappings L,e £ (E,; E), T,e #(E; E,) such that
A, = L,0T,. Under these assumptions, E is polynomially bornological.

Proof. By Proposition 3:11, it suffices to show that for each meN,
Py ("E) = P ("E). Fix Pe?,("E). For each neN, let 0, = Pod,c®,("E).
Since E, is polynomially bornological, 0, #("E). Applying (a) we obtain
that (Q,).en converges to P in (#(E), t,). To finish the proof it suffices to
observe that (Q,),.y is equicontinuous but this follows from (b) and from the
fact that E is polynomially infrabarreled. m

3.14. Prorosition. If E is a polynomially infrabarreled space, F is a
separated quasi-complete locally convex space and me N, then (# ("E; F), <) is
quasi-complete.

Proof. For m=0 the proposition is clear. If m =1, (2(ME; F), 1)
=(Z(E; F), 1,) is quasi-complete since E is infrabarreled.

Suppose m > 2 and let & < #("E; F) be closed and bounded for Tpe
Since E is polynomially infrabarreled, 4 is equicontinuous, and an appli-
cation of Corollary 2.14 completes the proof. =

3.15. PROPOSITION. Every polynomially infrabarreled space E satisfies the
Jollowing property:
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For each locally convex space F and for each meN, a subset
& < P("E; F) is relatively compact for o if % is bounded for to and for each
x€E, X(x) ={P(x); Ped) is relatively compact in F.

Proof. First let us suppose that F is a separated locally convex space,
meN and % is a bounded subset of #("E; F) for t, such that for each
xekE, #'(x) is relatively compact in F. Since E is polynomially infrabarreled,
we get that ' is equicontinuous, and Ascoli’s theorem garantees that & is
relatively compact in (C(E; F), 1,). Moreover, #(™E; F) is closed in C(E; F)
for t,, and this implies that 4 is relatively compact in #("E; F) for 1,.

Finally, if F is an arbitrary locally convex space, we are reduced to the
first case by considering the separated locally convex space associated to
F. w

To prove Theorem 3.17, we will need the following lemma.

3.16. Lemma, Let E be a polynomially infrabarreled space, F a locally
convex space, meN and & < P("E; F). Then & is equicontinuous if and
only if for every sequence (x,),. in E which converges to zero, the set
[P(x,); PeZ, neN} is bounded in F.

Proof. Necessity follows immediately from Proposition 2.4. Let us turn
to sufficiency. By the polarization formula, the corresponding 2
< #,("E; F) is bounded on the sequences in E™ which converge to zero.
Using the argument of the proof of Proposition 2.1, we obtain that 7 is
bounded on the compact subsets of E™ and hence equicontinuous since E is
polynomially infrabarreled. Thus 2 is equicontinuous. =

3.17. TuroreM. Let E be a barreled locally convex space, F a locally
convex space such that ExF is polynomially infrabarreled and G a locally
convex space. If & < % (E, F; G) is separately equicontinuous, then &' is
equicontinuous.

Proof. Let ((x, Y))uev be a sequence in ExF which converges
to (0, () E x F., We shall prove that B = {A(x,, y,); A%, ne N} is bounded
in G. Fix V to be a balanced neighborhood of zero in G. We claim that
for each xeE, the set B, =1{A(x, y); Ae, neN} is bounded in G. By
hypothesis, the family of continuous linear mappings {teF—>A(x, )
€ Aed'| < ¥ (F; G) is equicontinuous and the sequence (y,),.v converges
to zero in F. Thus there exists nge N such that A(x, y,) eV, for every Ae&'
and n > ng. Moreover, for each je {0, ..., ng—1}, the set [A(x, y)); ded] is
bounded in F (Proposition 24). Hence there exists 1> 1 such that
A(x, y)edV for each AeX and jel0,..., no—1}, and therefore B, c AV
since V is balanced. We have verified that the set of continuous linear
mappings |zeEr>A(z, y)eG; Aed, neN) is bounded in (£(E; G), 1,)
and, consequently, equicontinuous since E is barreled. Thus there exists
nyeN such that A4(x,, y)eV for every Ae# and n > n,. Using the same

4 ~ Studia Math, 78.1
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argument as before, we get p>1 such that B cuV, and so ¥ is equi-
continuous (Lemma 3.16). »

3.18. ExampLe. The condition that E X F is polynomially infrabarreled
cannot be omitted from the hypothesis of Theorem 3.17.

In fact, let E=C¥xC™ be the cartesian product of the infinite
denumerable cartesian power of C by the infinite denumerable direct sum of
C; CV is a Fréchet space, hence barreled. For each neN, define P, #(*E)
by

'Pn ((xm)meNs (ym)msN) = xn yn lr (xm)meN € CN and (ym)mﬁN & C(N) .

The sequence (P,),ev is bounded on the compact subsets of E but (P,),ey is
not equicontinuous (Example 4.8). Hence E is not polynomially infrabarreled.
Finally, it is easy to prove that &' is separately equicontinuous, where %'
= {P,; neN}.

3.19. Remark. (a) Theorem 3.18 generalizes a classical result of
Bourbaki ([7], chap. 3, p. 28, Theorem 3).

(b) The locally convex spaces E and F which appear in the hypothesis of
Theorem 3.18 are necessarily polynomially infrabarreled (Proposition 3.27).

3.20. Dermvmion ([1]). A locally convex space E is said to be poly-
nomially barreled if for every locally convex space F and for every meN,
a subset .#' < #("E; F) is equicontinuous if % is bounded on the finite-
dimensional compact subsets of E.

3.21. Remark. (a) By Proposition 2.7, a locally convex space E is
polynomially barreled if for every locally convex space F and for every me N, a
subset & = #(™E; F) is equicontinuous if & is pointwise bounded.

(b) Every holomorphically barreled space ([16], Definition 6) is poly-
nomially barreled but there are polynomially barreled spaces which are not
holomorphically barreled ([1], p. 29). Every polynomially barreled space is
barreled but there are barreled spaces which are not polynomlally barreled
(Example 4.8).

(c) Every polynomially barreled space is polynomially infrabarreled but
there are polynomially infrabarreled spaces which are not polynomially
barreled (Example 3.22).

3.22. ExampLe. Let E = C™ be endowed with the supremum norm, E is
polynomially bornological (Proposition 3.3) and hence polynomially infra-
barreled (Proposition 3.11). Since E is not barreled, E is not polynomially
barreled.

As in the ‘infrabarreled case, we have the following
3.23. ProrosiTioN. A locally convex space E is polynomially barreled if

and only if for every meN, a subset X < P("E) is equicontinuous if’ A is
pointwise bounded.
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Proof. Similar to the proof of Proposition 3.10, noting Remark 3.21 (a).

3.24. ProrosiTioN. If E is a separated polynomially barreled (resp. poly-
nomially infrabarreled) space, then E (a completion of E) is polynomially
barreled (resp. polynomially infrabarreled).

Proof. By a classical result, every PeZ(™E) can be extended
to Pe#(™(E)) (in a unique way). The proof follows from the fact
that & < #("E) is equicontinuous if and only if the corresponding
T ={P; Pe} < #("(E)) is equicontinuous.

3.25. ProposITION. A locally comvex space E is polynomially barreled if and
only if E is polynomially infrabarreled and E verifies the following property:

For every locally convex space F and for every meN, a subset
& < P("E; F) is relatively compact for v, if X is pointwise bounded and for
each xeE, 4'(x) = {P(x); PeX} is relatively compact in F.

Proof. Necessity. The property is proved using the argument of the
proof of Proposition 3.15. The rest of necessity is clear (Remark 3.21 (c)).

Sufficiency. Let us suppose that E is a polynomially infrabarreled space
which satisfies the property. Let meN and let 2 < #(™E) be pointwise
bounded. By the property, &' is relatively compact in (#(™E), t,) and hence
equicontinuous since E is polynomially infrabarreled. An application of
Proposition 3.23 completes the proof. m

If E is a barreled space, F is a separated quasi-complete locally convex
space, 0 is a covering of E by bounded subsets of E, and m=0 or m=1,
then (#("E; F), 0,) is quasi~complete. In general, we have the following

3.26. ProrosiTioN. Let E be a polynomially barreled space, F a separated
quasi-complete locally convex space, me N* and 0 a covering of E by bounded
subsets of E such that A0+ ... +21,0 =0 for every Ay, ..., Ay&C. Then
(2("E, F), 0,) is quasi-complete.

Proof. If m =1, the proposition holds without any restriction on the
covering 0. Suppose m = 2, and take & < P(™E; F) closed and bounded in
(2("E; F), 0,). Since 7, < 0,, & is a fortiori bounded in (#("E; F), 1,) and
hence equicontinuous because E is polynom1a11y barreled. By Corollary 2.14,
A s a complete subset of (#("E; F), 0,). m

3.27. ProvosirioN. Let E and F be locally convex spaces such that E x F
is polynomially bornological (polynomially barreled, polynomially infrabarreled).
Then E and F are of the same type.

Proof. We shall prove the bornological case. Let G be a locally convex
space, me N and Pe?y("E; G).

Let pry be the continuous projection of Ex F onto E. Since Ex F is
polynomially bornological, Q = Poprgze#("(ExF); G), and this implies
immediately that P is continuous. Hence E is polynomially bornological. In a
similar way we prove that F is polynomially bornological, and the other
cases are analogous. m
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3.28. ProposiTiON. Let Ey, ..., E,, be locally convex spaces such that
E, x ... XE, is polynomially barreled and F a locally convex space. Then
every separately equicontinuous subset & < &L (Ey, ..., Ey; F) is equicontinuous.

Proof. It suffices to use the argument from the proof of Theorem 3.17
and Proposition 3.27. =

3.29. ProposiTioN. Every Baire locally convex space E is polynomially
barreled.

Proof. Let meN and & < #("E) be pointwise bounded. By a classical

remark, there exists x,€E and a neighborhood V of x, in E such that &' is
uniformly bounded in V. Thus % is equicontinuous and Proposition 3.23
guarantees that E is polynomially barreled. m

3.30. Remark. More precisely, one can prove that every Baire locally
convex space is holomorphically barreled ([16], Proposition 5).

3.31. Prorosition. Let E be a polynomially barreled space, meN and
(P)nen be a sequence of continuous m-homogeneous polynomials from E into a
locally, convex space F, pointwise convergent to a mapping P: E — F. Then
Pe#?("E; F).

Proof. It is easy to verify that Pe 2, ("E; F). Moreover, since (P,)ney 18
pointwise convergent to' P, (P,),ey is pointwise bounded and hence equicon-
tinuous because E is polynomially barreled. Then Pe #("E; F). w

3.32. Remark. Proposition 3.31, a Banach-Steinhaus theorem for con-
tinuous m-homogeneous polynomials, generalizes Theorem 2 of [5] which
holds in the category of Baire spaces. We must observe that there are barreled
DF spaces ([7], Chap. 5, p. 157, Exercise 10 and [12], p. 165, Exercise 1)
hence polynomially barreled spaces ([1], Proposition 1.22), which are not
Baire spaces.

It is known in the linear theory that every quasi-complete bornological
space is a barreled space. To prove this result in the polynomial context, we
need the following lemma.

3.33. LemMa. Let E be a polynomially bornological space, F a seminormed
space and meN. Let £ < Z("E; F) be such that for every absolutely convex
bounded and closed subset B of E, #|g, = P("(Eg); F) is locally bounded (or,
equivalently, equicontinuous). Then % is locally bounded (or, equivalently,
equicontinuous).

Proof. Let & < % ("E; F) be the corresponding set of continuous
symmetric m-linear mappings. Then J|(Ey)" is locally bounded for
every absolutely convex bounded and closed subset B of E. Deline
g: E" = 1°(Z; F) by
s Xo) (A) = A(xyg, .05 Xp) iF Aed.

g(Xg, .on and

Obviously, ge %, ("E; I°(Z; F)). Moreover, g|(Eg)" is locally bounded

X1s vy Xy€E
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because & is locally bounded on (Ep)™. Hence g|(Ep)™ is continuous for
every such B and by Proposition 3.5, g is continuous. Thus & is locally
bounded. m

3.34. THEOREM. Every quasi-complete polynomially bornological space E is
polynomially barreled.

Proof. Let meN and & < #(™E) be pointwise bounded. For every
absolutely convex bounded and closed subset B of E, Ey is a Banach space
since E is quasi-complete. By Proposition 3.29, Ey is polynomially barreled,
and since #'|Eg is clearly pointwise bounded, we get that #|Eg is equicon-
tinuous. An application of Lemma 3.33 and Proposition 3.23 gives the proof.

3.35. Remark. Theorem 3.34 can be false if E is not quasi-complete,
even in the normed case (Example 3.22). In the next proposition we will see
that under certain conditions a metrizable space is polynomially barreled.

3.36. PropPoSITION. Let E be a metrizable locally convex space such that
for each meN, (P("E), t,) is sequentially complete. Then E is polynomially

- barreled.

Proof. The argument is a minor modification of the proof of the
corresponding result in the linear case ([19], Theorem 2.7).

3.37. TueoreM. Let E be a polynomially barreled space, F a separated
semi-Montel locally convex space, meN, and % < #("E; F). The following
conditions are equivalent:

(i) 4" is equicontinuous.

(ii) & is relatively compact in (P("E; F), 7).

(iii) & is bounded in (#("E; F), 1).

(iv) & is bounded in (#("E; F), t,).

Proof. (i) =>(ii): This follows from Theorem 2.11.

(if) = (ifi): Since & is relatively compact in (#("E; F), t,), X is bounded
in (#("E; F), t,) and hence equicontinuous because E is polynomially bar-
reled. By Proposition 2.4, 4 is bounded in (#("E; F), 7).

(iii) = (iv) is clear since 7, <1y, and (iv)=(i) is also clear since E is
polynomially barreled.

338, Derivrmion ([1]). A locally convex space E is said to be poly-
nomially Mackey if for every locally convex space F and for every meN, an
m-homdgeneous polynomial P: E - F is continuous if @oPeP("E) for
every peF".

3.39. Remark. (a) In Definition 3.38 it suffices to take F a normed
space. :

’ b) Every holomorphically Mackey space ([15], Definition 11) is poly-

nomially Mackey, and every polynomially Mackey space is a Mackey space.

¢) Since P(E;F)= & P("E; F), a locally convex space E is poly-
maN .
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nomially Mackey if and only if for every locally convex space F, a poly-
nomial P; E— F is continuous if poPe#(E) for every ¢peF'.

3.40. ProposrrioN. Every polynomially infrabarreled space E is poly-
nomially Mackey.

Proof. Let (F, || ||) be a normed space, me N and Pe#,("E; F) be such
that @ o Pe#("E) for every peF'. Then P(K) is weakly bounded in F if K
is a compact subset of E, and by Mackey’s theorem ([7], chap. 4, p. 70,
Theorem 3) P(K) is bounded in F. Let Y= {@eF'; |®(y)| <[yl for every
yeF}.

Since Y is bounded in (F', B(F', F)), # = YoP < #("E) is bounded on
the compact subsets of E, and consequently equicontinuous because E is
polynomially infrabarreled.

By the Hahn-Banach theorem, ||y|| = sup|@(y)| for every yeF. Hence

Pe®("E; F), and by Remark 3.39 (a), E is’mypolynomially Mackey. m

3.41. ExampLE. The space E = CY¥ x C'™ considered in Example 3.18 is a
polynomially Mackey space ([16], Example 7), which is not polynomlally
infrabarreled (Example 4.8).

3.42. Prorosimion. A locally convex space E is polynomially bornological
if and only if E is polynomially Mackey and for every me N, #("E) = &y ("E).

Proof. Necessity follows from Proposition 3.11 and 3.40. To prove
sufficiency, let F be a locally convex space, meN and Pe#y("E; F). By
hypothesis, ¢ o Pe #("E) for every g eF'. Since E is polynomially Mackey,
PeP("E; F). m

4. Examples.

4.1. ProrosiTioN. Every bornological (resp. infrabarreled) DF lomlly
convex space E is polynomially bornological (resp. polynomially infrabarreled).

Proof. We prove the bornological case. The other case is analogous.
Let F be a locally convex space, meN, m=>2, and Pe@Py,("E; F). Let
Ae P, ("E; F) be such that A =P. By the polarization formula, A4 is
bounded on the bounded subsets of E™ Since E is bornological, the linear
mapping xeE A(x,, X3, ..., X, ) €F is continuous if x,,..., x,E. To
prove the continuity of A it suffices to prove that A is hypocontinuous ([10],

p. 64, Theorem 2). To do it, fix m—1 bounded subsets B,, ..., B, of E. We
must prove that the family of continuous linear mappings
= {xeE—A(x, X3, ..., X)€F; X36B,, ..., X, €B,}

is equicontinuous. But this follows from the facts. that 4 is bounded on the
bounded subsets of E™ and that E is infrabarrcled. m
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4.2, CoroLLARY. If E is a metrizable locally convex space, the following

conditions are equivalent:
(i) E is.distinguished.

(i) (E', B(E', E)) is polynomially bornological.

(iii) (E', B(E', E)) is polynomially barreled.

(iv) (E', B(E', E)) is polynomidlly infrabarreled.

Proof. (i)=>(ii): This follows from Proposition 4.1, from [10], p. 61,
Theorem 1, and from [10], p. 73, Theorem 7.

(ii) = (iii): Since E is metrizable, (E', f(E', E)) is complete. Hence (iii)
follows from Theorem 3.34.

(iii) = (iv): Clear.

(iv) = (i): This follows from [10], p. 73, Theorem 7, and from the fact
that every separated infrabarreled locally convex space is barreled. m

4.3. CorOLLARY. If E and F are bornological (resp. barreled, infrabarreled)
DF locally convex spaces, then E®,F (the projective topological tensor
product of E and F) is polynomially bornological (resp. polynomially barreled,
polynomially infrabarreled).

Proof. It suffices to apply [11], p. 44, Corollary 1, Proposition 4.1 (in
the bornological and infrabarreled cases), and [1], Proposition 1.22 (in the
barreled case).

44. Remark. In [1], Proposition 1.22, Aragona proves that every
barreled and bornological DF locally convex space is polynomially bor-
nological and every barreled DF locally convex space is polynomially
barreled.’

45. Exampie. In [20], Valdivia gives an example of a barreled DF
locally convex space (hence polynomially barreled) which is not bornological.
This gives an example of a polynomially infrabarreled space which is not
polynomially bornological.

4.6. ExamprLe. Let X be a non-compact completely regular Lindelof
topological space. Then (C(X), 7,) is a polynomially bornological space (use
the argument of [9], Theorem 2) which is not a DF space ([21], p. 276,
Corollary 1).

In the next proposition we shall prove that the converse of Corollary 4.3
is true without the condition E and F being DF spaces.

4.7. ProposiTioN. Let E and F be separated locally convex spaces, E # 0,
F #0, such that E®,F is polynomially bornological (polynomially barreled,
polynomially infrabarreled). Then E and F are of the same type.

Proof, We shall prove that E is polynomially bornological. The other

cases are similar to this one,
Let yeF, y # 0, and consider the one dimensional vector subspace of F


GUEST


56 D. P. Pombo, Jr.

generated by y, say M. By [7], chap. 2, p. 68, Corollary 2, there is a subspace
N of F such that F = M@N, algebraically and topologically. Hence E®, F
=E®,(MON) =(EQ,M)®(E®,N) ([11], p. 46, Proposition 6), and an
application of Proposition 3.27 gives the proof. m

4.8. ExampLE. Let E = CVx C™ as in Example 3.18, E is barreled and
bornological as a product of two barreled and bornological spaces. We shall
show that E is not polynomially infrabarreled, by proving that the sequence
(P)nen defined in Example 3.18 is bounded on the compact subsets of E but
is not equicontinuous. If X is a compact subset of E, there exists a compact
subset K; of CM and a compact subset K, of C™ such that K = K, x K.
Since K, is a compact subset of C™, there exists moeN such that if
¥V = (Vmmev €Kz and m = my, then y,, = 0. From this fact we get that

sup

[Py, y) = 1P (x, y)l»
(x,p)eK,0 SrSmp~1

and hence (P,),.y is bounded on K. Now let us prove that (P,),. i not
equicontinuous. In fact, let ¥ be a neighborhood of zero in CV and let (A)men
" be a sequence of strictly positive real numbers. We shall prove that (P,),e i
not locally bounded on W= {(x, y)eE; xeV,|y,| < A,, meN} (a basic
neighborhood of zero in E). Since Vis a neighborhood of zero in CV, there
exists m; €N such that the projection pr,, : C¥— C is not bounded in V.
Hence P, is not bounded on the subset T={(x, y)eE; xeV;y,
=0, m#my, yy, =Ap,} of Wsince Py, (T)= dy, pty (V). Hence (P,)en 15
not equicontinuous. Moreover, CV and C™ are polynomially bornological
and polynomially barreled spaces (Propositions 33 and 3.29 and [1],
Proposition 1.22), whose product is not polynomially infrabarreled. This
example also shows that an inductive limit of polynomially bornological and

sup
{x,yyeK,neN

polynomially barreled spaces may fail to be a polynomially infrabarreled:

space.
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