The generalization of Cellina's Fixed Point Theorem

by

ANDRZEJ FRYSZKOWSKI (Warsaw)\(^*\)

Abstract. Let \(L(T, Z) \) be the Banach space of integrable functions from a compact space \(T \) into a Banach space \(Z \). A set \(K \subseteq L(T, Z) \) is called decomposable if, for every \(u, v \in K \) and measurable \(A \subseteq T, u \cdot \chi_A + v \cdot \chi_{Z \setminus A} \in K \). In this note we prove that each compact mapping from a closed and decomposable subset \(K \subseteq L(T, Z) \) into itself has a fixed point.

§1. Introduction. In paper [2] Cellina proved that the set \(K_p \) of all functions integrable on a closed interval \([a, b]\) whose values belong to a fixed closed subset \(P \) of a Euclidean space \(R^m \) has a fixed point property; this means that each compact mapping from \(K_p \) into itself has a fixed point. The set \(K_p \) can be nonconvex; thus the result of Cellina is interesting when confronted with Schauder's Fixed Point Theorem, where the assumption of convexity is essential (see [3], [8]).

In this note we generalize the above result to an arbitrary closed and decomposable subset \(K \) of the space of integrable functions. The decomposability of a set \(K \) means that for each \(u, v \in K \) and \(A \) measurable \(u \cdot \chi_A + v \cdot \chi_{Z \setminus A} \in K \), where \(\chi_A \) stands for the characteristic function of \(A \).

Obviously, the set \(K_p \) in the theorem of Cellina is decomposable. This generalization is quite easy to obtain if we apply a certain theorem on continuous selections proved by the author in [5]. The theorem is an abstract version of Antosiewicz and Cellina's Selection Theorem [1] and can also be applied to the problem of the existence of solutions for the functional-differential inclusion \(x(t) \in F(t, x(\cdot)) \) (see [6]). The required facts about the selections are given in §3. We formulate the main results in §2 and prove it in §4.

§2. The main result. Let \(T \) be a compact topological space with a \(\sigma \)-field \(\mathcal{M} \) of measurable subsets of \(T \) given by a nonnegative, regular Borel measure \(dt \) and let \(Z \) be a separable Banach space with norm \(|\cdot| \). By \(L(T, Z) \) we denote the Banach space of functions \(u: T \to Z \), integrable in the Bochner sense, with norm \(||u||_B = \int |u(t)| \, dt \).

\(^*\) Current address: Institute of Mathematics, Technical University of Warsaw, 00-661 Warsaw, Pl. Jana Kochana 1, Poland.
We call a set $K \subseteq L(T, Z)$ decomposable if $u \cdot \lambda + v \cdot \phi \in K$ for every $u, v \in K$ and $\lambda \in \mathbb{R}$. The family of all nonempty closed and decomposable subsets of $L(T, Z)$ we denote by $d(L)$. From this moment let K be a fixed set from $d(L)$. The main result is the following:

Theorem. Let $\varphi : K \to K$ be a compact mapping. Then φ has a fixed point.

Corollary. Let Ω be an abstract space with a σ-field Σ and let $\varphi : \Omega \times K \to K$ be a function measurable in the first variable and compact in the second. Then there exists a Σ-measurable function $s : \Omega \to K$ such that, for each $\omega \in \Omega$, $\varphi(\omega, s(\omega)) = s(\omega)$. This function s is a Σ-measurable selection of the map P from Ω into closed subsets of K given by $P(\omega) = \{ s \in K : \forall \omega \in K \} = s$ which is Σ-measurable (see [4], [7]).

§3. Selection Theorem. Let S and X be topological spaces. Denote by $\text{cl}(X)$ the family of all nonempty and closed subsets of X and let $P : S \to \text{cl}(X)$ be the multivalued map. The function $p : S \times X$ is a selection of P if, for each $s \in S$, we have $p(s) \in P(s)$.

The map $P : S \to \text{cl}(X)$ is called lower semicontinuous (l.s.c.), if the set $P^{-1}(U) = \{ s \in S : P(s) \subseteq U \}$ is open for each open $U \subseteq X$.

The following selection theorem was proved in [5]:

Selection Theorem. Assume that S is a compact topological space and the map $L : S \to d(L)$ is l.s.c. Then L admits a continuous selection.

We apply this theorem to the maps L_ε defined on the set $G = \text{cl}(\text{co} \varphi(K))$.

(1)

$$S = \text{cl}(\text{co} \varphi(K))$$

for each $\varepsilon > 0$ by the formulas

(2)

$$L_\varepsilon(s) = \text{cl}(\{ u \in K : |u(t) - s(t)| < \text{ess inf}_t |u(t) - s(t)| + \varepsilon \})$$

almost everywhere in T, where ess inf stands for the essential infimum and $\underline{\varphi}$ and K are as in the Theorem.

If the sets $L_\varepsilon(s)$ are nonempty follows from the observation that for each $s \in S$ there exists an element $u_s \in K$ such that $|u_s(t) - s(t)| = \text{ess inf}_t |u(t) - s(t)|$ a.e. in T (see [5], Prop. 2.1). The lower semicontinuity and the decomposability of L_ε given by (2) can easily be deduced from Proposition 2.3 in [5] if we observe that the map ψ defined by $\psi(s) = \text{ess inf}_t |u(t) - s(t)|$ is a Lipschitz function in L-norm. For this purpose fix s_1 and s_2 from S and let $u_t \in K$ be such an element that $|u_t(t) - s_1(t)| = \psi(s_1)(t)$ a.e. in T.

Then the Lipschitz condition follows from the inequalities

$$|u_t(t) - s_2(t)| \leq |u_t(t) - s_1(t)| + |s_1(t) - s_2(t)|$$

a.e. in T.

§4. Proof of the Theorem. Let S be defined by (1). Obviously S is a convex and compact subset of $L(T, Z)$. Consider the map L_ε given by (2) and let $L_\varepsilon : S \to K$ be a continuous selection of L_ε. From the definition of L_ε it follows that for every $s \in \varphi(K)$ the inequality

(3)

$$||L_\varepsilon(s) - s|| \leq \varepsilon \cdot ||x||$$

holds.

Consider the continuous maps $\varphi \circ L_\varepsilon : S \to \varphi(K)$. The Schauder Fixed Point Theorem implies that for each $\varepsilon > 0$ there exist points s_ε such that

(4)

$$\varphi[L_\varepsilon(s_\varepsilon)] = s_\varepsilon.$$

Those points belongs to $\varphi(K)$ and from (3) it follows that for each $\varepsilon > 0$ we have

(5)

$$||L_\varepsilon(s_\varepsilon) - s_\varepsilon|| \leq \varepsilon \cdot ||x||.$$

Obviously the net $\{ s_\varepsilon \}$ is totally bounded and we may assume that it converges. Let $s_0 = \lim_{\varepsilon \to 0} s_\varepsilon$. Then also $\lim_{\varepsilon \to 0} L_\varepsilon(s_\varepsilon) = s_0$ because of (5). Taking the limits in (4) we notice that s_0 is the fixed point of φ, which completes the proof.

References

