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in the initial interval of length %, and leave intact the blanks in the follow-
ing ky-blocks up to k; = ngky (1, > 1) where the fraction of the filled
positions is less than s. The next blocks of length &, are repeated period-
ieally. We continue this process by induction by filling up the blanks with 1’s
and 0’s at odd and even steps, respectively. The fraction of the filled
positions in the initial interval of length %, is less than ¢ at the nth step.
In the resulting sequence 2z the initial blocks of lengths %, &, ... are
repeated at intervals of lengths %, &y, ..., respectively. Since k,~-oo,
(i) is clearly satisfied. The density of 1’s in the initial block of length %, is
less than & for » odd and greater than 1 —e for n even, whence (ii) is also
satbisfied.
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Some convergence properties of convolutions
by,
KLAUS KELLER (Dortmaund)

Abstract. For cerbain spaces X of test funotions the following reversed form
of eontinuity is shown to hold for convolutions: If Tje X’ and Ty*p-»0 in X’
for all g e X, then Ty-> 0 in X'. The proofs are based on theorems of Grothen-
Jdicek and Raikov-o Silva on inductive limit spaces.

Oonsidering the operation of convolution on &' x% (% the space
of rapidly decreasing 0*-functions, &’ its strong dual), the following prop-
erty i3 easily proved: If T;—0 in &', then T, +p-+0 in &’ for all p € &.
In the sequential approach of Mikusivski [1] and [2] a reversed problem
is of interest: If for T; € &' we have T;xp—>0 in &’ for all p e &, is it
true that T),—0 in &'? Similarly does Zj#p—0 in ' for all ¢ € 2 imply
T;—0 in 2'% In both cases we infer from

(Lysq, w) = (g, 9~ %9), @ (0): = @(—a),

{weak) convergence on the subspaces [F+F] = & or [2*2] c D, which .
are built of finite sums of convolution products. If [¥x&] ([2+2D]) is

equal to & (2) or at least of second category in & (2), then (7)) is certainly

bounded and convergent. Performing Fourier transformation we may ask

whether [&-&] = & and [ Z] = %% Whereas [ -Z] =% can be

verified by rather deep and lengtly methods [3], a systematie treatment

for the case of other test function spaces iz not known.*

In this note we give a divect solution for the original problem. It util-
izes the following “Theorem B” of Grothendieck [4] and can be generalized
to various other test funection gpaces.

Tanornv B, Let I} be o locally convew Hausdorff space, I and F,(i € N)
Tréchet spaves. Lot w be o continvous mapping F'-=1 and w; continuous
mappings I3 If w(B) < | w,(F,), then there ewists some indew &, such
that w (Y < ) w(IF). g

1y

This theorem will imply the convergence of (T;x¢); on a larger space,

® In the mean time J. Voight Las announced a proof of &-& = &.
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‘We first study convergence on & %, then on @ (K')«2(K) and 9 +9.
Finally the problem is solved for &+% where Fourier trangformation ig
not applicable.

TrEeREM 1. Let (1), < &' (RY) and Tysp—>0 in &' (RY) for all
@ € 8(RY). Then T;~0 in &' (RY).

Proof. We consider the equivalent problem T;-¢—0 in &’ If we have
succeeded in showing that (7}); is bounded in &, the theorem is proved:
Suppose T';+0 in the topology of &#’. Then for some ¢ € & and some & > 0
we may select a subsequence (T,, ); with (T, ng , )l > e Since &’ iy a Montel
space, we can find a qubsequence (7, ) of (1,L ); With Tn, —I'in &', But for
all y € D we have

(Togy 9) = (Lags 2°9) = (T -2, 9)=>0

choosing y €2 with y =1 in a neighbourhood of suppy. Now the density
of ¥ in & implies I = 0 which contradicts [(T,,,}, @) > e

So let us agsume that (7;) is unbounded in &', Then there exists some

@, € & such that (T}, ¢,); is unbounded. Passing over to a suitable subse-
quence which again will be denoted by (T;) we attain {(T;, ¢)l > j. Next:
we introduce for ¥ € N the Banach spaces

B ={a = (ay);) jeN, ge2¥, ayeC,
lal: = sjuplam(1+ gy~ {In(j +1))7* < co}.
il

As By < By, we can define B: = limind B, which is a locally convex
Hausdorff space. Moreover, it is an (LS)-space [5] since all embeddings
are compact. This can be derived from the fact that the embedding I°(c)
—>Z"°(c’) is compact if lime,/c, = 0 bolds true for the weight factors
¢ = n)n! ¢ = (0;1,) e

Now let a positive ¢ € 0 be fixed with e(z) = 1 for 2| < 1 and suppe
< {&| || < 3/2}. Further, let e,(x): = ¢(v+¢) for all ¢ e 2. We want
to show that by @ = (@), = @, a;,: = (Tye,, p), a continuous mapping
u: P—H iy defined.

First, since T;-¢—0 in &' implies boundedness in some (&%), we geb

]ajq[ = I(Tj'(p7 eq)l < ||Ty*"l’”—7;'”0qu
<4 JSup (L + | D%, ()]
<4- sup (L 12— g} 16 (@) < 47+ (1 [g)".
, laph

Henee jla|l, < oo. It remains to verify the continuity of w. As T is an T.J¥-
space we may invoke the graph theorem: Let ¢,~0 in & and U (py) > 0*
in B. Since H is an (LS)-space, there exists some % such that {u (@)} = By
and « (p,)—a* in the topology of . On the other hand, U (Po) = (Tj6qy Po)
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~0 for all j, ¢ beeause of Ty, & &', As pointwise convergence is weaker
than convergence in the norm of 1, we come to the conclusion a* = 0.
Now Grothendieck’s theorem tells that (%) < B, for some % e N.

Leb &'ies bf-N 41 and
= D (Hlah e,
q:zzN
Clearly fe C®. Moreover, from
@) = 3 (Lo g) ™) 6 (@)] << Cysup [69a)] < O
/] @
we know f e 0y, Because of
@) 2 (e 1qol) ™ ey 2 (21 |w])™
where ¢, satisfios |#--gl <1 and
WD = D) Oy a LFHS D (o = a),
regjal

1/f & Oy maust be true, too. .
We next prove thatb {l’jf (ln(j-+1))~% je N} is bounded in &':
Indeed, for any ¢ € & one has

|((InGG+0) Ty, ) | < (W0G-+2) (T F-9)]
< 2(14- lg )™ {In.(G+1)) 7% [(Tyeq, )]

A

< ()l Z(1+xq|)~N-1<onm¢)uh-

But this leads to a contradiction:

(5 4+1)) 72y, 90)] = [+ 1)Ly 7 (L1
= [({i+0) Ty F5 (LUD)s
e

thug
(2, @)l < Ofln(G+1))". m
A, divect application of Grothendieck’s theorem to the case 2+2 is-
impossible sinee @ is not a Fréchet space. However we can handle this
problem. by passing over to the Fréchet space G(K): }
Tuﬂ(mwr 2, Lat (T) < 9y Tyxe->0 in @' (K'Y for all p €2 (EK). Then
Ti>0 in @' (K’ K )y 1(' K being the interior of the compacta K, K < RN,
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Proof. Suppose we can show that for each », € »—]x there exists
some neighbourhood U(s,) such that {(I;, ¢)| j € N} is bounded for all
@ e@(U(wo)), then —by using a partition of unity —(I}); is bounded on

.@(I(’ K) In like manner as in the proof of Theorem 1 this property
implies 7,0 in @' (K’ —K):

Let T,~T in @'(K'—K). Then (Tsp,y) = Lim(T,, p#g*) = 0 for
all p e @(K) and p e @ (K'). As Txgpe 0%, it follows that (T'+p)(y) =
for all y € X'. Hence (T,§) = 0 for all 5 e2(y—K),

Thus let By =y —y (y’ eK’ ye K) be a point where our assumptlon
does not hold. We choose some (open) nelghbourhood U(w,) in IL

satisfying 9’ — U(zy) = hig and y+ Ul(z,) < K Fixing some cloged cube
Q@ = a,+[—L, LN = U(z,) we can find an element p, € D(Q) such that
{(T;, %)} is unbounded. By passing over to a suitable subsequence we may
again assume [(T;, w,)| > j. Let E, and F be as before. For fixed ¢,
€2y + U (a,)) with ¢, = 1 on y+@ and e (a): = ¢, expingw/L (¢ e ZV)
we congider the agsignment

P (p): = (Tyxg, ¢), ¢eI(K).
Because of the boundedness of T g in some (9™ (K'))’ we get the estimate

1050 (@)] < 1Ly % plli@mzryy - leghampz:y
<A|sm.p!1)“(e0 expingu/L)| < A’ (1 jg|)™

lalém

and 80 (ag,(p));, € B.
The closed graph theorem combined with the continuity of (Lyxey , )
in ¢ e 9(K) implies that u: p>u(p):= (g 2(?))so 18 2 continumous mapping
9 (K)—>H.
Now Grothendieck’s theorem tells that u (@(K)) < B, for some k.
From this fact will follow that {(In(j+1))~*Tyxp] j e N} is bounded on
D¥(y+Q) for k' : = k+ N +1. Indeed, by utilizing the Fourier axpansion,

»(®) = ey(w) ? cqespingo/L = ) 064
for v e ¥ (y+-Q) where

Cled <d, [ @¥o|p®(a)| < M,
7+Q

©

m Bome eonvergence propertics of convolutions 91

holds for |a| <%, we obtain

m(+1) " (Tyee, v)] = (G- 1) (2 w,zcaaq);
< (ln(y 1)) Z leg 1(Ty%p, e,)]

< 2 logl lagg (@)l (In(i+1))~ 0210,,: 1+ Ig))®

<O D L+lgh) V< o
a

Now it is not diffieult to produce a contradiction:
(T, o) = (Tyy o 8) = (T, po (x P (D)G))
= (Ti, Ty PR Ty (xl”(D)G)).

Here (t,f)(®) == fe-+-h) and y is any element in ([ —L/2, L/2]1¥) with
%(0) = 1. By ¢ & 0¥ we denote Green’s function

G(@) 1= (2m)™N [e o (L £ N ag
for P(D) :== (L --Ax)¥+V,
Bxploiting the generalized ILeibniz rule
JPD)g = N D (P~ D
u< 00

we arrive at

N 1 a ‘ a,
(o) = (T venoy ) D (6-2(=D))

o

- V2 (:z:g, Ty 9w Ty (G PO~ D))

,;./..J
\ _Q
4..4 o R Py o)
with, .
¥ 2= (1 i) € 2(y" ~Q) = D(K)

and, ‘
Py i Ty (GPO(—D)) e @Y (y' [ —L/2, L[21V) « 9" (y+Q)-
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The boundedness of (IL;+g,) ((111( j +1))"‘)j on " (y-+@) then implics
(Tyy p)l < J’I(ln(j+1))lc~ B

By the definition of 2(9), 2'(2') for open sets 2, 2 = RY the next
theorem is a consequence of Theorem 2:

TrROREM 3. Let (1)) < @', Tixp—0 in 2'(Q') for all p € D(L2). Then
Ty=0 in 2' (2 — Q).

Proof. As weak convergence agrees with strong convergence in 3*
for sequences it suffices to show that (I}, p)—0 for all ye (R — Q).
But since suppy € Q' — 2, we also have suppy < K’ — I for gomo suitable
compact sets K’ < £, K < . Now the preceding theorem applies. m

Again in a different manner Grothendieck’s theorem is used in the
proof of our last theorem.

TaEOREM 4. Let Ty &', If Tyxp—~0in &' (or @'} for all p €D (or g € &),
then T;~0 in &',

Proof. In v.irtue of (Ty*q, ) = (T;*yp”, ¢"), the second assertion
follows from the first. To prove the first we note that by Theorem 3 7;~0
is surely true in the topology of #'. Thus it sutfices to show that | ) supp T

7

is a compact set. Let y e 2(|u| < 3) be identical one for |a| < 2 and let
further functions y,, €2 be defined for p, g e Z¥ by

Xpq(®) == % (D -+@)expingn/2.

‘We now introduce the Banach spaces

By = {(ay0)p = a]ay,€C, jeN, p,ge2¥, g =0 if || =%,
ol =]$213 (@) (L + 1g 1) (In(f+ 1)) < oo}

As the embedding m;,: #,— w+1 Ay be regarded as the embedding of
finitely many copies of E;, into finitely many copies of B, the mapping
7 is compact according to foregoing arguments. Therefore £: = limind f,
is a separated (LS)-space. Now leb ay,,(9): = (T*gp, Ao) for ¢ € 2(B) wi'(:hc
the ball B: = {w] |2| <1} = —B. We want to show that by gi> (a,,,(p))
'a continuous mapping u: 2(B)—B is defined: "
The family {T,x¢| je N} Dbei in & ;
i e thznt{ el g } being bounded in &', a compact set X,

ive

SJ supp (Ty*q) < I,

Consequently a;,,(¢) = 0 for all j, q if |p| is sufticiently large. Further-
more,

©
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] ljl',D [ Gy () | 2 sup || Ly llogremmy * Uqu“MK,,,)
4

<0 U, 5up | Dy, ()| < O sup | 19 (@) -sup |g|*
ek, ek, |of<r

= lal=r

= O (LbJgl)

Therefore w(p) e B, Continuity is proved by using again the closed graph
theorem and the faet that for fixed §,p, ¢ the expression ay,,(p) = (L=
* gy 0 in f‘soxltilltmnl'lfs in ¢ € 2(B). Grothendieck’s theorem now implies
w(@(B)) < By, for some &, thus (154, g,,) = 0 for all j, ¢ and ¢ e Z(B)
provided [p|:= b iy tho case.

Qinee any funetion in @(p--Q), Q: = {@| |¢| < 3/2} can be approxi-
mated in the topology of @ by terms of the kind. 3 oy, we get (Zy*g, v)

<00

supp (Tyxg) < I = BYN U (p4@).
IS
Because of Tpxp & (% this inclusion implies that (T;+)(y) = (T, 7_y@")
vanishos for all ¢ e @ (B) if y¢ K. Hence (Iy,v) == (I}, T_y (7)) = 0
for all p ¢ @ (y - B) with y ¢ K. Bub this means

supp Ly < K’ for all jeN. m

16 ig clear that the methods of this paper may be carried over to
other spaces of distributions (e.g., K[M,]-spaces or 8f-spaces).

Finally lot ug point oub that Theorems 1 to 4 are extendable to nets:
T w0 fnaplios T,~»0. Indeed, if T,~0 would not hold true, we could
find a zoro neighbourhood V and an infinite sequence a, < oy << ag<< ...
such that ', ¢ V, and I, x¢--0. But since T, *@~>0, our theorems for
soquonees imply Ty -+0.
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A simple complement to Mikusifski’s operational caleulus
by
KOBAKT YOSIDA (Tokyo)

Abstract, According to Mikusinski’s operational ealeulus, any solution y = {y (1)}
of the Cauehy problom for the nth order linear ordinary differential equation with
complox coollicionty and with inlomogoneous torm fe= {f(£)} €00, oo) must satisty

(%) (e 8% - ctyyy 87 Rk dag)y == fob Py 87 o By g8 L Bos

where a's and fi’s are eomplex numbery with a, % 0. The entitled complement
provos that g == {y (1)} given by (x) i n-timos continuously differentiable in ¢ so that
y () is in truth the unique solution of the original Cauchy problem. Cf. the subsequent.
paper by 8. Okamoto (this volume, pp. 99-101).

The entitled “complement” will be stated in § 2. For the sake of the
reader’s convenionce, I ghall begin with a brief prerequisite from the oper-
ational caleulus of J. Mikusiigki [1] as exposed in a joint paper [2] of the
present anthor.

§1. The prerequisite. Lot ¢ denote the totality of complex-valued
continnous funetions defined on [0, o). We denote such a function by

{f ()} or simply by f, while f({) means the value at i of the function f.
Yor f, g% and a, § ¢ I (== the complex number field) we define

t
() af By = {af()+pg®)} and fy = off(t-r)y(r)dr}-

Thon ¢ is & commutative ring with respect to the above addition and multi-
plication over tho coefficient field IC.

We shall denote by h the constant function {1} €% so that we have
fe?

, 1 o \ et
(2) IIJ‘ lbf f('ﬂ)(l'&‘l for and AP = {m—ir}.

Tor any integor » 3 1 and f ¢ €, we have, by (2),
(3) W = 0 J=0,

where 0 denotes {0} &%, Therefore we can define the commutative saper-
ring €, of ¢ by

implies
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