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Abstract, Tho characterization of elements of the dual of the space K{M,}
given by I. M. Gelfand and G. I. Shilov, and also the characterization of the conver-
gence in K {Mp}’ given by L. Kitchens and C. Swartz aresimplified under an additional
condition on the sequence {IM,}. In particular, a simple description of the convergence
in various spaccs of distributions is obtained.

1. The space K {M,}, introduced in [2] by means of a non-decreasing
sequence of extended real-valued functions A, embraces various spaces
of test functions congidered in the theory of distributions. On the other
hand, the space K {M,}' (the dual of K{M,}) embraces various types
of gpaces of distributions of finite order.

In [2] (p. 113) we find a representation of elements of K {M,}' under
conditions (M), (N), (P), imposed on the sequence {I,}. This representa-
tion can be written in the form of a finite sum of derivatives (in a general-
ized sense) of functions which become bounded after dividing by a fune-
tion of the sequence {IM,}. In terms of such representations, the con-
vergence in K {M,} is characterized in [5] under the same conditions
on {M,}.

However, in all known particular cases of the space IC{M,}', e.g.,
in the spaces @, & (see [T1), #p (see [61), H, (see [8]), Dy, (see [4]),
clements can bo desoribed in a simpler way by using one derivative of
finite order. Similarly, the convergence in &' (see [1], p. 169), in @_’m
and in 47 (seo [4]) can be expressed by means of single distributional
derivatives. Therefore the natural question arises when elemoents of K { M}’
and the convergence in JC{M,}' can be characterized in that simplified
way. '

In this note we give an additional condition, constituting a modi-
fication of (N) (denoted by (N’)), which guarantees such characteriza-
tions. Note that the system of conditions (M), (NV), (N'), (P) is a little
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stronger than the system (M), (N), (P) and, in R*, condition (N') eoin-
cides with (N). We do not know if condition (N’) can be omitted in the
simplified characterizations.

2. The functions considered in the note are supposed to be defined
on R? and complex-valued in general.

Some notation is adopted from [1]. In particular, the symbol P?
will denote the set of all non-negative multi-indices, i.e., &b = (%, ..., %,)
e P?if all coordinates x; are non-negative integers. The symbol ¢® for
k € P* will denote the derivative of order &k € P* of a smooth function ¢
and the symbol

fm F(t)dt*
0

will stand for the iterated integral of order %k eP? of a locally in-
tegrable function 7 (see [1], p. 62). Moreover, let [k = e R S
for kb = (g, ..., %) € PL

As in [2] (p. 86), let {I,} be a sequence of functions M,: R
— [1, o], continuous on the sets

Q, = {w e B%: M,(z) < oo},

which are supposed to be equal for all p e N (let @ = @, for p ¢ N) and
such that

(1) -Zu:ﬂ(m) < Mp—}—l(m) (p GN} @ E'Rq)'

Let us consider the following conditions on the sequence {I,}:

(M) For each j =1,...,¢ and p € I, there exists 0, >1 such that
it &< 1&| and &-& >0, then

(2) My (Ersevey &5y ovny E) S Oy My(bry ooy &5 oy £))

(N) Tor each p €N, there exists an integer p' >p such that Mgy
e L'(R%) and mg, (2} —0 ag |o| - oo, where My (0) = M, ()| My ()
(the convention oofco ==0 iy adopted); )

(P) For each ¢>0 and p €N, there oxist an integer »’ > p and
a positive number T such that m,, (#) < it M,(»)>T.

. The above conditions have been introduced in an equivalent form
in [2], pp- 87 and 111.

Note that it follows from condition (N) that

p@) = [ my(@)ag < oo

icm
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for each j =1, ..., ¢ and almost all F = (&, ..., &_q, &4, ..., £) e BEL
The funetion x need not be bounded (almost everywhere) in R2~! in general.
We postulate this property additionally:

(N') For each j = 1,...,¢ and p € N, there exist an integer P>
and a positive constant By, >0 such that

(3) p(E) == f”%p'(m)dfngh)

for each § ==1,...,¢ and almost all #e R* ™.

For g =1, condition (N’) reduces to (N).

Ag in [2] (p. 86), for a given sequence {I,} let K{M,} denote the
space of smooth functions ¢ such that 1° ¢™(z) = 0 for k e PY and o ¢ Q
and 2° M,p™ is & continuous bounded function on RY for all p e N and
I e P% Tho space K {M,} is endowed with the locally convex topology
generated by the norms

(4) ol = sup{ I, (2) [e® (@)|: » e B, k| <p}.
It can be shown that, for every r > 1, the sequence of norms

el = sup [ [ le® )] (p e W)
It <n “ga :
generates the same locally convex topology in K {M,} as the norms in (4)
(ef. [2], pp. 111-112 and [5], Lemma B). ‘

Examrres. It iy easy to see that the spaces Py, & (see [7]), o'y (see
[3] and [9]) and H, (see [8]) are K {M,}-spaces for particular sequences
{M,} satisfying conditions (M), (N), (N') and (P) (cf. [5]). The space
Ay v >1 (800 [6]) is a K { M, }-space with the sequence M, (z) = exp(p|»|")
for pe N, @ = (&, ..., {) € BY where |#| = ]/§f+...+§§, and the space
gy a >0 (seo [4]) is a K{M,}-space with M,(») = exp[a(l—1/p)|2(?]
for p e N, w e R% In the last two cases, the sequonce {M,} fulfils con-
ditions (M), (N), (N'), ().

3. In [2] (p. 113), elements of the dual of K {M,} are characterized
under conditions (M), (N), (P) as functionals f of the form

() (frg) = D [MFu® (peK{My})
|ilmp B
for some p e N, where ¥, are bounded measurable funections.
Defining the mth. derivative:
(9", 9) = (=1)™(g, ¢)

for g e K{M,} and m eP? (cf. [2], pp. 106-108) and identifying meagur-
able functions @ (finite abmost everywhere) such that MG is bounded

(9 e K{I,})
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almost everywherc for some p € N with functionals GeX{M,) of the
form
= [@p (peE{IL)),
R
we can express (5) in the form
(6) f=2a,
lil<p

where @, are measurable functions (finite almost everywhere) such that
M;'G,; are bounded almost everywhere (&; = (—1)"M,F; on @).

In [5], the convergence f, — 0 in K{M,}' is characterized, under
assumptions (M), (N), (P), by the condition:

(a) there exist p.e N and, for each ieP? with |4
of meagurable functions @, such that

lil<p
for each 7 e P?, [i| <<
Moreover, under (M), (N), (P) and an additional agsumption (F), we
find in [5] another chamctenzatlon
(b) there exist p, s € N and, for each ¢ € P* with |i| < p, & sequence
of continuous functions @, such that

< p, a sequence

and  M;'G;, >0 in I*(RY)

fa= D 6 and sup (M;(®) 1Gn (2)]) 0
lil<s
for each 4eP? i <<p.
Under conditions (M), (N), (N') and (P), we shall give characteri-

zations of elements of K {M,}' and of the convergence in K {M,}" which
have a gimpler form than (6) and (a)-(b) (see Sections 4 and 5).

We shall need two lemmas.

LevvA 1. Let {M,} fulfil conditions (M), (N) and (N'). Suppose that
B ds a continuous function on R? for which there evists a p &€ N such that

(1) @ ¢ I*(RY)

for G = M;'F and for all a with 1< a<< co. Then, for each k & P% there
ewist a p;, € N with p, = p ond a continuous function Iy, such that T = I
on R? and (7) holds for G = M“‘Fk and for all a with 1< a < co.
Proof. The assertion is ebvious for &k =0 = (0,..., 0).
Buppose that it is true for some % e PY an integer p, > p and a con-
tinuous function Fy, such that (7) holds with & = M, 'F,. Let j be = fixed

icm
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index from the set {1, ..., ¢}. By (N'), there exist an integer r > p,, and a
congtant B, >0 such that

por (B f My, o (D) A5 <

for almost all & == (&5, ..., &1, &1y ey &) € RY According to (N),
find s > such that m,, e L' (RY), In virtue of (M), we have

71 7]
M @) | [ 7 [ ¥ @
0 0

o
< 'A'Ic f m’p;c,r (mr) dr < AIch

0@ < 057!

1) Flc(mt) drl

for almost all @ e R?, where @, = (&1, vy &5ty Ty Ejpny -ney &) and Ay
= sup | My (2) F'y(z)|. Since the funetlon
well
8) Frepe(0) = f Fy(o)dv
is continuous on R?, we geb
(9) Sul)lM ( ) lc|—ej( )[‘gAkBlc'

weRd

Moreover, for every a1, we have
(10) [ 1M (@) Py (0)° 0 < (41By)° fq m, (@) dn < oo,
ne P
gince m,, (%) < 1. In view of (8), (9) and (10), the assertion holds for p, ey
=8 and so the lemma is proved by induetion.

In a similar way, ono can prove the following lemma:

TmmmA 2. Let {M,} fulfil conditions (M), (N) and (N'). Suppose that
{11} is a sequence of continuous functions on R‘Z Sor which there exists ap e N
such that
(11) LA (RY)
Jor @, == M7, and for all o with 1< a < co. Then, for cach k & P4y there

enistap, e N with D3 P and continuous functions Iy, such thot K = I,
on R% and (11) holds for @, = M:,,klf,m and for all o with 1 < e << oo,

4. Blements of the dual of K{M,} can be characterized as follows:
Tumonmm L. Let {M,} satisfy conditions (M), (), (N') and (P). The
following conditions are equivalent:
(i) f e K{IM,}'5

&, >0 in
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(il) there exist p € N, k € P? and a measurable (continwous) function
F such that

(12) f=7®
and
(13) M'F e L*(RY)

for all a with 1<

(ili) there ewist p e N, k e P? a'nd a measurable (continuous) function T
such that (12) holds and (13) is valid for some o with 1 < a < oo,

Proof. Suppose that (i) holds. By Theorem in [2], p. 113, the func-
tional f is of the form (6) for measurable functions @, (i € P%, |i| < p)
such that M,'¢; are bounded.

Let # and s be integers such that s >r >p and m,,, m,, e L'(RBY.
The function

\OO,

@

(14) Gio) = [ Gw)du (v eR?)
[}
is. continuous and, by (M)
(15) sup M7 (2)G, ()] < sup | MM @)@, () < A,BC,
aeR TeR!
where
4; = sup | M (W)Gi(w)l, B = [my,(u)du
ueRY R
and

a
¢ =[]0

Moreover, for each a>1, we have

(16) [ 1M (@)@ (@) dw < (4,BC)" fmm
BY
owing to (13) and (1). Inequalities (15) and (16) imply that M@, e L*(RY)
for each ¢ (4| <p) and each o (1 < a< ).
By Lemma 1, there exist continuous functions F'; and integers s, > s
such that

@) dw < oo,

@ FE = @,
where § = (p,...,p) € P% and
(18) M'F; e I#(RY),

whenever 1 < a<g co.

Let ¢t = max{s;: [¢|<p} and put

(19) F= Y7,
ltl<p

icm®
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Clearly, F is a continuous function and
P f,

which results from (19),
note that

(17), (14) and (6). To obtain (ii), it remains to

M e INRY) (1< a< oo),

in view of (18).
Implication (ii) -» (iii) is trivial.
Now, assame (iii) for k eP% p e N, a measurable function F and

gome a such that 1 < a < co. Choosing an integer 7 >gp such that m,,
e [MRY and putting

uflf’(u)d'u (v € RY),
b

we notice that & is continuous and F¥+) =f.
Moreover, applying (M), we get

sUp IMr‘l(w)ﬁ’(m)léOsup]M;l(u)F(nﬂ-fmp,(m)dm
@ RY

in the case « = oo, and

‘81;:9 u'/,;‘-l ((I!).F'( 7)) <0 [ f( yr)ﬂ]llﬁ [ L’ |M;1F[u]1la

in the cago a < oo, where ¢ = Oy,...0,, and g = of(1—

Consequently, condition (il) holds for & continuous function I such
that (13) is valid for a = oco. Thig already yields condition (i). In fact,
if (12) and (13) hold for a = oo, then the functional

(fy9) = (=1) fq Fg® (g e K{M,})
pia

is lincar and continuous on K{M,}. The proof is complete.

5. The following theorein deseribes the convergence in the dual
of K {M,}.

Trrowmy 2. Let {M,} satisfy conditions (M), (N), (N’) and (P) and
let f,e K{M,}" for n cN The following conditions are equivalent:

(1) fo =0 weally (strongly) in I{M,}';

(ii) there ewist p e N, keP? and measurdble (continuous) functions
B, such that

(20)

!

fo= 1,1('{:)
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and
(21) MF, >0 in  IMEY

for all a with 1< a< oo

(iii) there emist p € N, k € P? and measurable (continuous) functions I,
such that (20) and (21) hold for some a with 1< a << oo

(iv) there ewist p € N, k € P? and measurable functions I, such that
(20) holds, the functions My'F, are commonly bounded (almost everywhere
in RY and F, >0 almost everywhere in R2

Proof. Assume that (i) holds. In view of Theorem 6 in [5], condition
(a) holds for some p € N and some sequences of measurable functions
G, where |i|<p (see Section 3).

As in the proof of Theorem 1, we choose integers r, s such that p < r<g
and my,, m,, € I'(RY. The functlons

(22)

G, () =f6’m(n)du (w & RY)
0

are continuous and, in virtue of (M),

sup | M5 (@) Gy (@) < sup [ M () Gy ()]

g, 0,

<O [ mp, Mz 16| <
Rre
where

C=0Cy...0p and ¢, = (qu mm)l/z(fM"zlel )”2

Hence we have also

fq[M;l( ) G (2| e < enfms»o
yis

whenever 1 < a < oo, Now, we apply Lemma 2, finding continuous fune-
tions F,, and integers s;=s such that

(2) PEY = @,
where % = (p, ..., ) € P% and
(24) M7 F, -0 in L*(RY)

for each ¢ (lil<p) and o (1<
Putting

o < 00), where ¢ = max{s;:

Z in?

i<

i < p}-

icm
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and using (22), (23) and (b), we obtain (20) for k¥ = p--1. Moreover, (21)
holds for p =% and all a suech that 1< a<{ co. Thus the implication
(i) — (i) is proved.

The implication (ii) -- (iil) is evident.

Suppose that condition (iii) is fulfilled for some %k eP? peXN, 1
< a < oo and meagurable functions I',. It is easy to see that for the func-

tions
» &x
Iﬂn(m) = f T uydw (2 e RY
0
wo have F{ED) = I, and
(28) M—li}'v >0 in  I®(RY

for any # > p such that m,, e L'(R%. In particular, relation (25) implies
the pointwise convergence and boundedness of the sequence {I/, 173,
and go (iv) follows from (iii).

Tinally, note that (iv) implies (i). In fact, if (20) holds for measurable
functiony ¥, such that for some p € N the sequence {M;'F,} is bounded,
then the functionals

(fur @) = (¢ EK{M:D})

—1)* [ B, () o () o
q n

are linear and continuous on K{M,

(fns @) >0

or overy ¢ e K{M,}, i.e., f, =0 weakly in K{
is proved.

Remark. Theorem 2 supplies descriptions of the convergence in
various spaces of distributions, for instance in the duals of the spaces
mentioned in the Examples in Section 2: 9%, &' (see [1]), 5%, (see [4]),
H., and ;. Let us write, e.g., the following characterizations of the con-
vergence in o, for r > L.

Conorrary. Let f, e X, (neN) for some r >
ditions are equivalent:

(i) £, - 0 weakly (strongly) in #y;

(ii) there emist k e P4 pe N, 1 < a < oo and measurable (continuous)

Sunctions I, e L*(RY) such that

(26) Fula) = [ F, (2)1®
and

»t and, by the Lebesgue theoremf

M,}'. Thus Theorem 2

1. The following con-

L (B%;
(iii) there ewxist keP% peN and continuous bounded fumections T,
such What (26) holds and F, — 0 uniformly in K%

B0 in
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(iv) there emist & e PY p e N and measurable functions T, such that
f, = F® T, -0 aimost everywhere im R and

[F, ()] < Cexp(plz’)

for some C >0 and almost all @ e RY
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Abstract. The paper deals with local derivatives of functions of seveialva,ri_ables
having values in a fixed Banach space. It is shown that the local derivative and
Sobolev's derivalive are equivalent.

Local derivatives of functions of one real variable with values in
a Banach gpace were considered by J. Mikusifgki in [2], and. earlier, in [4],
loeal derivatives of functions of g real variables with values ih a Hilbert
gpace were introduced. In [6] the author gave a list of properties, the-
orems and also some comments concerning local derivatives. The func-
tions congidered in this paper are defined in a g¢-dimensional Euclidean
space RY; their values are elements of a Banach space Z. ‘

By a local derivative of a function f of & real variable we mean the
local limit of the expression

2 (a1 ~F(@)]

a8 b - 0. In other words, g is .a local derivative of f if

—:;L; [f(@w-h) ~f(@)]—g(»).| do =0

]
1) lim f
h-r0 M

holds for every bounded interval (a, b). (We assume that the integrand
in (1) is locally integrable). :

Lot f and ¢ bo locally integrable functions on an open set 0. If, for
each real valued infinitely derivable function ¢ with bounded support
in @, the following equality holds:

[ogdn = — | fp'dm,

then g is called weak derivative of for Sobolev's derivative f'off(ef. [3], p.172)a
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