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Abstract. Tho prosent paper is devoted to the theory of function algebras. It
deals with the abstract Ilardy algebra theory, that is the local part of the abstract
analytic function theory in the sense of Barbey-Kénig (Lecture Notes in Math. Vol.
593, Springer, 1977). The paper extonds the basic representation theorem for the maxi-
mum functional over the representative functions from the bounded to arbitrary real-
valued moagurable functions. This result has numerous applications, in particular to
the abstract conjugation. The paper also contains a representation theorem for certain
conjugable functions in torms of limits of isotone sequences which seems to be new
avon in tho clasgieal unit digk situation, It permits a direct development of the abstract
conjugation theory.

The present paper is devoted to the abstract Hardy algebra theory
as dovelopped in Barbey-Konig [1]and summarized in Kénig [2]. We adopt
the former definitions and notation. Let (H, @) be a Hardy algebra situ-
ation on the nonzero finite positive measure space (X, X, m); it is defined
to consist of a weak* cloged complex subalgebra H < L%(m) which con-
tains the constants, and of a nonzero weak* continuous multiplicative
linear funetional ¢: H-»C. The class M < ReL!(m) is defined to consist
of the nonnegative functions ¥ e Re.L*(m) with ¢(u) = JuVdm YVueH.
We assume (H, ¢) to be reduced, that is there exist functions V e M such
that V> 0 on the entire space. We also recall the function classes #
und H* with the extended functional ¢: H¥->C and the function class H*
which dominate the presentation in [1].

A contral vesult in the abstract Hardy algebra theory is the equation

Sup{ [ PVam: Ve M} = Inf{Regp(u): ue H with Reu = P}
: Y P e ReL™(m);

see [1], IV. 3.10 with IV. 2.5. In the present paper we shall prove in Sec-
tion 2 that the above equation extends, after appropriate redefinition of
the two terms involved, to all P € ReL{m), where L (m) is defined to consist
of all equivalence classes modulo m of measurable complex-valued func-
tions. This result has numerous applications some of which will be presen-
ted in Sections 3 and 4.
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In Section 3 we ghall obtain the well-known modification lemma
without the usual boundedness assumption; compare with [4], Lemma 2.2.
Next consider the norm-like functional

M- NP = Sup {[ 1P| Vam: Ve M} < oo VPeLm).

An example shows that the functions P e L(m) with [[|P]|| < co need not
be in the |||-]|| closure of L*(m). However, we shall prove that this is true
for the powers |P|° with 0 < z << 1.

Section 4 is devoted to applications to the abstract conjugation.
In [1], Chapter VI, the conjugation is based upon H¥*:

A function P e ReL(m) i said to be conjugable iff there exigts a fune-
tion @ € Rel(m) such that @+ ¢ H* V¢ e R. The function @ is then
unique up to an additive real constant, and unique under the extra con-
dition that @(e!®+9) = @) Ve R for some unique real a(P), and
named the conjugate function to P.

The class B of conjugable functions is closed with respect to [|]-}[}
by [1], VI. 2.4 with IV. 8.9. It is obvious that ReH « H, and that for
P e ReH the conjugate function is the unique @ € ReH with P-iQ ¢ H
and Imge(P-1-iQ) = 0. Hence E contains the |[||-]|| closure of ReH; it is
unknown whether this closure is equal to H.

It is a natural question to characterize the conjugable functions in
terms of M. At present no complete answer is known. Define a function
P e L(m) to be univalent iff [[|P|||< oo and [PVdm is independent of
V e M. Of course the functions in ReH are univalent, and hence the func-
tions in the |||-]|| closure of ReH as well.

One could expect that F coincides with the class of univalent fune-
tions. In the sixties several authors observed that a bounded function
P s ReL>™(m) is conjugable iff it is univalent. Then in [1], VL. 3.8, it is
proved that a function P e ReL(m) in the ||{-||| closure of ReL®(m) is
conjugable iff it is univalent; but it is unknown whether ¥ is contained
in that closure, and éven whether |||P||| < oo for all P e H. In [1] the last
theorem has a complicated proof, while in Section 4 below it becomes a
rapid consequence of our basic results in Section 2. Furthermore we shall
prove certain representations of «(P) for P e under less restrictive
conditions, which permit to obtain univalence results as well.

In Section 4 we shall also prove the Kolmogorov estimation for all
conjugable functions; for the special cases known so far see [1], VI. 5.1
and VL. 7.1 and [7], Satz 2.6.

The final Section 5 is related to the doectoral thesis of Loch [6]; see
also [7]. Loch develops an alternative version of the abstract conjugation,
in that he substitutes for H¥ a certain subclass H* < H¥* but preserves
the form of the definition.
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It turns oub that the class B* of conjugable functions in the sense of
Loch consists of the functions P e B which are in the {I11-1]] closure
of ReZ™(m). Hence by the result from [1] discussed above H* consists of
the functions P € ReL(m) in the |||-||] closure of ReL®(m) which are uni-
valent. Thus E* can be characterized in terms of M, in contrast to H.
Loch obtains two further remarkable results: E* is the |{|-[|| closure of
ReH; and each P € E* can be represented as the difference of two non-
negative functions in ¥, a statement which is open for E.

In his work the basic tool is the function class H", defined to consist
of the limits (to be taken in the appropriate sense) of the sequences of
functions %, e H (n = 1,2, ...) such that the Reh, > 0 form an increaging
sequence and the p(h,) = Rep(h,) form a bounded sequence. It is clear
that ReH < E*, and that for P e ReH" the conjugate function is the
unique @ € ReL(m) with P+iQ e H™. Hence ReH —ReH < B*.

Now the main theorem in Section 5 is that in fact B* = ReH —ReH ",
in the sharpened sense that for nonnegative P € B* the second term can
be chosen. arbitrarily small with respect to |||-]||. The theorem implies.
at once the two results of Loch quoted above. It is a representation theorem.
of key nature since for the first time it opens the road to develop the ab-
stract conjugation in a direct manner as in the clagsical unit disk situation,
and, in particular, without the idea to invoke the exponential function.:
Let us mention that, in order to be as short and simple as possible, we
shall develop our results without explicit occurrence of H* and B*; for the
connection it suffices to refer to [6] or [7].

In the meantime our main theorem in Section 5 could have been
transferred to a different and more abstract context: to the Daniell-Stone
theory of integration. A connection with the abstract Hardy algebra the-
ory became clear which led to 2 new idea how to do the integral extension
procedure without the lattice condition, and. the above theorem turned
into a representation theorem for integrable functions. For this topic
we refer to Leinert [5] and Konig [3].

1. Prcliminarvies on the functionals ¢ and 6. Let (H, ¢) be a reduced

Hardy algebra sgituation on the nonzero finite positive measure space
(&, 2, m). We define the functional &: ReIL(m)—[— oo, co] 10 be

H(P) = Sup { [ PVdm: V e M such that fPVdam3} VP e ReL(m),

where 3 means existence in the extended sense, that is [P+Vdm and
[P~V dm are not both = oco. We adopt the usual conventions Inf@: = oo
and Sup@: == --oo, also 0(o0): = 0 and co-+(—o0): = oo; one verifies
that v <v=u-ta < v4aVu, v, 06— o0, o]

1.1. PropErITES. (1) InfP < 9(P) < SupP.

(i) P<@=9(P)<9(Q)
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(iliy HP+Q) < HP)+Q) if [@ Vdm< oo VV el

@iv) 9(eP) = ¢d(P) for wal ¢>=0.

Proof. (i} is obvious.

(il): We can assume that [ PVdm exigts in the extended sense for
some Ve M. Let Vel be such that this is true. If [P~ Vdm < oo,
then @~ <P~ implies [ Q~Vdm < oo, 80 that f@QVdm exists in the ex-
tended sense as well and [PVdm < [QVdm < Q). If [P~ Vdm = o,
then [PVdm = —co< ?(Q). Hence &(P) < H(Q).

(iii):* We can assume that 0(Q)< oo and hence [ |Q| Vdm
< ooVVeM For VeM, [(P+Q)Vdm exists in the extended sense itf
JPVdm exists in the extended sense, and in this case [ (P--@Q)Vdm
= [PVdm-+ [QVdm < [ PVdm-+9(Q). From this the assertion follows.

(iv) is obvious for ¢ > 0 and true for ¢ = 0 in view of the conventions.

1.2. Remark. For P e ReL(m) bounded below we have & (Min(P, 1)} 4
13 (P) for t}oo. ,

Proof. If a << #(P), then a< [ PVdm for some V e M. Hence after
the Beppo-Levi theorem, a<< [ Min(P, ) Vdm < 9 (Min(P, ¢)) for ¢ suf-
ficiently large. The assertion follows.

Next we define the modified functional 0: ReL(m)~[ — oo, co] to
be

0(P) = lim9 Max(P,t)) VPeReL(m).

t)—c0

‘We list the properties which follow from 1.1.

1.3. ProPERTIES. (i) InfP < &(P) < O0(P) < SupP. For P eReL(m)
Dbounded below we have H(P) = 0(P).

(i) P<@=0(P)<6(Q).

(iil) O(P+Q) < 0(P)+6(Q) in all cases.

(iv) 6(eP) = ¢O(P) for real ¢ = 0.

The norm-like functional {||-|]]: L(m)—[0, co] defined in the Intro-
<duction is therefore

HIPH = 9(1P)) = 0(1P)) VP eL(m).

The reducedness assumption implies that |||P]]] = 0==P = 0. Note that
JIP|Vdm < V7V eM implies that [|P]||< co; for otherwise there
were V, e M with [|P|V, dm> 2% (m =1,2,...), which would lead to

SIP|Vim = co for V: = 2 o Vae I

fi==
. Moreover, we have reason to introduce the functional ¢,: lbeL(m)
—[0, oo] defined to be

8. (P) = }1112 S((P—1)*) VP eReL(m).

Its importance will be clear from the next remark.
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1.4. Remark. (i) 4 function P e ReL(m) is in the {||-||| closure of

{f eheL(m) f bounded above} iff ¢, (P) = 0.
) A function P eReL(m) is in the |||-1]] closure of ReL™(m) ff

19+(P) =.—19 +(—P) = 0.

Proof. (i): For iecR we have P—Min(P,1) = (P—t)t>0 and
hence [||P —Min (P, 1)||] = 19((13 1) ) On the other hand, for feReL(m)
bounded above and ¢ > f we have P —¢ < P —f < |P —f| and hence (P —#)*+
< |[P—f], so that & ({(P—#)*) < |||P—J||l. The assertion follows

(ii): For f> 0 one verifies that

|P —Min (Max (P, <), )| = Max((P —t)*, (=P —1)*)
and hence )
(112 —Min (Max (P, —1), )[l| < 9((P —1)*) + (P —)*).
On the other hand, for feReZ™(m) and ¢ > |f| we obtain #((£P—9)*)
< |/|P —fIll a8 above. The assertion follows.

1.5. Remark. For P eReL(m) the following conditions are equi-
valent:

() 6(P)< oco.
(ii) & (Max(P, t)) << oo for some teR and hence ¥ te R.
{iil) 9 ((P—1)*) < oo for some t € R and hence ¥V t e R.
(iv) 94 (P) < oo. ;
Proof. We have (P —1)* = Max(P, ) —¢ for ¢ € R. Furthermore for
8<t we have
Max (P, s) < Max(P, 1) < Max (P, s)+(t—s),
(P—s)F—(t—s) < (P~ < (P—9)*.

From these relations and from the definitions the assertions follow.

We turn to the basic relations between ¢ and 6 in terms of 4,. They
can be essentially sharpened under the assumption that M < ReL'(m)
is weakly compaect.

1.6. ProrosITION. (i) O0(P)<®(P)+9,.(—P) for all PeReL(m).

(i) Assume that M is weakly compact. Then 6(P)<< 3 (P)+3,(P)
for all P e ReL(m),

Proof. (i): For ¢ ¢ R we have

Max (P, t) = P+ (t—P)* = P+ (—P—(—)*
and hence
8(P) < & (Max (P, 7)) < H(P)

#o((—2—(~1)")
by 1.1 (iii). The assertion follows. i

3 ~ Studia Math. 77.1
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(il): We first prove that 0(P) <
is bounded above. We have

P;: = Max(P,t) e ReL®(m) VieR.

Fix a real a > ¢(P). For each Ve M, [PVdm < H(P)< a, so that by
Beppo Levi there exists ¢(V) e R with f Pypy Vim < a. Then

M(V): = {W e M: [ PyyWam< af

is an open subset of M in the weak topology o(ReZL?(m), ReL™(m))| M
which contains V. Hence there exist Vi,..., V,eM such that
M= M(V)u... UM (V,). Pubt & =Mn@EVy),...,¢V,). Then
[P, Vdm< afor all Ve M and hence 0(P) < $(Py) < a. It follows that
0(P) < ®(P). Now for an arbitrary P e ReL(m) and ¢t € B we have P
= Min(®, t)+ (P —t)* and hence

0(P) < §(Min (P, ) +6((P —1)*) =
HP)+ O (P —1)7).
The assertion follows.

1.7. PROPOSITION. (i) 9, (P) << #(P)+ 0(—P) for all P € ReL(m).

(ii) Assume that M is weakly compact. Then 9, (F)< 6(P)+I(—P)
for all P e ReL(m).

Proof. (i): For te R we have (P—1)*
hence ¢ ((P—1)*) <
follows.

(ii): Assume first that P is bounded below. Then —P is bounded
abeve, so that 1.6 (ii) implies that 0(—P) = & (—P) and hence (i) that
P, (P) < 9(P)+3(—P). Now for an arbitrary P eReL(m) and teR
we have ' '

J(P) and hence 0(P) = &(P) if P

(Min (P, £)) + & (P —1)*)

= P+Max(—P, —t) and
HP)+ o (Max(—P, —1)) atter 1.1 (iii). The assertion

9, (P) < O, (Max(P, 1)) < ¢ (Max(P, 1))+ & —Max (P, 1))
< & (Max(P, )+ 9(—P).
For t} — oo the assertion follows.
Next we congider the univalent functions defined in the Introduc tmn
1.8. PROPOSITION. (i) For P e RelL(m) we have 4(P)-9(—P)<< 0
iff [P*Vam = [P~Vdm = o VV e U,
(ii) For univalent P e ReL(m) we have #(P)+H(—P) = 0.
(iii) Assume. that P e ReL(m) is such that O(P)+&(—~P)<0 and
that [ PV dm emists in the emtended sense V'V e M. Then P is univalent.
Proof. (i}: If [P*Vim = [P~Vdm = coVV e M, then &(P)
= J(—P) = — co and hence H(P)+9(—P) = —ooc. Assume now that
JPYVdm < co for some V e M. In case [ P~V dm = oo then [ (—P)Vdm,

icm
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= oo and hence

o = [PVam+ [(—P)Vim < 9(P)+8(—P),
and in case [P~ Vdm< co we have

0= fPVdm+j(~1°)mm<@(1>)+ﬂ(—1=).
Thus ¢(P)+9(—P) > 0. The conclusion is the same if one assumes that
[P Vadm< o for some Ve M.

(ii) is obvious.

(iii): For each ¥V e M we have

co>3(P)> [PVam = [ P*Vam— [P~vam,

o> 9(—P)> [(—P)Vdm = fP—Vdm—fPde;
therefore [ P+Vdm, [P~ Vdm< oo or [I1P|Vam< co. It follows that
Pl < co. Now for any ¥, W e M we have

[PVam+ [(—P)Wam<#(P)+8(—P)<0 or [Pyam< [PWam,

It follows that P is univalent.

1.9. PROPOSITION. (i) For P e Re L (m) univalent we have 6(P) =9 (P)+
+9,.(—P).

(ii) For P e ReL(m) we have 0(P)+6(—P) =
= 0 iff P is univalent and ¢, (P) = 9, (—P) =0.

Proof. (i): From 1.7 (i) we have &, (—P)< —P)+ 6(P), which
for univalent P means that O(P)+9,.(—P) < 0( P) Oombme this with
1.6 (i) to obtain the assertion.

(ii): From 1.7 (i) we see that 0(P)-+ 0 ( —F) is > > 9, (P)and = 4, (—P),
and hence > 0. In case 0(P)+ 6( —P) = 0 we have 15‘+(P) =0, (—P)=0,
s0 that #(P*), 9(P~) < co; furthermore &(P)-+9(—P)< 0, so thab P is
univalent by 1.8 (iii). And if P is univalent and P (P) = . (~P)=10,
then 6(P)+-0(—P) =0 by (i) and 1.8 (ii).

1.10. PROPOSITION. Assume that M is weakly compact. For univalent
PeReL(m), ¢, (P) =9, (—F) In particular, 9, (P) =0 if P is bounded
below.

Proof. Combine 1.7 (il) with 1.6 (i).

Let us define L to consist of the functions P € Re.L(m) with &, (P)
— 0. The connection between L~ and L* will be discussed in 2.9 and 3.5(9).

0; and 0(P)+06(—P)
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3. The functional ¢+ and the main theorem. We define the functional
ot: ReL(m)—~[— oo, co] to be
ot (P) = Inf{Reg(u)—c: u e HT and ¢z 0 with Rew—c¢= P}
VY P eReL(m).

From the definition of H* we see that, in particular,

ot (P) = Inf{Rep(u): uw e H* with Rew>P} for P>=0.

Note that o (P)< oo iff there exists some u ¢ H* with Rew > P.

2.1. PropuRIIES. (1) 0(P)< ot (P) < SupP.

(il) P<Q=0™(P)< 0 (Q)

(iii) o+ (P4Q)< ot (P)+ 0" (Q).

(iv) o* (¢P) = co™ (P) for real ¢z 0.

Proof. (i): We have to prove the first inequality and can assume
that ot (P) < co. Let w e HT and ¢ > 0 with Reu —c¢ > P. Then Rew —¢
> Max(P, —c). Thus the basic result [1], V.4.1.3, shows that

fMa,x(P, -—c)Vdmgf(Reu)Vdm~a< Rogp(uw)—c¢ VVel,

and hence
0(P) < #(Max(P, —0¢)) < Rep(u) —o.

The assertion follows. (ii)-(iv) are obvious.
2.2. Remark. For P e ReL(m) bounded above we have

o7 (P) = Inf{Regp(u): 4 € H with Rewu > P} = : o(P).

Proof. (1) BEach function « € H can be written 4 = v —¢ with ¢> 0
and » e H and Rev > 0, so that v € H*. Thus ¢+ (P) < o(P) is clear. We have
to prove o(P) < ot (P) and can assume that ot (P)<< oo.

(2) Letu e H and ¢ > 0 with Res —¢ = P. Fix R > 0 with P+e << R
and A> 1; then ¢> 0 with 2iR+41 < A. From [1],V.4.1, we know that

Reu -+t |u|?

Uy = —r e H  with reuriiul
|1 -t (2

R =
1+t ot

=

We have
(P+o)|1-+tu|? < Min(Rew, B)|1 - tu|?
= Min(Reu, B)(1+2tRew--12|u|?)
& Reu+2tRReu - 12R |u |?
< AReu+1R (1 |u?) < A(Reu-+t|u|?),

icm°®
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g0 that P+ ¢ < AReu;. Thus lu,—o € H with Re(Au,—c) > P, so that the
definition of o(P) implies that
o(P) < Reg(Au;— ) = AReq(u,) —c = aRe 2 .
g : 1+ tg(u)
For 1,0 we obtain ¢(P) < iReg(u)—¢, for A1 then o(F)< Rep(u)—ec.
Hence ¢(P) < o™ (P).

2.3. Remark. For any P e ReL(m) we have o* (Ma,x(P,t)]\La*' (P)
for #}—oo.

Proof. We ecan assume that ot (P)< co. Let weH* and ¢>0
with Rex —e¢ > P. Then Reu—c¢ > Max(P, —c), and hence Reg(u)—o
> o (Max (P, —¢)). The result follows.

The next lemma is the key result for the future development.

9.4. LEMMA. Let P € Ro I (m) be nonnegative with o™ (Min (P, 1))14 < oo
for thoo. Then there emists w e HT with Rew > P and Regp(u) < A

Proof. (1) For 3> 0 we fix real A(¢) > A such that A(t){4 for i} oo,
Then in view of A(t) > > o* (Min(P, t)) and Min(P, 1) > 0 there exists
% € H* with Rew, > Min(P, t) and ¢(u;) = Rep(u) < A(8).

(2) We invoke [1], V. 4.2, to obtain the function

1—u,

By = ! ¢ Ball(H),
11

14

which is not the constant —1. We have

1-—», 1—1hy?
u, = l+ht, and hence Reu, = EEy
1_¢(ht)‘ 1—]e(®)?
= d h R = e
qo('u,,)_ TT oty and hence e () EERATAE

It follows that
B2+ Min(P, L+R2< 1,
lp(h) 2+ A0 L+ (> > 1.
(3) For 7> 0 let M(r) = L*(m) be the weak* clogure of the set
{fy: t3 7} < Ball(H). Thuy M (7) = Ball(H) is weak* compact and = @,
and 7 < ¢’ implies that M (') = M (z). Thus there exists some ke Ball(H)
such that » e M (z) for all =>> 0. For some fixed V € M there exists a se-

quence of numbers 0 < #(n)foco such that J (hypy — 1) V @m—-0. Therefore
@ (hygy )@ (). It follows that

() lp(R)2+ A1 +e(R)2 =1,
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Algo h cannot be the constant —1 since otherwise ¢ (lyy,))—>@(h) =,:—-1
or @ (Uy,yy)—oco which contradicts the last formula in (1) ‘
(4) For 7> 0 define

B(v): = {h e H: [h2+Min(P, 7)|1+h[2< 1} < Ball(H).

It has the following properties.
(i) B(7) is convex. In fact, for f,geL(m) and real a, = 0 with
a-t+pf =1 we have

laf+Bg 1 < (alfl+BlgD* = a*If +B%lg1*+2aB 1S | lg]
< G IFP4B2lg 1+ BP9 2) = alflt+Blgle.

From this relation the assertion is clear. ‘
(ii) B(z) is weak* closed. In fact, a simple argument involving I?(m)
shows that a bounded convex subset of L™ (m) is wealk* closed if it is closed
with respect to pointwise convergent sequences; see the proof of the
Krein-Smulian result [1], IV.3.14. )
‘ (iii) We have &, € B(7)Yt> 7= by (2) and hence M (v) = B(z) in view
of (ii). It follows that the function % e Ball(H) obtained in (3) satisfies
h e B(r) for all > 0. Therefore '

(—) R2+PL+R2L .

(8) We have thus obtained a function h e Ball(H) which is not the
constant —1 and satisfies (+) and (—). For the corresponding function

1—n
== + LOT
% 177 € H'™ we have therefore
L—|hf?
= e >
e TEAD /‘P,
1—lp(h)®
Rep(u) = ————< 1.
P = e <

The proof is complete.

2.5. PROPOSITION. For P e RelL(m) bounded below we have

ot (Min(P, 9)){o" (P)  for t4co.

Proof. From 2.1 we have ¢*(P-+¢) = o (P)-}-¢ Ve e R, so that we
can assume that P> 0. Now ot (Min (P, )11 < ot (P) for t1co. We have
’.co show that o+ (P) < 1 and can assume that 1 < oo, Bub then ot (P)<< 1
is immediate by 2.4.

2.6. TumorREM. Let P eRel(m) be nonnegative with o (P)< oo.
Then there exists w e HT with Reu =P and Rep(u) = o+ (P).

Proof. Immediate by 2.4 and 2.5,

icm
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We turn to the functional
a: {FeReL(m): F>0}-—[0, co]
which is a basie tool in [1]. The definition is
a(F) = Sup{lp(w): weH with |u|<F} VYFI=0.

Tt follows that a(F)a(@) < «(FGHVEF, G¢=0.

2.7. PROPERTIES. (i) a(ef) > e~ D VP ¢ ReL(m).

(i) (a(e®)—>e=*D for 1}0 VP e ReL™(m).

(ili) a(e?) > ¢~*"D VP c ReL(m) with ¢F e L*.

Here (i) is an immediate consequence of the definitions involved.
(ii) appears as [1], IV. 2.5, with a simple direct proof. However, (iii) is
the central result of [1], Chapter IV. It appears to be somewhat weaker
than [1], IV. 3.8, but combines at once with the elementary proposition
[1], IV. 8.11, to the full assertion of [1], Iv. 3.8.

An immediate consequence of 2.7 (ii) and (iil) is that for P € ReL*(m)
we have #(P)>o(P) and hence #(P) = 6(F) = ¢t (P) = o(P); see
[1], IV. 3.10. This is a central theorem in the abstract Hardy algebra
theory as well. Our former results permit to extend it to the entire ReL (m).

2.8. THEOREM. O(P) = o (P) for all P & ReL{m).

Proof. Agsume first that P is bounded below. For ¢ € R, Min(P, 1)
&ReL>(m) and hence #(Min(P, 1)) = o(Min (P, t)) = o* (Min(P, t)). For
% f oo We obtain ¢ (P)= ¢* (P)in view of 1.2 and 2.5. Consider now an arbi-
trary P e ReL(m). For teR, Max(P,1) is bounded below and hence
H{Max(P, 1)) = ot (Max(P,?)). For ¢|—co We obtain 0(P) = ¢"(P) in
wview .of 2.3. )

9.9. COROLLARY. We have P e L™ =¢* e I* (an exaraple in Section 3
will show that the converse need not be true).

Proof. The agsumption is o*((P—1#)*) = ¢((P —#)F)—>0 for tfoco.
‘Hence there are functions u, € H with Rew, > (P —1)* such that ¢(u,)
= Reg(u,)—0 for t}occ. In view of the Kolmogorov estimation [1], V. 5.6,
and the Beppo Levi theorem we can find a sequence ?(n)tco such that
Uyy—>0 pointwise for n—>oco. Thus the functions v,: = €Xp( —Uyn) € H
fulfil Jo,| <1 and v,—0 and [v,]¢" = exp(P —Reu,) < exp(i(n)). It fol-
lows that ef € L* by the definition.

Another consequence of 2.8 ig the following extension of 2.7 (ii):

9.10. PROPOSITION. (a(6F))—e~" ) for 1,0 VP e L. -

Proof. (1) Assume that P is bounded above. Tor s ¢ R, Max(P, s)
€ ReL®(m) and hence by 2.7 (ii)

lim sap (a(GtP))llt < hfn (a (GLBIM(P,S))}llt
L0 £lo

— 6—o'+(—-Max(P,s)) = g~ tAUR(=T,~8)),
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From 2.5 we have oF (Min(—P, —s))->o¢"(—P) for s|—oco, 50 that

Iim sup (a(e"’))”‘ < oot =P
40

(2) For P € ReL(m) we have
(@ (P < (a(enENlet(@F-0F) Yo e B and ¢ > 0.
In fact, from P = Min(P, s)+ (P —s)* and 2.7 (i) we obtain
' a(eMIBPI) — g(PetP-a)
> a(e‘P)a(e“‘(P'”)+) > al(etP)e-la"‘((P—a)“")'
From (1) it follows that

lim sup (a(eF)) 1 < e~ Pt @P-a)y s R,
1}0

so that for P eL” we conclude from 2.8 that

lim sup (a (¢!F)) < e -P),
tho

In view of 2.7 (i) the assertion follows,

3. Applications of the main theorem.

3.1. ProPOSITION. Let P e ReL(m) be nonnegative and 9(P)< af
with real a, > 0. Then there exists a function v € HY such that |e™*|P < p
and

p(u) = Repw)<a and |||L—e%| <Va.

Proof. From 2.8 and 2.6 we obtain » e H* with Rev = P and ¢ (v}
= Rep(v) = #(P)< af. Put u: = vfefeH". Then Reu=Plef and
hence

P
le™|P = ¢~ R"P < eﬂeXp( ) f; <B
sinee 46" < 1/e Vo > 0. Furthermore ¢ (4) = Reop(u) < a/e < « and hence
pe™) = e "™ =1 —pu)=1—ale.

It follows for V e M that
JR—e"FVam= [ (1+ |6 ~2Ree™) Vam

) 2
<2—2Reqa(e““)< —a<a,

J—etvam<(f |1~e‘“]2Vdm)m< Va,

so that |||1—e~¥|| <

< Va as claimed.
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3.2. CoroLrARY (Extended Modification Theorem). Let P, € ReL(m)

be nonnegative (n = 1,2,...) with ¢(P,)—0. Then there ewist funciions
u, e H*(n = 1,2, ...) such that

Vs = exp(—u,) € Ball(H)
Sulfil _
L —2,lll=0  and  |v,P,):

The next application requires a lemma which is of interest in itself.
For u € H* define

= Sup|v,P,|>0.

tw
t-+u
Then u, e H with |u] <t and Rew,> 0, and wu;—»u for £4oco.

3.3. LEMMA, Let 4 = P+iQ e H™ with Tme(w) = 0 be such that |Q]
< 6P for some real ¢ > 0. Then |||t —u,]{|—0 for ¢} co. If |Q| < P, then in
addition Reu, 1P for ¢t oo,

Proof. (0) For a complex number z = 2+ iy with 2 >

Uys = for ¢>0.

0 the function
iz

t+2

7o = (tizf-

2 (0% —

F: F@) = for t>0

hag the derivative

Hence
y2) -+ 242l + lzl“

(ReF) (1) = ReF'(f) = "

Thus we have the last assertion.
(1) For ¢> 0. we have

—u‘”f(sw) s fler“[ K
Jrsirans

From the Fubini result [1], X. 2.1, we obtain

f’ s—’:b-u ’ngm = f (Vm)([{ s ’”2 m])dm

10,00[

J (Vm) ([’ Py ‘ = ]) f Tm)([lu)? = six])d

10,1[ 10,1

w !2Vdm)ds for VelM.
s+ u
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(2) We can assume |@|< c¢P for some ¢>1. Thus ¢ = tan(vr/2)
with 1 /2 << 1orlf2<1/27< 1. Then the agsumption implies that the
principal value #'° = : v satisties Rev > 0. Now 4" e H* by [1], V. 4.9,
and hence v = u"z’u”“r e H* by [1], V.4.12. TFurthermore ¢(v) = the
principal value (p(u))"* and hence real > 0.
(3) We combine u = o7 with (1) and [1], V. 5.4, to obtain’

fi S+u l Vam < f (V) ([o] = ") dw

10,1{
1

- 47
< er(v)s‘l”of =Wy = T

I @(v)s™

It follows from (1) that for : > 0 we have

4: 4 -1/
J o —a,|Vdm < 1 [p(ﬂ)j sV ds
2
= mq)(w)r(‘"ﬂ’ for VelM,
4: 2
]| < mcp(v)r“'”".

The proof is complete.

3.4, THEOREM. Let P e ReL(m) be nonnegative with 9(P)< co. For
0<t<l, P el’”, that is P° is in the |||-]|] closure of ReL™ (m).

Proof. From 2.8 and 2.6 we obtain v e H* Wlﬂ‘l Rev = P and ¢(v)
= Reg(v) = #(P). We have

ur = eHY with o) = [p) = B@)

by [1], V. 4.9. From 3.3 we obtain ||ju —u,|||->0 and hence [[| |u| —|u |||
-0 for #tco. Hence ? (ju]) = 0. Now P'< (Reh) < bl = [B7] = |ul,
so that &,.(P%) = 0.

The remainder of the section is devoted to an example. Tt is similar
to [1], VI.4.10, but more complicated.

5. Bxamprs. Let D denote the open unit disk and S the unit circle

in € with i: = arc length on 8 normalized to A(8) = 1. We start with
the clagsical situations (H*(D),p,) on (8, Baire, 1), where

Pt Pul) = fuP 2, )dA = : uly(2) VueH®(D),

with P (2, -): = the Poisson kernel, is the evaluation at = e.D.
We fix a sequence of points 0 << a;< ... < 4, < ... <1 with a,}1
©and put X: = Sua,:neN}. We further fix a sequence of numbers
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y+.e) With ¥ a, < co and form the finite positive Baire

n=1
measure m on X such that m|[8 = 1 and m({a,}) = a, VneN. For
f e L(m)wewrite f°: = f|§ e L(4). On (X, Baire, m) we cons1der theHa.rdy
algebra situation (H, ¢) defined to be

0,>0(n=1,2

H: = {uel®(m): v’ e H*(D) and u(a,) = {u'2)(a,) Vn e N},

p: p(u) = @o(u') = [w0dd = W*A)(0) VueH.

To prove the weak* closedness of H it is convenient to use the Krein—
Smulian result [1], IV. 3.14.

(1) We first determine the function class M. For a nonnegative
function ¥ e ReL'(m) we have

(3 P(a, IV @da)it = 3 Via)a,

n=1 n=1

= [Vim< o,
XN\S
g0 that > P(a,, )V (a,)a, is finite A-a.e. on S. For u e H we obtain
n=1

fumm - fu V°d A+ Z‘ M (a,) V(@) e,

n=1

_fu (V"+ ZP(an, JV( ,,)a)

n=1

Thus VeM iff VO ZP(%, )V (a,)a, = 1. This requn'es that

ZP ns s)V(an) o <

n=1

for A-almost all s € §; but since

{s ed: Ewp(an, 5)V(a,)a, <1}

Nl

is closed, this means that

ZP(a,n, 8)Via,)a, <1 for all sef.
Nl
Now
1+4+a,
MaxP(a,, *) = P, 1) 1
_aﬂ
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Thus V e M iff

. 1+a %
nll_n V' =1- Z-P (@5 °)

(2) Consider a function P € ReL(m) with f |P°]d/1< co, For V e M,

V(a,)a, <1 and (@) 0«

0

2|<P°z> 81V (a) o < Y ([ IP°1P(ay, )84) V(a,) e,

n=] n=

= [P 21’(% YV (ay) @)@ <

00
If [ PV dm exists in the extended sense, that ig if the series 3 P(a,) V(a,)a,
Nl

i

f|1>°|ou< 0.

converges in the extended sense, then

[PVam = [PV'am+ f‘P(an)V(an) o

nw=l

o) dA+ fP(a,.W(a,.)a,,

fioal

= [P'ai+ 2 (P(a) —<P°3) (a,)) V (8,)a,.

n=1

= [P'(1— 3 P(a,, )V (a,)

ne=1

(3) From (1) and (2) we conclude that a function P € Re.L(m) is uni-
valent iff [ [P°]dl< co and P(a,) = {P°A)(a,) Yn eN.

(4) For P eRelL(m) with [[P’|dA< oo we claim that

neN

P = fP°dl+S11p 1;2" Max (0, P(a,) — (P*AY (a)).

It then follows that it is equal to 6 (P) as well. For the proof let A denote
the supremum in question, so that 0 < A < oo.

(i) In order to prove #(P) < [ P’di+ A we can assume that A < co.
Then we have

1+a

P(a,) < (P25 (ay) 1T . A

80 that by (1) and (2) for each V e M the series Z,‘ P(a,) Via,)o, con-

verges in the extended sense, and we have n=1

fPVdmgfzﬂdH Y it“n V(a,

It follows that #(P)< [ l’“dl—i—A
(ii) In order to prove HP)= [P'dA+ A we can assume that 4 > 0.

nA<fP°d}t~|—A.

icm°®
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For a>0 with a<< 4,
1—a
T_:{;f ( p) _ <Pol> (Cﬁp)) >a
for some p e N. We take the V e M with
1
11'% Vig)a, =1 and V(g) =0 Vn£p.

From (2) we obtain
[PVam = [Pai+(P(a,) — (P 2> (a,)) V(ap)ap > [ P'dita.

It follows that #(P)> [ P'di+A.
(5) We shall need the lemma: For F e I'(1) we have

for

R ax KE 23 (2)| =0 RiL.
1

1+-R l#l=R
We have to prove that for any sequence of points zeD (I =1,2,...)
with z,—>c¢c e § we have
1l

5) ﬁﬁl’(z,, §)dA(s)=>0.

lzz|

Tt @ = [ B

1—lzl
But

1+ ]
s = ¢, 50 that the assertion follows from the dominated convergence
theorem.
(6) For P e ReL(m) we claim that

1 and —0 for l—-co for all se8 except for

Py, 8) <

o it [(P)*aL = oo,
P (P) =1 1—a, )
limgup T (P(a,)* 1 [@Yrar< co.
In fact, in the case [ (P’)*di = oo we have -
HP—1")> [(P°—9)Tdi = o VieR

and hence 9., (P) = oo. So assume that [ (P*)*dA< co.Forte R,
J(P'—1)*dA< oo, 50 that from (2) we have

ﬂ‘((P—t)’r)
= f(P°~t)+d1+Sup 1—a, Max (0, (P —t)* (a,) — (P =)™ &) (a,) -
neN 1+an
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(i) For ‘neN and teR we obtain

1—a, 1—a,
P(a,) < 2t
1-+a, (@) T 14a, +

1—a,.
1-+ta,

P =02 (@) +0 (P ~1)*)s

hence for ¢ > 0 the same with (P(an))'* in place of P(a,). In view of (5) it
follows thab

: 1—
limsup -
N->00 Oy,

50 that the limsup is <3, (P).

(ii) For fixed r ¢ N and ¢ > Max(0,P(ay), .., P(4,)) we have

1—a,
1+a, (Pla))*

(P —1*) < f (P° —ty+da-+Sup
n>y
For t}oo it follows that

8, (P) < Sup~—2 (P (a}))*

n>r a,

1-—a,

VreN,

9, (P) < limsup = (P (a,)t.
N—00 n
The proof is complete.
¢7) For P e ReL(m) univalent we have &, (P) = &, (—P) = 0. This
ig clear from (3) combined with (5) and (6).

(8) The function P e ReL(m) defined to be

1+a,
1—a,

P’: =0 and Plag,)= VneN

is > 0 and satisfies #(P) = 9, (P) =1 by (4) and (6). It follows that
9(P)<< co does not enforce that P eL”. This counterexample has been

1+7

amnounced in the Introduction. Note that P= Re 7 with Z: Z(2) = 2

VY z e X, so that Z e Ball(H) and hence :1L+§

e H* by [1], V./4.2.

” .

(9) Let us assume that > (1—a,)< co. Then for P e Reli(m) we
agsert that eF e I# iff 7|8 isnirll the classical L¥* (D), that is iff [ (P°)"d2
< oo, In particular, éf e I* for all P e Re L(m) with P® = 0, Thus in view’
of {6) the implication eFeL® =9(P) = O(P) < oo for P30 is false.
A fortiori, the implication ¢f € L*=P e " is false. This counterexample
has been announced in 2.9. ‘ )
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For the proof consider the Blaschke products

a;—2
1—apr

B,: B,(z) =

l=n

We have |B,|<1 and B,—1 on D. Furthermore B, = <b,1> for the
limit functions b, € H*(D) with [b,| = 1. In view of

VzeD (n =1,2,...).

[—b,pas = [(1+b, —2Reb,)d2 = 2 (1L —ReB,(0))-0

there exists a subsequence 1 << n(l)<<...< n(l) < ...such that b,p—>1.
Now agsume that P € Re L (m) fulfils ¢¥ | § € L# (D). Then there are functions
w e HO(D) (I =1,2,...) with [4]<1 and w1 such that wu(e"]8)
e I*(4). The functions v, e H defined to be #;]8: = bqu; and 7| XN\S
1= B, <u;A> thus fulfil || <1 and v->1. TFurthermore the function
,6" belongs to L® (m)since it is bounded on X\ § for the trivial reason that it
vanishes outside of a finite subset. It follows that e¥ e L¥#. The converse
implication is obvious.

4. Applications to the abstract conjugation. We start with the Kolmo-
gorov estimation. In view of 2.8 the proof of [1], VI. 5.1, carries over.
4.1, TumorEM. For 0 < 7<<1 we have

eos%]ll |P-+iQF | <2 7NPIIF VPeR,

with Q e ReL(m) the conjugaie function to P.

Proof. We put h: = P-+iQ.

(1) We can assume that |||P||| = o* (JP]) << co. Fix weH Y with
Reu > |P}and Ime(u) = 0. Then for u*: = u--hwe have Reu* > 0 and
w* ¢ HY since for t>> 0 we have

..tuﬂ:‘ - e—-tueﬂh e H¥ A L™ (m) — H.

e
Furthermore

G—tqp(u:t) - (P(e—tuﬂ:) - e_tq;(u)e?tu(p),

g0 that @(u*) = @(u)+a(P) which is real > 0. From the Kolmogorov
estimation for H+[1], V.5.6, we obtain

cos T Il W#T Il < plw) = a(P))"

(2) We shall need the simple inequalities (@ B < a*+ b and a7+ b*
- :

<9 *(a--b) for a,b=0. . : ] '


GUEST


48 H. Konig

(3) We have b = (ut—u~) and hence
R 277(|ut | 4 [u™ [ < 277wt P+ Jum|7).

It follows that

cos = |[| [4Jl| < 27 cos = (U 1B

<27 ((p(w) + (P + (p (1) — a(P))) < 2~ (p ().

Hence by the definition of o* (|P[) the first member is < 2‘“'(a+(|P1))
= 27| | P||[".

We turn to the new proof of [1], VL. 3.8, announced in the Intro-
-duction.

4.2. THROREM. Assume that P e ReL(m) satisfios O, (P) = & (—P)
= 0. Then P e B iff P is univalent. In this case we have a(P) = [ PVam
YVelM.

Proof. (1)Forte Rit follows from 2.7 (i) and 2.8 that a(e'F) > ¢~%-
.and hence

a(eF)a(6~'F) > ¢~ U~tP)-0CF)

which by 1.9 (ii) is = 1 if P is univalent. Hence P e H.
(2) Assume that P e E with conjugate function ¢ e ReL(m) and
b =P+iQ. For ¢ = 41,

354(1:’) — (6lsa(P))1/t — ((p(etuh))lll < (a(etaP))I/l Vt > 0’

-80 that from 2.10 and 2.8 we obtain ea(P) < — 0( —&P) or a(P)< —6(—P)
< 0(P) < a(P). Hence P is univalent by 1.9 (ii) and a(P) = §(P) = &(P)
by 1.6 (i).

We colleet some more results which are rather simple congequences of
‘the theorems in Section 2 as well.

4.3. PROPOSITION. Let P eB. Assume that G e ReL (m) satisfies
G=0, =P and 9(@) < co. Then G —P)< oo and hence HIPT| << 00,
Furthermore

#(G) = a(P)+0(@—P).

Proof. Let @ e ReL(m) be the conjugate function to P and
B = P-4,

(1) In view of 2.6 and 2.8 there exists a function % € H* with Rew
>6>P and Reg(u) = #(G). We have Re(w—h)>0 and u—h e H*
Since for ¢> 0 we have

eI — gmlugth & H AT (m) = H.
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Furthermore
p(e7 M) = p(e™)p(e™),
50 that ¢(u—h) = ¢(4) —a(P). From [1], V.4.1.3), we conclude that

@
#(G—P) < 9(Reu—P) = ¢(Re(u —h)) < Rep(u —h)
= Rep(u) —a(P) = 9(G) —a(P).

In particular, (G —P)<C co. Hence from P = G — (G —P), |P| <G+ (G —P)
we conclude that ||| P ||| < oo.

(2) In view of 2.6 and 2.8 there exists a function » e H* with Rew
> G—P and Rep(v) = #(G —P). We have Re(v+1) = Rev+-P =G > 0.
As above we conclude that v+h e H' and ¢(v-+h) = ¢(9)-+-«(P). Then
from [1], V. 4.1.3) it follows that

?(#) < #(Re(v+h)) < Rep(v-+1) = Rep(v) +a(P) = $(&—P)+a(P).

The proof is complete.

4.4. COROLLARY. Let P € B. Assume that G € ReL(m) satisfies G > P
and 0(G) < co. Then (@ —P) < oo and 0( —@) < co, and hence |||@]|]] < oo
and |[|P|]| < co. Furthermore

6(6) = a(B)+lmd (6 —P)+(—G—1)F).
ttoo

Proof. For t € R we have
(G0 —(P+1) = (G—P)+(—G —n)*.

Furthermore (¢ +1)" > 0 and (F+9)" > G +1 > P+1, and H{(G+1)1) < oo
in view of 1.5 since 6(G+1)<< 0(G)+t<< co. Thus from 4.3 applied to
P+iteH and (G+1)" we obtain 4(G —P)<< oo and #((—G —1)7) < oo,
or 6(—@) < oo after 1.5. Once more by 1.5 we have #(G"), #(G7) << oo
and hence |||G]|| < oo, and thus |[[P|||< co since [P|< |G|+ (G—P).
Furthermore 4.3 implies that

H(G+ 1)) = a(P+1)+0(@—P)-+(—G—1)*),
which in view of (G+%)* = t+Max(G, —t) means that
O (Max(@, —1)) = a(P)+8((G—P)+(—G—1)*).

TFor {too we obtain the last assertion.
The special cases G = P and G = PT lead to remarkable represen-

tation formules for o(P).
4.5. COROLLARY. Let PeF with §(P)<< oo. Then |||P||<< oo and

a(P) = 0(P)—9,(—P) = ¢(PT)—9(P").

4 — Studia Math. 77.1
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We conclude the section with a univalence result which follows:
from 4.3.

4.6. PROPOSITION.
Junction @ € ReL(m) such that |P|<@. Then P is wmivalent and

«(P)

Proof. We have & = 0, so that 4.3 can be applied to & and &P with
= 41. For ¥V e M we obtain

[evam =9@) =

= fPVdm VVel.

a(sP)+9(G —eP) = a(eP)+ [ (6 —eP)Vdm,

and hence za(P) = a(sP) < ¢ [ PVdm. It follows that a(P) = [PV dm.

In 5.3 we ghall prove that for P e ReL(m) with 4, (P) = 0 there
exist nonmegative univalent functions & e ReL(m) such that G = P.
Therefore 4.6 contains the relevant direction in 4.2. On the other hand,
it is not clear whether a nonnegative univalent function G e ReL(m)
satisfies 9, (@) = 0. However, in view of 1.10, this is true if I is weakly
compact.

5. The representation theorems in terms of H' .
5.1. ProrosiTioN. Let w, e HY (n =1,2,...) with Imgp(u,) = 0 and

o0 e
2 Req(u,) < co. Then there evists a unique function L e H such that
n=l

(%) ”Hh~ Yo<z<1.

n—>00

'lbl! “’—>0 for

Furthermore we have
(1) For each sequence 1 < p(1)<...< p(n)< ... with

1
plu) < o

D

I=p(n)+1
)
we have D' w—L poimtwise for nm-—+oo.
=1

[e4]
) 3 Rew; = Reh pointwise.

=1

(2) For 0 <7<<1 we have

w3 Sl

@ [ Ren— 2 Reulm

qa(ul))T VneN.

q:(u, VYneN.

Tet Pell. Assume that ihere ewists a ’tmivalem,‘
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(3) E‘P(“z = ok
I=1

The function h € H* thus obtained will be denoied by @ b,
n=1
Proof. (i) There is at most one function % € H* with (x). This is clear
in view of (a-+b)" < a’+b’ for a, b > 0.

(if) We put h,,:
mation on H* [1], V., 5 6 we obtain for 0<z<1and Vel
q
T
(k) cos——f g —hp "V dm < (
B 2
We fix a sequence 1 <p(l)< ... < p(n)<<... with

©

Z u, € H* for » e N. From the Kolmogorov esti--

qv(uz)) Vi<p<yg.

1
(p(ul)<—‘;ﬁ- V’)lEN.
1=pa)+1 °

Then

1
cos—f] otnt1) — Py "V AM < <5 VneN.

For some V e M which is > 0 on the entire space it follows from the Beppo

Levi theorem that the series 5‘ [ipnrn) — By |™ 18 PoOINbwise convergent.

Hence Z‘ gn i1y — Rpmyl 18 pomtvnse convergent as well, so that the Ay,
tend to some h e L(m) for n—>co. In view of [1], V. 4.5, we have h e H*

and @ (hyy)—>@(h), so that (3) follows. Furthermore from (#+) and the
Tatou theorem we obtain

cos—gt-f b — Ty, |*V dm. <( 2

l=p+1

so that (2) follows. Thus our function 7 € H' satisfies (*), and also (1)
by its definition.

(iii) From [1], V.3.1 (3), we have [ (Rew)Vdm <

and V e M. Thus by the Beppo Levi theorem the series Z Rew, is point-
° I=1 *

qa(ul)) Vp e N,

g(u) tor TeN

wise convergent. Since a subsequence of the sequence of the partial sums
tends to Reh, we obtain (1’). Furthermore

[(®enyVam = Y [(Rew)Vdm VVeM.
=1
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For n e N it follows that

o0

f(Reh-—j Reul)Vdm = j f(Reu,)Vdm< 2 @ (14;),
l=1 I=n+1 l=mn+1

and hence (2’). The proof is complete.
5.2. Remark. Let u,,eHY (p,g=1,2,..

and 3 Rep(iy,)

ma=1

) with Ime(u,,) == 0

< oo. Then the functions

oo ©0
hpt = @ Uy, ¢ HY VpeNand h: =@ h,eH*

q=1 p=1

are well-defined. And for each bijection N—>Nx N: l;—»(p(l), q(Z)) we have
o
b = @ Uyq),op-
I=1

This follows from 5.1 via a chain of standard estimations.
Ag in [6] and [7] we define H " to consist of the functions
with w; e H (I =1, 2, ...} such that Rew, >

h=@®y 0 and
Ta=1

Imp(w;) = 0 and ZRe(p(ul)< 00,

i=1
Thus {h e H: Reh >
eonclude that for any sequenee of functions %, ¢ H~

0 and Img(h) = 0}« H™ < H*. And from 5.2 we
(n=1,2,...) with

Z(p n) << 00 Weé have @h eH"
n=1

For h e H" we see from 5.1 (2) tha,b the nonnegative function Reh
€ ReL (m) belongs to L~ and is univalent with ¢ (k) = Rep(h)= & (Reh). All

this is far from true for the functions % ¢ H+. For in 3.5 we have found "

in (8) an example of a function » € H* such that Rek ¢ L”, so that in view
of (7) the function Reh iz not univalent as well, and moreover there is
no univalent G € ReL(m) with G > Reh.

Ag in [6] and [7] we define the funetional ¢~
to be

6" (P) = Inf{

: ReL(m)—>[ — oo, o]

p(u)—c: weH" and ¢ 0 with Reu—c > P}

VP eRoL(m).
Note that cr:‘(P)< co iff there exists some u € H" with Rew = P. The
funetional o~ shares the properties of ¢* listed in 2.1. Furthermore
ot (P)< o (P) VPeReL(m).

The above example shows that for a function » € H™ it can hmppen that
6" (Rek) = oo, whereas of course o (Reh)<< co. Thus o+ and ¢ need not

icm
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be equal. However, in [6] the following theorem is proved which we in-

clude for the sake of completeness.
5.3. THEOREM. For PeReL(m) we have o (P)< oo ¢ff PeL’.

In this case o (P) = o™ (P) = 6(P).

is obvious.
<ty < e

Proof. (i) The implication ¢" (P)< co=>PeL"”
(ii) For each sequence of numbers 0 =, <<t < ...
t,} oo one verifies the formula

o
Z ﬁ tn—H) """;n)

(iii) Let P ¢ L". Then Pt e L" as well. It suffices to prove o (P+) < oo
g0 that we can assume P 3 0, We have #((P —1)*)—>0 for i oo, 50 that we
can choose 0 = f) < by <...<t,< ... With #,}c0 such that &(P—2,)")
<1/2" for > 1. Thus &((Min(P, t,,,) —t,)* )J<1/2" for n>1. In view
of 2.2 and 2.8 there exist functions u, e H (n =1,2,...) with Reu,
> (MIn(P, tyy1) —4,)" =0 and g(u,) = Rep(u,) < 1/2“. ]'_11 addition let

o
Uyt = ;. Then h: = @ w,eH  in view of (i) satisfies

n=0

with

for all real 2> 0.

oo

Reh = ZReu Z’ (Min(P, ty41) —1,)" = P.

n=0 n=0

It follows that ¢ (P)< .
(iv) It remains to prove that o P < a+ (P) for P e L". This is clear
for P e ReL(m) bounded above since then ¢ (P) < o(P) = o (P) in view

of the definitions and 2.2, et now PeL”,and let h = @ weH  asin

-1
the definition of H~ with Reh > P. For n € Nand real t > 3 Rewuy, (P —1)t

© I=1
< Y Rew; and hence o (P—1)*) < 2 @(u;) by the definition of o”.

l=n+1

Now P = Min(P, {)-+(@P—1t)" and hence

¢ (Py< o (Min(P, t))-]—cr (P —0)t) < o™ (Min(P, 1)) + " (P —1)*)

<o @+ D o).
lemn-1

For n—»co the assertion follows.
In contrast to the case ot the next remark is nontrivial.

5.4. Remark. For nonnegative P € ReL(m) we have
6" (P) = Inf{p(w): w e H" with Reu > P}.

Proof. For 0 < P € ReL(m) let 7(P) denote the infimum in question.
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It is clear that o (P)< t(P), and that z(P) < o(P) = o7 (P) = ¢" (P)
if P is bounded. Furthermore z is subadditive. We have to prove that
‘7(P) < o” (P) and can assume that ¢” (P)< co. B0 lat b = @u,e H" as

=1
in the definition of H " with Rek > P. We have to repeat the lmst lines of

the last proof. For n e N and ¢ > Z Rew; we have (P —1)* < 2 Rew, and
ln=n+1
hence 7((P—1)*} < Z (). I‘urthermore

L= 41

2(P) < (Min (P, 1) + (P —1)*) < 0" (Min(P, 1))+ (P —1)*)

<o (B)+ D olw),

l=n+1

s0 that for n—oo the assertion follows.

‘We turn to the connection with the abstract conjugation. For h e H”
we have 0 << RehelL". Henee Tl ¢ L# Vi=0 by 2.9. We conclude
from 5.1 that

e H*  and @) = "™  VieR.

Thus Reh € E; this can also be deduced from 4.2 since Rek is known to
be univalent. And since ¢ (h) is real, it follows that the conjugate function
to Reh is Imh, and that a(Reh) = ¢(h).

Thus for » = P+iQ e " —H" we have P ¢ ¥ with conjugate fune-
tion @, and «(P) = @(h). Furthermore it is clear that 9 (P) = §,(—P)
= 0. The main results of the present section are in the opposite direction.

5.5. TurorEM. Assume that P e I} is such that 0 <P eL”. Then for
each &> 0 there is a representation P = G —F with F, G e ReH" and
$(F) < e. ‘

Proof. (1) Let ¢ = 2 g with &> 0 (I =1,2,...). We put Py: = P
and choose P; € F with 0 < \ P, el andheH" (I =1,2,...) via induction
as follows.

1 = 1: By 5.3 and 5.4 there exists h, € H" such that Reh, > P = P,
and

@(hy) = Reg(hy) = F(Reh) < o™ (P)+e = H(P)-|-s,.
Then put
P,: = Rehy—P = Rek, —P,,

80 that P, e B with 0 <P, e L". Furthermore &(P,)< & since the fune-
tional & is of course linear on the subspace of the univalent functions
< ReL(m). '
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1<1—1=1: By 5.3 and 5.4 there exists #; e H " such that Reh; = P,
and
p(ly) = Reg(hy) = #(Rehy) < 0" (Pr_;)+& = (Pry)+¢
Then put
P;: = Rehy;—P;_,,
so that P,e B with 0 < P,eL” and #(P) < ¢.
(2) In view of 9(P)< ¢ for i>1 and ZS; & << oo the Beppo Levi

theorem implies that P;—0 pointwise for I —co.
(3) We have Rely; = P;,_,+P, for I>1 and hence @(k;) = 9(Reky)
< &_;+¢ for 1 > 2. Therefore we can form

fi= @ hyecH and g:= @ hy,cH .
=0

We have

P: = Ref = ZRehZZ and G: = Reg = ZRGthH
1=0 .

=1
SF) = g(f) = X plha) < D (ematem) = .
1

{4) Now_we have

(=1 Rely; = (—1YP,, —(—1)P, for 1>1,

n

P = D (—1)"Reh+(—1)P, for nx>1,
I=1
-1 T_L’ .

P = E Rehy, — }_J Rehy+ Py, for a>1.
=0 I=1

TFor n—>oc0 We_ “obtain P = G —F and hence the assertion.

5.6. OOROLLARY A function P € ReL(m) sa;nsfwsl’ eBandO<Pel”
iff there omists a sequence of functions P, e ReH (n=1,2, ...) with
PP for n—co.

Proof. (1) Assume that P, e ReH" (n =1,2,...) with P,|P for
n—oc0. Then 0 <P e L". And P is univalent and hence belongs to ¥ in

view of 4.2.
(‘)) Assume that P e B with 0 <P eL”. Choose &> 0 (I = 1, 2,...)

with 2, < co. By 5.5 we have P = G,—F, with I, ;e ReH" and
I=1
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9(F) < &. For the functions f,e H" with Ref, = I, we have

Do) = DoE)< Y e< oo
=1 =1 I=1
Therefore We can form the functions #,: = @ f, € H~ for n > 1. We have

l=mq

2 F; pointwise and hence Reh,|0 pointwise for n->co. For

=
n>=1 now P =(¢,+Reh,,,)—Reh, =P, —Reh, with P,: =G,
+Reh,,, e ReH . It follows that P, = P+ Reh,| P for n—co and heance
the assertion.

5.7. TumoREM. For P e Re.L(m) the following are equivalent:

(i) PeFE ond ¢, (P) =9, (—P)=0.

(if) P is univalent and 9, (P) = 9, (—P) = 0.

(iii) P is in the 1||-]]| closure of ReH < ReL™(m).

(iv) Pe ReH —ReH".

Proof. (iv)=-(iii) is clear from 5.1, (iii) = (ii) is obvious, and (i)« (1)
is 4.2. Thus it remains to prove (i)=(iv). ¢, (P) = 0 means that P e L"
and hence ¢” (P) < oo by 5.3. Thus there existy a function e H  with
Rehz= P. Tor §: = Reh—P> 0 we have Q€ E, and Q € L™ in view of
P, (—P) = 0or —PelL". From 5.5 we obtain a representation @ = @ — I
with 7, @ e ReH". Tt follows that P = Reh —@ = (Reh+I) —GeReH " —
~TReH". The proof is complete. ‘

We conclude with a remark on the relation betwoeen H ™~ and H* which
follows from the above results combined with our previous Lemma 3.3.

5.8. PROPOSITION. Lot hh = P--iQ € H™ with Ime(h) = 0 be such that
Q< cP for some real ¢> 0. Then he H —H " and for each &> 0 there
is a representation h = g—f with f, ge H" and ¢(f) = ¢(Ref) < & If, in
particular, |Q| <P, then heH".

Proof. (1) The functions ke H for t> 0 dealt with in 3.3 bave
the properties Reh, > 0 and Ime(k,) == 0 and h—h pointwise and 11— &y)||
~>0 for ¢ 4 oco. In particular, |||P— I{th,[\l-»,-o, so that P is in the |||-||]
closure of ReH. Hence P e and 0 <. P e L” by 5.7. From 5.5 we obtain
functions f, g e H  such that P = Reg—Ref and o(f) = d(Ref) < e
Now we have in addition |k| & L" sinee ||| [b]—|%)| |||—0 for thoo and

Reh,

1h| < [R]. For seR it follows that
lexp (shy)| = exp(sReky) < exp(ls| |%y]) < exp(ls] [h]),
which belongs to L* in view of 2.9. Hence
e*e H* and  @(e™) = ™  VseR,

icm
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Since ¢(h) is real, it follows that the conjugate function to P is = @.
Thus P = Reg—Ref implies that & = g—F.
(2) Assuxne now that [@|<P. Then in addition Rek,}P for ¢4 co.

Thus h, = 2“1 for » e N, where the functions uleH (t=1,2,...)

have the plopertles Rew; >0 and Img(u) = 0 and 2 Reg(u;) < co.
-] I=1

From h = Z w4, combined with 5.1 we obtain » = @ u; € H . The proof

i=1 U1
is complete.
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