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Abstract. We investigate two spaces of locally integrable functions whieh are
defined by the way their elements gencrate tempered distributions on R We first.
give characterizations of these spaccs and then investigate the locally convex top-
ologics which are suggested by the structure of these spaces. A detailed description
of the topological properties of these LB-spaces and LF-spaces is obtained.

Introduction and synopsis. A distribution e 9 (R™)'is called regular:
if there exists f e I, (R™) such that

(T,9> = [fl@p@ide (pe2(R)
o

holds (ef. e.g. Gel'fand, Shilov [13], p. 82). If instead of P(R") we con-
sider a space H of testfunctions which is not a subspace of L’ (R") (= essen-
tially bounded functions with compact support), it is no longer evident
how elements of the dual H’ may be represented by locally integrable
functions. However, the question is important since the ealculation of
fundamental solutions to partial differential operators often yields locally
integrable functions or limits of such functions (cf. (1.5) below).

In this paper we investigate this question for the space H: = & (R"),
the space of testfunctions for tempered distributions on R". There exist
two natural possibilities to represent tempered distributions by locally
integrable functions:

(I) We may consider only those functions f e Lj,,(R") which satisfy-
fre e IN(BR™ for all p € & (R"). For such functions f the linear form

g [ Flo)p(@)de
Rr" .
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is continuous on & (R"). This leads to the definition of the space
Sy (R") 1= {f € Lioo(R"); f-¢ € I'(R") Vg € ¥ (R")}

-of absolutely regular tempered distributions.
(IT) We may consider all functions f e L, (R") for which the lincar
form

g [f@)p@ds  (pe2(RY)
nn

-on Z(R") is continuous with respect to the topology induced by & (R
-on Z(R"). This leads to the definition of the space

S(B") 1= & (B")' 0 Ty, (RY)

-of regular tempered distributions. (For the above intersection both spaces
(R and L},(R"™ are considered in the natural way as subspaces of
2(R")".) For f e 8,(R") and p € & (R") the value {f, ¢> has to be calculated
by an approximation procedure.

In Sections 1 and 2 we characterize the spaces §,,(R™ and S, (R"),
-respectively. We also prove several results concerning the structure of
‘these spaces. Our main concern is then the investigation of locally convex
topologies on the spaces §,(R") and §,(R") which are suggested by the
Structure of these spaces. This investigation is presented in Sections 3 and
4. It turng out that these spaces may be provided in a natural way with
.an LB-space topology T and an LF-space topology &, respectively.
In the proof of the topological properties of (SM(R’*),‘I} wo strongly
use the faet that §,,(R") is a Kothe-function space in the sense of Dicu-
-donné [10]. Thanks to this fact we are in the especially nice situation to
have an inductive representation, as well as a projective representation,
for T. The proof of the topological properties of (S, (R™), %) usos the
representation of (? (R™) p(&, y)) ag an inductive limit of a sequence
-of Hilbert-spaces, and the concept of a generalized inductive limit top-
-ology which was introduced by Garling [12]. By this combination of
-different methods we obtain a detailed description of the topological
properties of the spaces (9,,(R"), T) and (8, (R, &), respectively.

In Section 5 we desicribe several interesting phenomenons which. oceur
if we take the space #(£) as a space of test functions. Somo of these
phenomenons are due to the fact that this space, in contrast to & (R™),
is i.g. not reflexive. However, we don’t give detailed, proofs in this section.

Now we insert a few comments on our notation, We mainly uge the
:standard notation of Horvath [19] and Schwartz [26], [27]. #* denotes the
‘function ora" ete. For alocally convex space (¥, T) we denote the zero-
nbhd.-filter by W,(¥, T). By L°(R") we denote the gpace of (equivalence
«lagses of) Lebesgue-measurable functions. All derivatives are taken
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in the distributional sense. For f e L}, (R") the suppoft of f is the support
of f as a distribution on R" (Horvéth [19], p. 318).

This article is based on parts of the thesis [6]. I am grateful to my
wife Dr. 8. Dierolf and to Dr. J. Voigt for several helpful discussions on the
subject of this paper.

1. Absolutely regular tempered distributions. We define 0, (@) : =
L+ 2 (weR" s e R) and put

'R @) = {fe RY); [ (1£(@)]- 0@ do < o,
R»n

Iflp,s 2= If - 2ll,  (f € L2(R™, w,), p €[1, o), s € R).

The space (L“(R“, ,), |]~Hm,s) is defined analogously.
As a fundamental system of norms for the standard topology © on
F(R") we take

9 (p) : = max {H%‘?“‘PHN; la| <k (9 e F(RY), keN,).

A sequence (1,; %k € N) in 2(R") wil be called an approximate unit
(in & (R")) if the following conditions are satistied :

(AP.1) limn, =1 in &(R").
(AP.2) IE;:, & € N} is bounded in #(R™), i.e.,
Vae Ny 30,>0 Yo e R*, L e N: |8°n,(2)| < C,.
An easy calculation shows gmnkw =@ in (.9’ (B™), G) for all p € #(R").

(1.1) ProrosITION. For f e L, (R") the Jollowing statements are equiv-
alent: :

(a) For every h & L*(R") the linear fo?m
o> [ R@)f(@)p@)ds (9 e 2(RY)
R

is ontinuous on (2(R"), SN (R™).

(b) There ewists m € N, suoh that w_,-feLl(R™.

(¢) f-g € L'(R™) for all ¢ & S(R™. "

If one of these conditions is satisfied, for every h e L™ (R™) the linear
Jorm

o [ hi@)-f(@) p(0)do
RN

i8 continuous on (& (R™), &).
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Proof. (a)=-(b): By (a) there exists m e N, and C > 0 such that
| [ f@)p@)da] < O-gulp)  (p e 2(RY)
R" . .

holds. Let 7 e.@(R“) satisty # > 0 and #(2) = 1 near 0 € R". Then the
sequence defined by #,(®):=n(x/k) (v e R",keN) satisfies (AP.1)
and (AP.2) from above. Using the formula for the derivatives of compositoe
functions (cf. Fraenkel [11], p. 163, or [6], §15) we obtain the existence
of constants ¢(—m, ) > 0 (f € Ni') such that

|Po_p (@) < O(—m, ) 0_ppn(@) (@€ B, e N)

ixolds. By Leibniz’ formula and (AP.2) it follows that sup {g,{w_, 7);
ke N} < co. Thus there exists M > 0 suuh that

[ 1f@)lo_p(@) m@de< M (keN)
<

holds. Now Fatou’s lemma implies (b).

(b)=(¢) is obvious.

(¢)=(a): By (c) we have L -f+p e L*(R") for all h € L (R™), ¢ € #(R").
It is easy to see that the mapping [h-f]: (& (BRM), 6)—>(L (B, 1+1l),
[hfllg):=h-f-¢ (p e F(R") has closed graph and is thus continuous.
This proves (a) and the continuity property at the end of (1.1). m

(1.2) DEFINITION. A tempered - distribution 7' e ¥ (R™)' .is called
absolutely regular if there exists fe I (R" satisfying the conditions of
(1.1) such that

Ihgy = [ fl@)p@)yds  (pes(RY)
R
holds. We put
Sus (B") 1= {f € Lo (RY); f-9 € I (R") Vg € S (RN} = U T (RY, o0_y).

meNy
. (1.3) Remarks. (a) By first ingpection, the statement (1.1a) may
- seeru to be artificial, It is however #his statement which should be used
to define absolutely regular distributions for other spaces of testfunctions
which not necesarily allow the application of a closed graph theorem.
The difference between (1.1a) and (1.1c) as & defining statement for ab-
solutely regular distributions becomes evident if we consider Hi={%(R"),
J+lla) as a space of testfunctions.

(b) The proof of (1.1a) = (1.1b) is due to Schwartz [27], p. 242, Thm.
VII; there he characterizes the tempered measures on R".

(¢) The notion “absolutely regular” was chosen to resemble the
property f eS8y, (R")=|f| € 8a (R").
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(d) We note the following property of S, (R"):

If feS.(R"),q Ele.(R") lg(x)| << |f(2)| almost everywhere on R,
then g € S8, (RY), 1.6y 8, (R") is a normal subspace of Lj,, (R in the senge
of Dieudonné [10], p. 101, 11. :

(e) As was observed by Szmydt [29], p. 310, the characterization
of 8, (R") indicated by Gel'fand, Shilov [13], pp. 82, 83, is not correct.

(f) 84 (R") has no stability property with respect to differentiation,
a§ the following example shows,

(1.4) Examrrm. Lot f: R—C be defined by f(w):=: exp(i-¢®) (we R).
Since |f(m)| =1 (# € R), we obtain f € §,,(R). We have f € #(R) and f'(«)
= {-¢"0exp(i-¢®), |f (#)| == ¢° (w e R). This implies f'¢ S, (R). Nevertheless
the function f' generates a tempered digtribution. We thus have an
example of a tempered distribution which (in a senge to be made precise)
is “represented” by a locally integrable function f’ ¢ 8y, (R). This motiv-
ates the introduction of regular tempered distributions in the next section.

(1.5) As was already mentioned in the introduction, one of the mo-
tives for studying the space S8, (R") is provided by the calcuhtion of
fundamental solutions to partial differential operators. Let P (8 Z’ o 0"

De u differential operator with constant coefficients such th&t the poly-
nomial g P (2niw) has no zeroes on R™ Then it follows from Lemma 2 of
Hoérmander [17], p. 557, that there exist ¢ > 0 and % € NV, such that

P (2miz) ™ < O (L+o[2)  (zeRY

holds. Thus (P(2ni&))™" € 8,,(R") and & "((P(2m’:?:)} 1) is a tempered
fundamental solution to P(9). By a skilful “perturbation” of the coeffi-
cients one may use this method even for some differential operators
P(8) for which the polynomial P (2mi®) has zeroes on R™,e.g., for the
Helmholtz-operator 4 --k* with ¥* ¢ R* (cf. Wladimirow [31], pp. 143,144).

After these considerations it is not astonishing that the application
of the inverse TFourier-transform to the steps IL;(R"; _,,) (m e N,) of
8 (B7) yields special spaces of the type 4, ; of Hormander [18], p. 36,2.2.

‘We notoe the following description of §,,(R™ by means of the spaces
2;2(R™)" of Schwartz [27], p. 199 £ '

(1.6) IrorosrrioN, For T'e @(R™)' the following statements are equiv-
alent :

(8) T & Sop(R"),

(b) There ewist R, 8 € 9,2 ( ™" such that T = F(R+S).

Proof, (a)=(b): By (1.1),.(a) implies the existence of & e Ny and
h e LMR") such that ‘

T = -l = aysgn(h)- 1/|Iz] V.
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We thus may put R := ﬁ‘l(sgn(h)-l/]_h—]), 8= F (- V]—h]) and apply
Schwartz [27], p. 201, Thm. XXV, p. 270, Rem., to obtain & (Rx8)
= F(R)-F8) =1T.

(b) = (a): According to Schwartz, loc. cit., we have a repregentation

of the form R= 3 &'f,, 8= 3 &g, with certain functions f,, g, & L* (R™).
lal=t 18l<m
We thus obtain

FRB) = F(R)F ) = 3 Qrid)™HF(£,)F(g;) € S (R"). m

laj<t
181<m

In Section 3 we will strongly use the fact that §,,(R"), aceording to (1.1c),
is the Kothe-space defined by & (R") in the sense of Diecudonné [10],
p. 99. By 8, (R")* we denote the Kéthe-space defined by §,,(R™);

(1.7) Sar(Rﬂ)# L= {g EL}QG(R”); fg ELI(Rn) Vf € Sa,t(Rn)}*
The canonical bilinear form '

(f, )= <fr 0> 1= [ fl@)g(w)dm
Rn

puts S,,(R") and §,, (R"* in duality. Moreover, S, (R") is a perfect Kothe-
space, i.e., (e (R™)*)¥* = 8, (R") (cf. Komura [22], p. 204). With the
Help of (1.1) we obtain the following representation of S, (R™)*:

(1.8) PROPOSITION. §,, (R")# = Q{ L=(R™, w,,).
ME. 0

Proof. The inclision () L¥(R", w,) = 8, (RM*¥ is obvious. Now

meN
let g € 8y (R™)*. Then we havea g-f e I'(R") for all f e 8,.(R"). By (1.1b)
this is equivalent to h-w,-ge L'(R™ for all h e L'(R") and all ke N,,
which implies g-w, e I°(R") for all ke N, ie, ge()L°R", w)

J meN
(cf. Hewitt, Stromberg [16], p. 348, (20, 15)). m ’

2. Regular tempered distributions. In example (1.4) we saw that there
are functions f e I, (R")\ 8,,(R™), which generate tempered distributions.
This motivates the following definition:

(2.1) DrrINrzioN. A tempered distribution T e & (R*) is called
regular it T|9(R") is represented by a locally integrable function. We
denote the space of regular tempered distributions by 8, (R"):

8,(R) 1= & (R N Ly (RY).

(2.2) Remarks. (a) Since 2(R") is denge in (."/’(R"), G), a tempered
distribution T € & (R")’ is uniquely determined by its restriction 7|2 (R™).

(b) 8;(R") is stable in the following restricted sense with respeet; to

differentiation: If fe §,(R"), a e N7 and &°f € Lj,,(R™, then we have
& € 8,(RY).
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Theorem VI od Schwartz [27], p. 239, together with (1.1) even yield
the result: For every fe S, (R") there exists a €N} and g e 8. (R™) such.
that f = d"¢.

(e) In contragt to 8, (R"), S,(R") is not a normal subspace of I, (R™)..
According to (1.4) and (b) we have

g(®) 1= i-6"exp(i-6®) e 8, (R").
But |g(#)| == ¢” does not generate a tempered distribution (Schwartz [27],
p- 239, cf. also (2.5b) below). The above example also shows S (R
S 8. (R") G L (RY).

The following proposition characterizes 8, (R™).

(2.3) PrROPORITION. Ior feLi,,(R") the following statements are
equivalent:

(a) f e 8, (R™).

(b) There exists a sequence (my; keN) in 2(R") satisfying (AP.1)
and (AP.2) such that for all p € & (R") the sequence

(ff(w)‘ﬂk(w)‘qi(m)dw; T EN)
i

8 convergent.
(e) fxy ekLlJTL‘”(R“, w_y) for all p e Z2(R").
&No

If one of these conditions is satisfied, we have

oy =Im [ f@)m@pa)de (g (B
00 R
Jor every sequence (13 % € N) in D (R™) which satisfies (AP.1) and (AP.2).
Proof. Since (a)< (c) is an obvious modification of Thm, VI, 2"
of Schwartz [27], p. 239, we comment only on the equivalence (a)<>(b).
For every sequence (5,; % € N) in @(R™ which satisfies (AP. 1) and
(AP. 2) we have lim g, = ¢ in (J?(R"), ©) for all ¢ € &(R"), and the
ke-»00

exisbence of such sequences was established in the proof od (1.1). Thus.
torovery f e §,(R"), every approximate unit (1;,; k € N) and every pe P (R™)
the sequence ((f, 7,93 & € N) is convergent. On the other hand, (b) implies
that (m,.f; & € N)is a o(&', &)-Canchy-sequence of distributions with com-
pact support. Since (.SF(R”'), 6) ig barrelled, this sequence hag a limit in
& (R™)'; which. obviously must be f, =

In (2.2¢) we saw that 8,(R") is not a normal subspace of L, (R™.
Now we show that the normal hull

H (8,(BY) = {g € Lio(R"); 37 € 8,(R"): |g(2) < |h(z)| a.c. on R}
of 8,(R") is all of I} (R").
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(2.4) PROPOSITION. A" (8, (R™) = Li,,(R").

Proof. The proof will be given in three steps.

(a) A" (SE(R”)) o I, (RY). For a € Z", we define A (a): = [al, oy +1) x
voo X[a,, a,41). Let g e L5, (R") be given. We put M,:= e%sup g1

A(a)
and choose m(a) € N such that M, < 2™ (o ¢ Z"). Lot h: R">R be de-

fined by
h(@) i= (—1Y M, for @ € A(a) and @y & [ay+27™Mj, gy -+-27M (j.1.1))
(ae 2" jef0,..., 2™ —1}).

‘We obviously have h e Lig, (R") and [g( )| < [h(2)| 8.0, on R". Now define
J: R"=+R by
a
F@)i= [ iy, o, ...
0
Then é,f = & and according o (2.2h) the result & & 8, (R™) will follows from
J €84 (B"). The latter is true since an easy caleulation shows 0 < f(#) < 1
for all 2 e R"™
(b) Io(R") -+ L (R") = Ij,,(R™). Leb (a(m); m € N) be an enumera-
tion of 2" and let A (m) : = A (a(m)) be defined as above (m € N). By ,, wo
denote the characteristic function of A(m) (meN). Let feIi,(R"
be given, Because of f-y, e I'{4(m)) there exists g, € L¥(4(m)) such
that |f g —gmllh < 2™ (me N). Thus

meN

y o) dy (e RY).

—gu(2)) (weR")

isa decomposmon for f of the required form.

(¢) Now we prove (2.4). (This proof is due to 8. Dierolf.) Let f e I, (R")
be given. By (b) there exist g € LT (R") and h e I (R™) sueh that f = ¢+-7.
According to (a) there exists g; e 8,(R™ such that |g,(z)| > lg(2)] a.e. on
R". ], e L' (R™) implies

sgn(g,): bl e L' (R") = 8,(R"),
we thus obtain iy 1= g, --sgn(g): b e 8,(R"). Now wo have the following
estimate:
@)l = [sgn g, (x)) -1g, ()] + sgn. (g (2)) - [1 ()]
= 10u(@) +11(a)| = lg(a)|+[W(@)] = lg(@) W) = |f(w)]
a.e. on R". This proves fe. (8,(R"). m

(2.5) Remarks. (a) From (2.4) we seo that 1 e S, (B") does not imply
any growth condition for |f|. On the other hand, according to (2.3c) the
regularizations f+y (y e Z(R") of fe 8, (R" must not grow too fast.

icm®
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Thiy ‘gives the following intuitive picture of the elements fe 8, (R")
The faster |f| “growth”, the faster fhas to oscillate.

Moreover, (2.4) ﬂhows that for the caleulation of (f, ¢ (fe 8, (R"),
¢ & & (R™) according to (2.3b) one has to use an approximate unit con-
sisting of Iunctiom with compact support.

(b) From Lcmma (3.2a) it Io]lows in pfumcular

Vo e J’(R“)Eh/) e S (RY): |g| < p.

Now let fe S, (B, f=0,ypeS(R"),yp=0. Then (2.3b) and Fatou’s
lemma yield f-p e L* (R") (cf the prooj‘ of (L. T.L) = (L1Db)). We thus obtain
FeSu(BY), Po. S(RY)F = Lhy(RY)* N9 (RY = S (R")*.

3. The. locally convex structure of Sa(R"). The structure of the
space S, (R") suggests several natural possibilities to provide this space
with. & locally convex topology. The next proposition ghows that these
definitions lead to the same topology.

(3.1) PrOPOSITION. On 85, (R™) the following topologies coincide:

(a) the LB-space topology T defined by

U (Ll (Rn: w—k)7 I '”1,-—k);
LaNy . :
(b) the Mackey-topology v (Su, SE)(of. (L.7) for the definition of S);
(c) the locally comvex topology T,, which is gener awd by the semi-norms
f) == ”f glly j € 8, (R") ) g ES&l(Rn)#)

(d) the locally convewr topology T, /wlmch is. generated by the semi-norms
(m, p e (R, p>0); -

(e) the strong topology ﬁ(SM, 2).

Proof. We first show T = 7(8,SH). Obviously Z(R™ is dense
in each space (L'(R™, w_p), I'ly,—x) (ke Ny), and TNZ(R") is coarser
than the standavd topology of @ (R"). Thus we may identify the dual
(SM.(R"'), E)' with-a subspace of 2(R"), Since T ig the locally convex final
topology on 8, (R"™) with respect to the inclusions

Jut (LB o), 11 s,-2) C.y Bue (R")

a distribution 7 e 2(R™) is TNP(R*)-continuous if and only if T is
continuous on cach space ((R"), [l ~x) (% € Np). Since the dual space
of (Z(R™), ||-|y,-s) is L®(R", a;) (k € N,), we thus obtain
(Sa(B™), T) = (N L*(R", o)) = 8, (R™¥,
keNy
As the LB-space (8,(R"),X) is barrelled, we infer T = p(8u, S
= 7(84,8%). From now on we write S, instead of Si. The coincidence

(ke Ny),

8 — Studia Math, 77.4
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of the topologies T, T, and T, will be proved with the help of the fol-
lowing lemma. ‘

(3.2) Lmya. (a) Let B = Sg, be 0 (Shy Sap)-bounded. Then there emists
¢ € P(R™), o = 0 such that

B ek (p) = {g e Tho(R™); 19(0)| < 9(@) a0 on R}

(b) For g € 8, the set A" (g) is absolutely conves and 0 (84 Sar)-closed.

(¢) The systemM := {B = 8y; Ip e F(R"), 9 >0 guch that B = A4 ()}
is saturated (in the sense of Kothe [20], D. 258) and coincides with the
T-equicontinuous subsets of So-

‘We postpone the proof of (3.2) and continue the proof of (3.1). The
inclusions T o I, o I, are easy to verify. Now let H < 8., be T-equicon-
tinuous. We show H® € U, (Sa(R™), Ty). According to (3.2¢) there exists
¢ e & (R"), ¢ > 0 such that H A" (¢). This implies

H () = H EIIO(S“(R”), Z)
Tt is therefore sufficient to prove
U, 1= {f € Bu(RY); 2,(H <1} =4 ().
feU,hed(@=|[f@) h@dal< [if@)lp@)do =p(f)<1
y 33 R

=~ T, e # (@)

(Actually U, =4 (p)° holds.) We thud have proved T = T; = T,.

To prove % = B(Sas 2) We have to show: Fach o(Sar Sar)-bounded
subset B of S, is contained in the (S, 8,)-closure of a (D, Bar)-
bounded subset of P(R. Let B < Sy be o(Su, Su)-bounded. Then
Bis also B(S.y Su)-bounded (Horvéth [19], p. 212, Cor.). Aeccording
“Yo. Kothe [20], p. 402, (4), the strong topology B(Bas Sar) coincides
with the supremum \/ B{L”(R", wg), IMR", w_y) and BILZ(R™, wy),

MR, o_p) 18 geneﬁ;?ed by the nortm [l (k & Np). Thus there oxists
a sequence (a;; k € Ny) in R* such that [glle,:< o (ke Noy g € B). The
usual cutting and regularization process provides us with a sequence
(R,,; m e N) of linear operators
B, 8ux(R")—>2(R") (meN)
such that S
(1) ”Rm(g)uoo,k < ‘-!-L”g”oa,k (k € N(M m e Ni g € Sm‘(R")’)!

(if) 1Ry (9) (@) - F(@)| < 45119 o | F (@)} 04 (@) 0. on R™ forallg eBu(R"),
feLl*R" o), keNy,meN,

(iii) limR,(9) (x) = g(@) ae.. on R" (g & 8y (R")).

M0 .

icm

a.e. on R" for all g € B.
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The dominated convergence theorem thus implies lim R, (g) = {
'm
00

with respeet t0 o (Sqy S,y for all ¢ € 8, (R"). Thus B i i
" x ) ¢ . A 8 -B i
(84 Sur)-closure of the ¢(2, AS’M.)-bouarrxde(l seb 1 confained in the
{([7 € @(Rn); ”‘p”oo,k < 4‘k‘ll.: (k ENO)}' =
‘We now prove Lemma (3.2).
Ad (3.22): Lot B = 8,(R") be o(Sq, ,8,)-bounded. As in the last proof

we find a sequence (ay; b & N,) in R such that
We choose 7 & Q(R")Géueh t}gem Plons < 05 (0 Noy g € )

0<n@) <1 (@eR"), n) =11 o|<1, 7@ =0 for jo|>2

%mld and define 1,,(x) :=7(2/2") (e R", m e N), 0,(x) :==5,(a), 0,,(x)
1= 1y () — Ny () (@ € B", m 2 2). The following properties of themse-
quence (0,,; m e N) are easy to verify:

(i) supp(0,) = {w e B"; 2™ < |2 < 2™} (m > 2).

(11) [m—1] > 2 =gupp(0,,)N supp (6;) =G (m,1e N).
(iii) O,(2) =0 (weR", meN), }0,(x) =1 (R,

. meN
(iv) Ve e Ny 30,> 0 Vo e BR*, me N: |8°0,, (2)] < Cow_ o)y ().

We mnow define b, := sup{esssuplgl; & B} (meN) and obtain
; . . supR(ly,)
the following estimate:

@, > sup {esSsup lg- a5 g € B} > sup {esssuplg-wy/; g € B}
supp(fp,)
= (1-+2°™-D)%. sup {esssuplgl; g € B} > 2m-1p,
supn(0,,) e
(k € Ny, m € N). Using (iv) we thus obtain the estimate

0 (@) D) bt 0n(@) < D) by (LF2HEYQ,
Jemsl i<m=<l
<0, 2 bm_zzhm+ﬂlc < 0a'“k+1'25k+2 . Z (2—-2)m
Jamt Fm<l
Egi;bﬂna’ I e N,, j., leN,jgl, ae Ni). This shows that the sequence
[ 2 O 1 e N) is convergent in (& (R"), ), p :== 3b,,0,,. With the help
of (iii) we obtain, "

@) =| > 9@ 0@ < 3 19()]-0,(a)
meN

meN

< Z(sup{esssup[h[; h e B}):0,,(x) = ()

meN SUDPD {0y, )
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Ad (3.2b): Obviously 4(g) is absolutely convex. Now let (g,; ¢ eI)
be a neb inA (¢) which converges with respect 10 o(Spy Sar) 10 b & Sy
and suppose & ¢4 (g). Then there exists m € N and a compact set K = R"
of measure A(K)>0 such that (@) > lg(®) | +m™ for all w e K. Let
4z denote the characteristic function of K. Since yr-sgnh € Sy, the esti-
mate

[ (@) sen (b(@) - 1x(@)de = [ ne)ida > [ lg(@)dw--m™ 2(K)
£in K K

contradicts the estimate

| [ g.l0)-sen(b(o) zx(@)de| < [ lo@ldos [lg@)dw (D).
B K K :

Thus we have h e A (g). ,

Ad. (3.2¢): Using (3.2b) and the relations & (u-¢) = @A (@), o h (1) +
Ly H{ga) © N (Il g +10192) (8,7 € Cy @ 91, 93 € P (RY)F)we obtain that
0 is saturated. From T = B8(8ars Sw) we infer thab H e 8, is T-equi-
continuous if and only if H is ¢ (8hsy Sy)-bounded. Since the sets A (@)
(¢ e & (RMT) are obviously 0 (Se; Sap)-bounded, (3.2a) implics that T is
the topology of uniform convergence on all sets in M. Now the assertion
follows from Kothe [20], p. 256, (4). ‘ ‘

(3.3) Remarks. A result related to (3.2a) was firgt proved by Roider
[257, p. 330, in a different way. Special cases were treated by Chevalley
[31, p. 127 and Szmydt [30], p. 155, Bxercise 17. The result (3.2a) in par-
tieular implies S, (BY) =4 (B™). »

Proposition (3.1) allows us to combine the theory of LB-gpaces and
the theory of the Kothe-gpaces (in the sense of Dieudonné [107]) to obtain
a rather complete description of (S4e(R™), T). This will be given in the
next theorem.

(3.4) TEEOREM. (a) (S, (R"), T) is a complete LB-space.

(b) (Sax(R™), 0(Bus o)) s sequentially complete.

(¢) If B c 8u(R™ is T-bounded, there ewists keN, such that B =
INRP, w_y) ond s ||-[),—y-bounded.

(&) For every compact set K < R, (LMK, 111y} 98 @ complementod
subspace of (L*(B™, w_g), | l,-x) (k &No) and of (Sux(R™, T). The same
holds for the corresponding weal topologies.

(e) If B is bounded in (L'(R", w_z), " l,-z)y then T and |Ily—gry)
induce the same topology on B. The same holds for the corresponding weal
topologies.

Proof. (a) and (b): It follows from (3.1d) that (SM(R”),S) is thoe
projective limit of the system

(2 B*, 9),3,)5 0 € #(R), p(a) > OVw & RY),

icm®
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and that o(Se, SL) is the projective Timit of 4
: : 1 S ¢ ive ] of the corresponding weak
}Oliologl.eﬂ (eﬁ.“ Kotho.[fZOJ, p. 292, (6)). Now the assertions (a)gand e(b)
ollow from Kothe [20], p. 232, 10. (2) and Dicudonné [10], p. 92, Cor

(e) follows from (a) (ef. Kotho [207, p. 225, (5)).

d) follows immediately from i
o Ek)egf f'l)(')m immediately from the propertics of the woight functions
(;1@‘1&0\2 Iio:; ,f = ]‘,"(ll"? rf:,.,h.) be [ill;,. -bounded and absolutely convex.
rj}‘ aly, Tr iy consor Ll_m‘n the topology induced by ||, _ on B
To prove tho reverse inclusion it is sufficiont to show: Everylﬁég-]& jeel )
in B which T-convergos to 0 also converges to 0 with rés ect o I ey
(ch. Grothendiccl [147, p. 134). P e

Lt e > 0 bo givon. Trom ||fl;,-, < O (c e I) we obtain the estimate

[ 1) 0 _gan(@)do < (LB [ |f(@)| 0y () do

lel =1
1> 1>

<A+ 0 (el leN).

We choose I & N such that (1--1*)~10 < i

‘ : ; [ . /2. Since K := R";

is compact, it follows from (d) that thel.:(; exists » & I such %1:13 PRI<?

I{ (@) o giy@)do< ef2 .

holds for all «>> . We thus obtai '
. ain ||l —gen < & for all o> #.
for the corresponding weak topol Ogies‘i; s(ikr;1 i)la; . ¢ 2 % The proof

(3.5) Remarks. (a) Tt follows from (3.4c) and (8.4e) that U (2t (r?,
kN,

@)y [ lh,-s) 18 strongly boundeds, i .
"I, 4 y retractive and therefore also co i,
reqular and sequentially retractive (cf. Bierstedt, Meise [2], D. 100).mzm0 Y

(b) It I ‘OIIOWS flOII ( 4.(1) 2 (,‘S’m.(R ’ =
1 (3. th. t 1 ] E) 18 ner l]hel‘ & SOhWaJI tz

Bpﬂ:(’/e (l] ()I’Vﬁvﬂh 19 l). 278 Pro . 6 (a nor gemi-rellexive . K¢ ih I 20
: ) 3 Il P ( )), 8 3 ﬂe ( othe y

(e) A routine calenlation shows that (S '
i ca gl (R"), ) has the approxi-
mation property with respect to cutting and ré‘gulari;at)ion (Schwa,ri?zp[zgﬁ,

Oh. I, p. 7/8), and & ich imati
e ajnla 1)./ 9)), .nc thus also has the striet approximation property (loe. cit.,

4. Locally convex topologies
. _ gies on 8, (R"). There are two natural locall
gon;rex topologies on S, (Rf"). To describe these topologies we use the Hilsf
far tspa,ces (Hg; g € Z) which were introduced by Kudera [23]. A detailed
treatment of these spaces is given in [67, §14.

4
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For q € N, we pub
.Ha2=H,1(Rn) sem {feLz R™ .a‘caaﬁfELz

[f 0= 2 fvn P f () m 2 P g ))clr

la-fl<g R®

”f”(a) [f f.](q))uz
_:-—{Te R™; 30 > 0Vp e 2(R"):
”—UH( —g) = SUp {KT: el pe 2(R"), ”‘P”(q) < 1}

By means of the spaces (Hy; ¢ € Z) we obtain a particularly ugeful
representation of the space (& (R, f(&', 7).
(4.1) #(RY = |JH_, and the LB-space topology defined by

geNy
U (H_gy I'll~g) commdes with the strong topology (<, &).

By $, we denote the ||-||,-topology on H, (g € Z), the standard
topology on I, (R") will be denoted by Ris, and H_gV Riy, denotes the
initial topology on H _,NLj,,(R™) with respeet to the map

H—an}oc(Rn)‘*(H—-m 5—11) X (Lllom Rioa) s
e (f: ) (geNy).

Now we can define the above-mentioned topologies on 8, (R").

(4.2) DEFINITION. (a) B'y % we denote the LF-space topology on
8, (R™), which is defined by

QEU (BN Ll (R, v Rioe) -

(b) By G we denote the topology (&', &)V Ri,, on 8, (R").

(4.3) Remarks. (a) We obviously have § o .

(b) The completeness of $_,vRi(geN;) and of & is proved as
the completeness of the usual Sobolev spaces W™?. It can be shown
that £_,v R, i8 not normable for g > n/2 -1 (cf. [6], p. 35).

(e) According to Grothendieck’s theorem ([15], p. 16, Thm. A)
each two defining spectra for an LF-gpace are equivalent. Therefore the
definition of ¥ does not depend on the special representation of g (&', &).

(d) Since (¥, %) and o(Li,, L) are sequentially complebe, we
obtain that a(Sr, (B’r,(ﬁ)’) is sequentially complete, too.

(e) If g>n/2, we have I'(R") < H_, and the inclusion (L'(R),
1) € (H gy lI*ll~g) is continuous. This can be used to prove a result
similar to (3.4d):

For every compact s¢t K < R”, (L1 (K, I ||1) 8 a complemented subspace
of (H_gNIis(B"); $_gvRioo) (4> n/2), (S:(B), )y and of (8,(R"),E).

(R"Wa, e N, a1 < g},
(f19 e Hy,

(fel,),

KT, o3| < Olglig}s
(T cH._,).
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(f) A routine calculation shows that the spaces (H_g, [li_p) (g€ Ny)
and (L}DO(R) 9%109) have the approximation propmty with respect to
cutting and regulavization (Schwartz [26], Ch. I, pp. 7, 8). This implies
that the spaces (8,(R"), &) and (8,(R"),®) both have the approximation
property with respect to culting and 1egul¢rimtion.

The compactness of the inelusions (H_,, $.o)C, (H_yo1y H_g-1) (g Ny)
can now be used to obtain a rather compleﬁo dosouption of the topologies
& and G. The crucial point is the completeness of . For the proof of
the ecompleteness of § we first ghow the somewhat technical fact that §
and ® coincide on rather large subsets of 8, (R"), although these topologies
evon have different duals.

(4.4) THEORBM. (a) Let B < 8,(R") be p(', &)-bounded. Then there
amists g & Ny such that B < H_,n L, (RY and is $_-bounded. In parti-
cular, to every G-bounded subset B < 8,(R") there ewists q e N, such that
Bc H_,NnL,(R" and is §_,vRl.-bounded.

(b) Let' B.e H_,nLj,(R") be $H_, bounded. Then we have FNB
= (H_,.1 VR NB = G NB. Moreover, also the corresponding weak topologies
induce the same topology on B.

(e) & has a zero-nbhd.-base consisting of G-closed sets. Thus § is dom-
plete and § = B(8,, (S,,®)') holds.

(d) & s the finest locally convex topology on S,(B™) which coincides
on all G-bounded subsets with &.

(e) (8 B mﬂ@(f‘fa-l~ffﬁ°) Z *(/(R”)-}—ff’" = (8, B)".

A1)
Proof, (a) Since (& (R")', p(& ) U (H_gy I'll=g)) 18 & complete

LB-space, the firgt part of tho agsertion fo]lows from Xothe [20], p. 225,
(5). If B = 8,(R"™) is B-bounded, it iy a priori R],.-bounded and thus $_,
v Siioc-bounded for some ¢ & Ng.

(b) Let B < H_, NI, (R") be $_bounded. Since the inclusion
(H g5 .‘f)w,,) (H g, ﬁwq ) is compact, the closure D of B in (H_,;,
Dg1) 18 H_gy-compact. Thiy implies

$-¢anD = (', &) D.
By the transitivity of initial topologies we therefore have
(gnq—lv m%uc)n-B = (ﬂ(y' .S'/’)v mll‘oo) NB =GnB.

Now we use the obvious inclusions ($_,.,vRL)NB> FNB >GNB to
obtain the first part of the agsertion. The result for the corresponding
weak topologies is proved in the same way.
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(¢) (This proof is due to 8. Dierolf.) Liet B, := {f e H_ 4N Ligo; 1fli-g)
< ¢} (g € Np). Then

' B, = & (B N Ly (R")

qeN
and B, B, c By, (k,1eN) hold. Thus the sequence (Bg; g € N)sat-
igfies the condition (C) of Roelcke [247, p. 58.

Let < denote the finest locally convex topology on S8, (R") which
coincides on each set B, (g € N) with . According to Lemma 1,(4) of
Roelcke [24], pp. 58, B9, J has a zero-nbhd.-base consisting of G-closed
sots. By (b) from above we have FNB, =GNB, = INB, (¢ e ), i.e.,
S is also the finest locally convex topology on §,(R"), which on each setb
B, (g € N) coincides with §. The barrelledness of the LIF-gpace topology
% together with Oorollary L of Roelcke [24], p. 68, yield & = 3. The

_completeness of § now follows from the completeness of @ by Kothe
1201, p. 210, (4). _

Since {¥ has a zero-nbhd.-base consisting of G-closed sets and is barrel-

led, we obtain

§ = B(8,) (8 B)) = B(S:y (8, F)) = &

(Kothe [20], . 2587, (1)) and thus § = B(8,, (5., ®)).

(d) Let S denote the finest locally eonvex topology on S, (R") which
on each G-bounded subset coincides with &. Let tho sequence (B,; q e N)
be defined as in (¢). Let B = §,(R") be G-bounded. According to (a) there
exists ¢ € N such that B < B,. Using the result §Fn B, =ENB, from tho
proof of (c) we obtain FNB =GNB and thus I = F. Since F is ultra-
bornological, we infer § = J (ef. [4], p.125).

(e) By (4.3f) the space Z(R") is dense in eaclh of the spaces (I,
N Loy $-gVRio) (7 € Ny), (8.(R™), ), and (8,(R"),6). We thus obtain

(H-—qnl‘%ow 5-4\/9{%0(:), = (II-«m g—q)/'l‘(L}oc)m%ou)l = 1[;1'}'1)20 (q € NO)’
(e By PYV o)’ = (&3 B, D))+ (Lo s Rhoe) == L+ L,
(’Sr? 8:), = (m(H—an.:lluw &’»qvm}oc))’ '

geN,

== (H—qn];’}ucy 55»(1\’3?}0(;)1 = m (][a + J’EQ) .

aeNy qeNg
We firgt sketch a proof of the relation
(H+ L) 2 & (RY) -1
qeNy
for n =1.
Let (fi; k¥ € N) be a sequence of continuous functions f,: B-»R such
that
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(i) fo i8 (B —1)-times continuously differentiubloe; &**f coincides
in a neighbourhood of %--1/2 with a sealar multiple of the Dirac-measure
coneentrated at &-1-1/2 (k e N),

(ii) supp (i) <= (b, k--1) (k e N),

(itd) fellgy < 27% (% & N)
hold, (To construet such o sequenco of functions one multipliey suitable
iterated primitives of translations of the Dirac-measure by cut-off fune-
tions.) Then f :ml Zz\;r J 18 continuous and wo have f* 7, o €2 (R), f* 4(-com

(i:2
e I (R) for all k e N. Thus f e /Q\r (Il -+ L), Now suppose f e & (R) - LY.
ot

Then. there is & compact sot K o I und a set N < B of measure zoro such
that a suitable alteration of f on N iy infinitely differentiable outside XK.
Since fis continuous, the regularity of f cannot be improved by & change of
the valuos of f on sets of meusure zoro. By construction wo have f¢4 (R\K)
for every compact set X < R. This contradiction shows f ¢ &°(R) - L.
. To prove tho regult for n > L we consider instead of f the function
Fl@yy ooy m,) 1= f(@1) p(@gy ..., m,) (weR), where pe Z(R*) is equal
to 1L .on the set {(wyy ..., #,) e R 034 ... +oi<1}. m

The observations (3.5) also apply to the space (S (R™), i‘y) We finally
remark that the sets B, (¢ € N) from the proof of (4.4¢) are not G-bounded
(ct. [67, p. 43).

s}
5. Application of the constructions to the space #(2). In this scetion
we shall deseribe someo interesting phenomenons which oceur if we take

% (£2) a8 a spaco of testfunctions.
(5.1) Let 2 = Q = R". We putb
B(Q):={pe 8(Q); Fpely(Q) (ae N}

This space is provided with the Fréchet-space topology TP which is gen-
erated by the norms

Din () 2 = max (]| plleo || < m}
(p e #(2), meaN,). A dotailed investigation of this spaco was given in

" [7] and in Dierolf, Voigh [9].

(0.2) We first consider the cage 2 = R" The approximatoe unib
(43 & € N) constructed in the proof of (1.1) is TP-bounded. With a proof
analogous to that of (1.1) we obtain

{f e Lho(BY); f-p € (B p € H(R")} = IH(BY,

i.e., the space ﬁM(R”) of the absolutely regular elements of .3;4(1{“)' is
just L'(R™). The topologies on B, (R") constructed as in (3.1b) and (3.1c)
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evidently coineide twith the | :J,-topology. However, an analogue to the
result (3.2a) is obviously not valid. Moreover, the topoloc"y T, on BM( R
which ig generated by the semi-norms fH If-olls (f EBm (R™,ped J(R“))
is not finer than the topology a(.BM,BM) = ¢([}, I). To prove this
statement, one considers a sequence formed of translates of u fixed function
yp e D(RY.

The theory of the space B (R™ of regular olements ll’l J(R")’ i8 not
that trivial. The result corresponding to (2.2b) is valid for B,(R"). I’Ltttmg
g(@) := (1+2%) "t exp(é-¢°) (v € R) we obtain g e LHR)NE(R), O ¢ B.(R)
(k & N, and d¢ € B,(R)NIA(R).

(8.3) Now we consider the case 2 # R" Obviously there does not

exist a sequence (5,; & e N) in 2(RQ) which satisfies (AP. 1) and (AD. 2).
(Cf. [5], p. 198, 3. for an mterpretamon of this fact.) To determine the ab-

solutely regular elements of 9?(!? we therefore cannot argue ag in the proof
of (1.1). In fact, for Q:= (0, 1) < R the example £7! EBM(Q)\U(.Q)
shows that for 2 s R" the gpace BM( ) may be strictly larger th'm LHQ).

‘With the help of the boundary behaviour of the functions ¢ € A(Q) and
of the regularized boundary distance (Stein [28], p. 171) it is proved in
[6], p. 8b ff., that

ar(‘Q) {fELloc ‘Q) f @ ELI(Q)V(])G% == U Ll(Qi 0 )

= (e Lo(Q); frp e THQp € 5(2)}

holds, where g(z):= min{l, dist(s,C2)} (v € £), and the bidual #(2)"”
of (Q@?(Q),"Iﬁ") is determined in [9], p. 76, Thm. (4.8). Thus tho natural

topology on fiM(Q) is a proper LB-gpace topology and we could proceed
gimilarly as in Section 3. However, an argument similar to that given

in (5.2) shows that the topology on B, () generated by tho semi-norms
f=0fel (f ei’m(g),(p € #(£)) is strietly coarser than tho natural to-

pology on B,,(R), unless @ iy quasi-bounded (i.c., {w e Q; dist(w, CQ) > &}
is compact for all ¢ > 0). On the other hand, it can. be shown that to every

F®-bounded subset B of g?(g) there exists v e #(2)" such that lp(o)]
< p(®) (» € Q) holds for all g e B. Therefore tho family of semi-norms

felf-vh (FeBu(®), y e 3;(!2)") does generate the natural topology on
B (2).

icm
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Ag far as 1’:;(9) is concerned we only remark that a representation

of #(R) a8 an inductive limit of a sequence of Hilbert-gpaces, as used in
Section 4, cannot exist if @ is not quasi-bounded. According to Komwtﬂu

[21], p. 372, Thm. 6, such. a limit is always reflexive, and (% (!2)' /)‘(5’3' ﬂo))
iy mflexwo if and only if @ is quasi-bounded (cf. [9], p. 78, Thm.
(4.11), and Kothe [20], p. 396, (5)).
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