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(3)=(1): Suppose (3) holds. 2(R},,) and 2(R,,,) are denge in :B;,*’,,
and B, ,, regpectively. The map 1: @+ @@, Of -@(R;‘}-l)j‘"g(ﬁn}-l) .II}tO
D(R},,) is continuous, that i8, il < Olprt@sly, With a positive
constant C. Since D(R;}.,)+ 2(R,.;) is dense in By ,(Ryi1), if; suff}ces
to U(p) = ¢, for any pe2(Rf)+2(Ry,,), which is an immediate
consequence of the definition of the map I.
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Factorization in some Fréchet algebras of
differentiable functions
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JURGEN VOIGT (Miinchen)

Dedicated to Professor Jan Milusiiski
on the occasion of his 70th birthday

Abstract. Itis shown that for each compact set B = & (R") there exist 4 € & (R")
and a compact set B’ < & (R") such that B’ = B holds (essential part of the
“compact strong factorization property’’). The same property is shown for s (rapidly de-
creaging sequences) and #(£).

Introduction. The starting point of this paper was the question of
Kamiriski whether lin(#*%) = &, or equivalently, lin($ %) = & holds
([11], Problems 4 and b, p. 282). We give an affirmative answer by showing
that &+ & = & holds. More precisely, we show that & has the compact
strong factorization property, i.e., roughly speaking, that a compact
B < & can be written as #B’, with 4 e & and compact B’ = &. (Let us
mention that lin(2 «2) = 2 is known from [157, [7].)

Factorization properties are known for Fréchet algebras having
a uniformly bounded approximate wunit. From the known factorization
theorems for Fréchet and Banach algebras we bhave extracted a rather
strong concept of factorization property (cf. Definition 1.1), which is sat-
isfied in Fréchet algebras having a uniformly bounded left approximate
unit. We show that this factorization property is also satisfied in a certain.
clags of Fréchet algebrag of differentinble functions, which do not lLave
a hounded approximate unit. & (R™) and #(2) belong to this clags, for
quasi-bounded £ = O < R™

"In Section 1 we define the concepts of Fréchet algebra, strong fac-
torization property, (uniformly bounded) left approximate wunit. We stato
the factorization theorem, and we mnote that reflexive Fréchet algebras
having no unit cannot have a bounded approximate unit. We mtroduce
4(9) and show that #(R"™ has a uniformly bounded approximate unit.

In Section 2 wo define a clags of Fréchet algebras 47 (R2) of m-times
differentiable functions on 2 = £ < R* (0 m< ). If the weight
function y e 0(R) is such that there exists a certain kind. of partition
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of unity on £ then #'(£2) is shown to have the bounded strong factor-
ization property. As a means of proof we show that the Fréchet algebra
s of rapidly decreasing sequences has the compact strong factorization
property, obeying some additional requirements.

In Section 3 we show that under an additional assumption on y the
partition of unity required in Section 2 exigts. We apply the results of
Section 2 to & (R™), % (2), and #(2).

Acknowledgement. The author is grateful to P. Dierolf for several
stimulating discussions.

1. Fréchet algebras, factorization properties, approximate unit, A Fré-
chel algebra A is defined to be o Fréchet space (i.e., a complete metri-
zable locally convex space) over K(==R or C), which is also an algebra,
and which possesses a sequence (p,;% e N) of seminorms defining the
topology of 4 such that
(1.1) - Prl@y) < prl@) P (y)

(#,y €. 4) holds for all ke N (cf. [12], Def. 4.1, p. 13). Without loss of
generality we may (and shall) assume that the seminorms are chogen in-
creasingly: p; < Pppy (ke N). :

It F is a Hausdorff locally convex space over K and B =acoB < B
is bounded, then Hyp = (Hp, pp) denotes the normed space Hy = linB,
where pg is the gauge of B. The embedding Fy=— F is continuous. If B is
complete, then ¥y is a Banach space (cf. [16], Ch. IIL, § 7, p. 97).

1.1. DEFINITION. Let A be a Fréchet algebra. Let # be a collection
of bounded subsets of A. We say that 4 hag the Z-strong left factorization

property (#-SLEP) if the following holds: For each set B e # and each-

neighbourhood V of zero in A4 there exist 2 € 4 and a eontinuous linear
mapping T': Azzp—>A with the properties:

(i) #(Tz) = o for all # € B;

(ii) T'» belongs to the closed left ideal generated by w, for all z e B;

(ill) Tz —x e V for all € B;

\iv) T'|B: B—A is continuous. :

In particular, if # is the collection of compact (bounded) subsets
of A, then this property is called the compact (bounded, respéctively)
SLFP. If A is commutative we shall omit “left”, and accordingly write
“SFP?” instead of “SLFP”,

If # is such that| J(B; Be®) = A, and A has the #-SLFP, then

obviously 4 = 4AA. We defer the motivation for the above definition

to Remark 1.4.
1.2. Remarks. (a) Properties (i) and (iv) of Definition 1.1 imply that
T{B: B~T(B) is a homeomorphism, with inverse T(B)s yi2y € B.
(b) If 4 has the compact SLFP, and (3 jeN) is a sequence in
4, @~>0, then {v;; j € N}U{0} is compact; therefore there exist z € A and
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T as in Definition 1.1. From (iv) we obtain Y;:= Ta;—0, and (i) implies.
2y; = x; (e N).

A left approwimate wnit (LAU) in the Fréchet algebra A is a net (e.;
1ed) in A such that ¢,x— for all w e A. The LAU is bounded (BLAT)
if the set {e,; « € J} is bounded. It is called uniformly bounded (UBLATU),
if gup{py(6); ted, ke N} < co. “Left” and “L” will be omitted if 4 is
commutative.

1.3. TumorEM (factorization theorem). Let A be a Fréchet algebra
with a UBLAU. Then A has the compact SLFD,

We shall not give a proof of this theorem. We refer to the following
remarks for the sources of this result (cf. “Added in proof” 1).

1.4. Remarks. (a) A weaker form of Theorem 1.3 is due to Craw
[4], where it is shown that sequences tending to zero can be factorized
simultaneously (e¢f. Remark 1.2 (b)). The formulation of Theorem 1.3
is esgentially due to Ovaert [13], Thme 1. In particular, this is the only re-
ference (we know of) where the existence of the map T of Definition 1.1 is
mentioned.

Unfortunately, we cannot refer to a precise place in the literature for
a proof of Theorem 1.3. The ideas of a possible proof are sketched in [137].
(It appears, however, that a complete proof of the results announced in
[13] has mever been published.) :

(b) For a Banach algebra 4, Theorem 1.3 is a generalization of the-
Cohen factorization theorem [2]. We refer to [9], Thm. (32.23), p. 268;.
[1], Ch. I, § 11, Cor. 12, p. 62; [19], Thm. 6.4, p. 238, where the conclusion
is always weaker than in Theorem 1.3. We refer to [9], Notes to § 32,
p. 290, for additional references.

(¢) Obviously, Definition 1.1 is motivated (and justified) by the
validity of Theorem 1.3. We refer further to [3], [17], where some of the
aspects were introduced which are taken into account in Definition 1.1.

The following proposition serves mainly to exclude the existence of
a BLAU for a certain class of Fréchet algebras.

1.6. PROPORITION. Let A be a Fréch-t algebra which is reflexive (as
a locally conver space), and assume that A has ¢ BLAU. Then A has a left
unit e (ex = @ for all x & A).

Proof. Since A is reflexive, the bounded set {¢; : €J} is relatively
a{d, A')-compact (cf. [10], ch. 3, § 8, Prop. 1, p. 227), and therefore the-
net (¢; ¢ed) has a (4, A’)-cluster point ¢ € A. For z € A the mapping
A2 yywed is continuous, therefore is ¢(4,.4’)-continuous, and so
ew is a o(4, A')-cluster point of the net (¢x; ¢ &J). Since also €,5—>2,.
we obtain ex = 2: m

Examples of Fréchet algebras which have a UBLAU may be found
in [18), [4] (function algebras with convolution as algebra multiplication).
We want to treat another class of examples. We introduce the Fréchet.
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algebra g™ (Q). For @ = @ = R™, m e NyU {oo} we define
B(0) 1= {fe6™(Q); i°f e Oy(@) for all ae N7, |a] < m}

(cf. (6], Bx. (4.B), p. 76, and Prop. (4.10), p. T7). We define the family of
norms (p; k€ Ny, b<<m) by

1 .
pu(f) 1= — 18 Flleo
() éﬂ -
Equipped with this family of norms, 4™ (Q) is a Fréchet space (a Ll_?»ana.ch
space for m = o). If we define multiplication in 4™(Q) by pqmtwme
multiplication (fg(&) = f(&)g(&) (£ € Q) then the Leibniz rule implies that
+the norms satisfy (L.1). Therefore 4™ (£) is a Fréchet algebra.
1.6. PropoSITION. In #™(R™, o UBAU is given by the sequence
{ex; k e N) ‘
ep(8) 1=exp(— &k (£ ).
Z™(R™ has the compact SEP.

Proof. In view of Theorem 1.3 it is sufficient to show the firgt

statement. ‘
TWe shall restriet ourgelves to proving the uniform bou.ndednfzss
«of - (¢,; k e N), the other properties being easy to establish. We define
ki

.
h'e #™(R) by h{s):= exp(—s?). From e¢,(£) ——_—j” h(&/k) and the form
=1 .

.of the norms it follows that it is sufficient to show

0

1 ’ ;
{1.2) 2 5 B9, < oo. e

Fm=0
Since € s r—exp(—r?) is holomorphic, and
sup{lexp (— (s +it)3)]; s, L e R, 1 <2} = ¢,

__ the Cauchy integral formulas imply (A9, <jle* 277, and therefore (1.2)
holds. m

2. Factorization in a class of Fréchet function algebras. Let O 5= 0
= O c R*, and let y € 0(Q) satisfy

) y(&) =1 (fe Q).
For this section we choose m € N,U {oc}. We define
By ()= {f e &™(Q); y(V&f € Lnn(2)
for all k e Ny, a € Ny with |a| < m}.

icm®
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For m = oo, the superscript “m” will be omitted; thus, 4,(2) = 4;°(2).
‘With the sequence of norms (p,; k € N),

1
nNi= D ()l

|aj<min{fm)

%, (2) becomes a Fréchet space. If we define multiplication in £'(£2)
by pointwise multiplication of functions then the Leibniz rule implies
that the norms satisfy (1.1). Therefore %' (£2) is a Fréchet algebra. It is
easy to see that the subspace

FNR) 1= D(Q) (= Z™(2))

(closure taken in £’ (£2)) is a closed ideal of &3 (2)).

2.1. LmMMA. If y is unbounded then there is no bounded net (f;¢€d)
in B(Q) such that f,g—g for all g e F™(Q). In particular, B, (2) and
#m(R2) do mot have & BATU.

Proof. Only the first statement has to be proved. Assume that
a net with the mentioned properties exists. There exists a sequence (&)
in @, y(&)—>occ. For jeN there exists g; € 2(Q) < 7(Q), g(&) =1.
From f,g;—>g; we obtain f,(&)~1. This implies sup{p.(f); c€J} = y(&)
for all j. m ) .

If y is bounded then 1 e £)(2), and therefore the bounded SFP
for 4 () is trivial. We want to show that %7 () has the bounded SFP
even for unbounded v if the existence of a certain partition of unity is
assumed. For ¢ € N we define

Q;i={Ee Q; -1 <y(&)<j+1}.

Then (£;; 4 € N)is a covering of 2 by open sets, 2,n 2, = @ for [i —j| > 1.
We assume that there exists a partition of unity (¢;; i e N) on 2, with
the following properties:

() g ed™Q), ¢;>0, suppp = & (1eN), D'p(8) =1 (€ Q)
ieN

(IXI) for all a € N¢, |a| < m, there exist k(a) € N,, K, > 0 such that

(2.1) D NEw ) < E (e (£e ).

ieN

In Section 3 we shall indicate a condition on y which implies the
exigtence of a partition of unity with these properties.

2 — Studia Math. 77.4
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2.2. Remarks. (a) Let (I), (II), (ITI) be satisfied. Lot &:- (B
< N; F finite} be directed by inclusion. For F' e & we define gy t= 2 @4
Then (pp; B e F)is an AU for #7'(Q).

(b) If (T), (IT), (III) axe satisfied, then we have

BQ) = {fe 6™(Q); y(-)*&f € 0y(2) for ke Ny, |a < m}.

For the nontuwal inclugion “o” it iy suificient to show that, for f e {...},
we have ppf e #7(Q) for all: B eF. Thxs latt@r property ia a consequence
4.10a 71.
o [%%Parggltgonall; Ii/y €Cy(Q) then we conclude HP (£ ) = G ().
The following is the main result of this section,
2.3. TrmormM. Assume (L), (II), (IXL). Then #™(R2) has the bounded
SEP.
For the proof of this result we shall need some plopertms of the space
s of rapidly decreasing sequences,

{(U = (w‘b)!EN e KV H QIc(m) = sup"'k lw'tl < (k € NO)} !

EQuipped with the sequence of norms (g,; k e No), 8 ]?eeomta_s a Fréchet
space. Moreover, with mmultiplication defined by coordinatewise multipli-
cation, the norms g, satisfy (1.1), and therefore s a Fréchet algebra. s is
a nuclear space (cf. [14], 6.1.6, p. 89), and therefore is Teflexive (of;: [16_[,
Ch. IIT, 5.5, p. 144). Since s has no unit, Proposition: 1:5. mehes th
not have a BAU. :
2.4. LevMA. Lot % € 5,4 > 1. Then there emsts YyESs suah ﬂmt
(1) o) <y, (4 € N);
(i) ¢y <Y <Y (E€N). B .
Proof. We define §;:= max{d”“'“") lm;l; 5 =1,...,4} (i eN). Then
the properties |a;| < §;, §uyy > d7'g; (i € N) are obvmus In order to
show (:'h)mv € we note that for all k e N, there is i, N such that the
sequence (i*d ™) )iz, i8 decreasing, and therefore

kg~ L gt N
cp:sup{?—,;iq;1<.7<@}=max{jkd_j P L<I<iiy < o0,

This shows

,'/kd—’b
supi®j; = sup Fd-C |y = sup [ et
1eN 1<i<id ‘
< 0y (w) < oo,
Finally, if we define y; := max; (i e N), then it is easy to show that v
520 o

= (¥;)ien has the desived properties. m
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2.5. THEOREM. s has the compact SFP. More meczsely If K =g is

compuacty &> 0, k' € Ny, d > 1, then there exist » es, "€ N withthe following
Dproperties:

(i) zl——zz=... =z =1,d"12

<2441 <2% (1eN);
(ii) supw o, ]/z & for all © EK :

(iii) wzth K’ := aco X, a continuous linear mepping T: (Sg., pg)—>8 48
defined by. T ((@)en) : = (;/23);ens

(iv) T|K: K—s is continuous ;

(V) qu(To—a) < 2 for all © e K.

Proof. Withont loss of generality we assume K - {0} We define

& = (B)ey €8 by @ := sup {l;]; & = (@), € K}. Gorrespondmg to &’
and @*we find y e s accordmg to Lemma 2.4. There exists 4’ € N such that

5111“' U< q(y) .
We define z = (2;);y €5 by

i for ¢=1,...,4
&= 2 . .7
\w;s'y )1/ for >4,
For later use we note (2))V2 < yl2 < 432, ir Tl < Y () (i e ).
Obviously .z satisfies (i). Pr operty (ii) holds since for 4 > i’ we have

ooy < Fyyityr N = gl (e gy

< 0@ (g0 (9) ) = 6.

(iii): It is obviomsly sufficient to show that {m [Z:iens 2 €K'} is
& bounded subset of s. For » € K’ we have o] < @ (i e N). For ke N,
@ € K’ we therefore have

supf» “lagl e < supz"w,,/zi\ y"zsupi"(wi’)”2 < oo.

(iv): For je N, the mapping Zy: s—s, Tyw: = (1 /24, .. ,mj/zj,o,

0,...), is continuous. For % eN,x e K we have (Lo —Tio0) < sup ol oy
=j+1
i sup (#* ;). This shows T;a—>T ( j—o0) uniformly for z e K.

T2

(v) For % € K we obtain from (1) and (ii)
qk'(Tw-m) = st " (Jog] fo+ 1ws]) < 280D Jar] fo; < 2e.
=4 !
In order to show that s has the compact SFP it remains to show (ii)

of Definition 1.1. This property follows from the fact that the closed
ideal generated by « e s is given by

{o'es; i e N;aj #0tc {ieN;m £0}. m
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i i ¥ ituati described at the
After this excursion we return to the smua,t{on ;
beginning of this section. For f e &™(Q), a &€ NP with ja| <m we define
a sequence @*(f) = (#5(f))w bY

() 1= sup{|0%7(8)]; s R} (P N).

Then the definitions imply immediately

(2.2) BMQ) = {fe &™Q): 2" (f) €9 for all o € N7, || < m}.

Moreover, the inequality

(2.3) ;. (2° () < 8% ! Pumaxqitan ()

Tolds for all f € #7(Q), ke Ny, a e Ny with. |a| < m.
2.6. Lmvwa. Let (1), (IX), (IXX) be satisfied, and let @ €3,

F(& =D wpi(8)

N

(§e0).

Then f e #}(8).
We omit the proof which is an immediate consequence of (I), (II),
2.2). B
(III)Tal;I;dcénst)I'uction deseribed in the following proposition contains the
main part of the proof of Theorem 2.3.

2.7. PrOPOSITION. Let (L), (IT), (IIL) be satisfied. Let B < y’;‘({?)
be o bounded set. Let further %', %" € Ny, &> 0,d>1. Then there ewist
i’ e N, u e ™(Q), 0 < u(&) <1 for all & € 2, such that: .

(i) w(£) =1 for all & in a neighbourhood of {£ € 2; y(£) <i'};

i) % e ap(Q) for all i e N;

: a*u ,
(iii) for all ae N, |a|<m, we have T‘QdKuV(')k(a) (with Kay

L(a) from (2.1)); C e g

L of
(iv) for all a € N7, la] < m, & € Ny, f & B' 1= aco B we have y(-)"( " )

o7

: [ &f .
CTu(@), wnd e mapping (T (@, p5) 3Feor (F( L) e Ll i
<CONTINUOUS ; .
: ; I (i f
(v) for all ae N7, |a|<m,keN,, the mapping B3 firy(-) -
€ L. (2) is continuous;
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(vi) for all ae Ny, |a| < min(k”, m),feB we have

V(E)"'(%),; te U al<e,

(&) i=T1
L f
v ( E ("%— “alf)

Proof. For each a« e N7, la| < m, the set {2°(f); f € B} is a bounded
subset of s by (2.3). We define 4* e s by .

of := sup 23(f); feB} (ieN).

Since s is a Fréchet space, there exists a family {%; ae Ny, la| < m} in

(0, co) such that the series > 2,8° =: # = (;);en converges in s; without
lai<m
restriction we assume A, =1 for all a e N with |a] < min(k”, m). For

the compact subset {&’ es; lo;l <w; (4 e N)} of s we find zes i'e N

according to Theorem 2.5 (where %’, ¢, d are prescribed as in the hypoth-
esis). We now define

(&)= Zz«:?’i(f)
ieN
and verify that « and ¢’ have the desired properties. From # € s and Lemma

2.6 we obtain 4 € %'(2). From property (i) of Theorem 2.5 we obtain
O<u(d)<1 (£ Q).
(1) follows from #;, = 2, = ... =z, = 1 (Theorem 2.5 (i)).
(i): From the proof of (iii) below it follows that 1/u is bounded on
@,

0, for all i &€ N. Let a € N?, |a| < m. Since & (—Ij—) is a linear combination

sup {

< 2e.

©

((e0)

P, .
of products of terms —gi (j =i-1,4,4+1), we obtain that 3"(%)

is bounded. From suppe; c 2, it follows that y(-)* o (%) is bounded
for all k e N,. v

(ifi): Let £e, ie N with ¢< y(§)<i+1. Then Theorem 2.5 (i)
implies % (£) = 2,@;(£) + 2410111 () = 24, For |a| < m we therefore have

Fu(é) _ 1
,]Tq:;_)_)i_ <:’¥T+1_ (2100, (&) + 214 109541 (8)))

<R p(§)40 < AR,y (640,
%y

& A . .
(iv): It is sufficient to show that {y( -)"-E—f—; f eB} is bounded in

Lo(2) for all ae Ny, [a]<m, ke N,. Now, feB' implies 25 (f) < of


GUEST


342 J. Voigt

<A'm (CeN) Let be @, ie N with i ~1 < y(£) < 4 Then, for feB’,

RS (G ) W ((ﬂ))
7(8) Wé’t Py <A zigla . Y ‘@N<°°'

(v): Liet |a| < m, & & N,. For all ¢ € N the mapping #1(£2) 3 fio y (- g,
>*f

€ Ly, (£2) is obviously continuous. From
%

6“7‘
RY25 P
r(+) (T )
we obtain

- H?()"(%]i) - 5: y(')"’fr}’( awj)

T=1 u‘

sup{ ;fE.B}< 00

>0

o0

(j—>o0) uniformly for f e B. e
(vi): For |o|<<min(%’,m) we have 4, = 1. If feB, EeQ with
¥ <i~1 < y(£) < 4, then as in the proof of (iv),

(1) )
7(5) (W S \Z, < &

where the last estimate follows from (ii) of Theorem 2.5, This proves
the first estimate. The second estimate follows from this, using property
(i) and w(é)<1forall £ Q. m o o

Proof of Theorem 2.3. Liet B < 2;(8) be bounded, B’ :=ac6B, 7
2 neighbourhood of zero in %7 (2). We have to find u e %7 (82) and a map-
ping T': #7}(2)p B () such that the properties of Definition 1.1 are
satistied. There exist %'’ € N,, 8> 0 such that V o {feBQ); pu(f)
< 8}. B

Let 6> 0 (to be fixed later in order ‘o mateh § just introduced),
and let %" € N, (to be specified according to certain constants occurring
in the following proof). Corresponding to B, k', k", &, d:=2 wé obtain
i’ e N, u e #)'(Q) according to Proposition-2.7. We want 4o dhow that
2 continuous linear mapping T:
kA
o
is a bounded subset of BT (Q).

Let % e N, |of < mijl(k, m). Then y(-)*e" (%) is a sum of terms of

the form ‘
2, 8
2.4) o[ (545,

& (D)p—~&}(Q) can be defined by: Tf
In\order to show this. it is suﬁiqie]it to show that {-Z:—, f EB’} k

icm®
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1y
with 3’ a;+8 = a (proof by induction). Using (iii) of Proposition 2.7 we
T=1

B i[sza{)

and the last quantity is uniformly bounded for f e B', by (iv) of Proposition
2.7.
~ Property (i) of Definition 1.1, i.e., w(Tf) = ffor all fe B, is obvious.
Property (iv) of Definition 1.1, i.e., the continuity of I'|B: B—37(02),
is a rather immediate consequence of (v) and (iii) of Proposition 2.7.

In order to prove property (iii) of Definition 1.1 we let le] < min (%", m).

e . o[ &

Then, for f e B, p(-)* (6" (—i—) — 6“f) is a sum of the term y ( - ¥ (—;—f— - a"f)
and of terms of the form (2.4), with % = &’*, 8 5 a. If & has been chosen
initially such that %’ > &' then (vi) of Proposition 2.7 implies

W [ O°f

v % —
v(*) ( "

The other terms can be estimated, using (i) and (iii) of Proposition 2.7, by

Sk

estimate

0

o115

=1

p(- )k+2k(a,') (ﬁ)

w

-]

< 2e.

o

_aaf)

w U

{y(-)

G=1 s

“ . 1 o
<] [k fpersn(122EL), -

%(§) =741

i .
and this is < J] (2K, ) by property (vi) of Proposition 2.7 if ¥’ > %' +
iy =1 v
+ D) k(q;) is required initially. Thus, if we choose initially
=1 .
. i

2.

T=]

)
k= k" +max {Zk(ai); @1y .oy oy € NGy

1=l

< min (70”,Em)},

then the estimates just stated are satisfied. Therefore P % — f) can be
estimated by a finite linear combination of such terms; yielding an esti-

mate p,,).(;];« - f)< Cye, where Cp. depends only on %” and ‘external

!

constants. Choosing & = O} 4§ initially, we thus obtain p,. (Zf ~f ) <'¢,
and therefore Tf—fe V. o l
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It remains to show property (i) of Definition 1.1, Let fe B. Then
f

€ 7, (2), and therefore ¢ (J;) e ‘»f— by Remark 2.2(a). From property (ii)

above we obmm & %y (L) for all ¥ e #, and therefore ¢ F( S ) w ( e ) f

U
belongs to the 1dea1 generated by f. m
2.8. Remark. It will be shown in Section 3 that conditions (I),
(II), (III) have been chosen general enough to cover the cases of & (R")
md 2 (£2), The proof of Theorem 2.8, however, depends on very particuler
techniques which arve only possible for algebras of functions. It would
_be desirable to find a proof which carries over to a general class of Fréchet
“algebras.

3. Factorization in & (R") and #(Q). As a preparation we are
going to supplement condition (I) (of Section 2) by a condition which
implies the existence of a partition of unity satisfying (XT) and (ILL).

Let @ 5 3 =0cR",meN,U{co}, and lot y e 0(Q) satisfy (D).
The additional condition is:

(IV) y € 8™(Q2), and for all a € N7, |a] < m, there exist m(a) e Ny, M, =0
such that

(3.1) 109 (8) < Moy (5O (Ee ).

3.1, LemMA. Let y € 0(Q) satisfy (I) and (IV). Then there ewists o parti-
tion of unity (¢;; © € N) satisfying (IX) and (IIT).

Proof. There exists a partition of unity (y;; i € Z) on R, y, ¢ 2(R),
p; 2 0, suppy; = (1 —1,4-+1), and such that v, = (- —i) holds for all
i € Z. For i € N we define ¢, := y,0y. Then obviously (¢;; ¢ € N) is a par-
tition of unity on 2 satisfying (II). For a = 0 estimate (2.1) is valid
with Ky =1, m(0) = 0. For 0 < |a| < m we have

k
2(«»‘")0» D Cla,k, p) [ [Py,

| Bea,k) je=1

Where J(a, k)= {f 1= (B(L), ..., B(k) € (NJ); BGE) £0 (i =1,..., k),
Zﬁ(z) = da}, and O(a, k, B) € N, (cf. [6], Satz (15.1), p. 120, [8]) 'l‘ﬂlkmg
1nto account (3.1), we obtain

| i (£)] = Z W) > 0‘(a,k,ﬁ)n By (£,

T=1 BeJ(a,k)
Sinee [p* (v (£))| < 19l (€2, % =1,..., la]), and since thesumz |0 (8)]

contains at most two nonzero terms for each £e 2, an estumato of the
form (2.1) follows.

Py = &*(p;09)
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For Q = R", the function y: R*—>[1, oo),

y(£):=1+12 (£e R

obviously satisfies (I) and (IV) for m = co. For this function v, B,(R™)
= &(R") is the space of rapidly decreasing functions (cf. [10], Oh 2,
§ 4, Bx. 14, p. 91). The following result is now a consequence of Lemma 3. 1
a,nd Theorem 2.3. (Note that & is a Montel space, and that for a Fréchet
algebra which is a Montel space the compact SLFP is equivalent to the
bounded SLFP.) It answers the question of Kamifski mentioned in the
introduction.
3.2. THEOREM. & (R") has the compact SFP.

Since the Fourier transform is a topological isomorphism of & (R™)
(cf [10], ch. 4, §11, Thm. 1, p. 416), transforming pointwise product
of two funetlons into convolution product (denoted by %« we obtain
also the fe'lowing result.

3.3. COROLLARY. (& (R™),+) has the compact SFP,

For@ # Q = fQ Z R"we detine the boundary distance 7: 2-(0, oo),
() 1= dlst(é;, C9). There exists a regularized boundary distance, i.e.,

a function 7 € £(2) with the following properties: There exist 0 < d, < d,
such that

(3.2) (O <SFE K dr(E)  (Ee )
for each a € N there exists ¥, > 0 such that
(8.3) [PFE S Nor(8)F (£e Q)

(ef. [18], Ch. VI, § 2.1, Thm 2, p. 171). We define y € £(2) by
y(8) :=1+F(&)™  (£e Q).

For a e Ni', a # 0, we use the formula for the derivative of composite
functions mentioned in the proof of Lemma 8.1, in order to obtain

109 (8)] = 10" (FT)(E)] < MF (&)1 < My (&)

with suitable M, i.e., property (IV) is satisfied for m = co. For this
function y, it is shown in [6], Prop. (4.6b, ¢), p. 75, that

B,(Q) =B(0):={fe#(Q): "feL,(Q) for all e N?, and there
exists a continmous extension f, e 0(Q) of &°f
satisfying f, 1002 = 0}

. . 1
holds, and that the sequence of norms (p,; &k € N), 9,(f) : = 2 - 118° flloos

lal<k
generates the topology on 4%,(R) defined in Section 2. In view of Remark

2.2 (b) this implies #,(Q) = 2(Q)F@ = H(Q) (= #°(Q), defined in
Section 1) (cf. [6], Prop. (4.10b), p. 77).
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*

3.4. THEOREM. (a) #(R2) has the bounded SFP.
(b) #(Q) has the compact SEP.
Proof. (a): Since y as defined above satisfies (I), (IV), and since
2(2) = #,(Q), the assertion follows from Lemma 3.1 and Theorem :‘Zj .
(b): Let K = #(R2) be compact, without restriction K =a(30]f.
Let U be a neighbourhood of zero in #(R); then U o {fe H(2); p,(f)
<< ¢} for suitable & e Ny, e > 0.
Let

Vi={fe B(Q2); b (f) < ¢/2}.

Since #(02) (o 4(L)) has the bounded SFP, there exist w e #(L) and
0 B(Q)g—%(2) with the properties as in Definition 1.1. In partioqlar,
Tf belongs to the cloged ideal of #(Q) generated by f for fe K. Since
fed(Q), and 4(2) is a closed ideal, we obtain Tf € #(£). This shows
K :=TK c 4(Q). ) -

%(Q) is continuously embedded in Z (R*), by extending each funetio
by zero. We thus identify #(Q) with a subspace of % (R™).

In Proposition 1.6 it was shown that %(R") hrins the compact SEP.
We apply it to the compact absolutely convex set K and the neighbour-
Thood of zero

V :={fe B(R"); B\(f) < s/2}.
“We obtain % e 4 (R™), o ,
T: d(R™z—> % (R™)

with the properties in Definition 1.1. ;

It remains to show that the function 4# and the operator I'T have
the desired properties. It is easy. to verify it € #(2). As above, we obtain
TR« 4(Q). T: #(Q)x—~%(Q)z is a topological isomorphism, and
therefore T7: #(0Q)x—4(R) is continuous, =~

The properties (i), (iii), (iv) of Definition 1.1 ave easily verified. In
-order to show property (ii) we recall that we know so far that Z'Tf belongs
to the cloged ideal of 4 (R") generated by f for all f e K. It is therefore
sufficient to show that if f e #(0), ¢ & #(R"), then gf belongs to the cloged
ideal of 4 (£2) generated by f. In [6], Prop. (4.10a), . 77, it was shown that
there exists a sequence (7;; j & N) in 2(Q) such that 7n,f—f (j-—o0) in
2(Q). This implies. gy, f->gf in #(Q). From gn; € 2(2) = % (R) we there-
fore obtain the desired statement. m . Lo

.. 3.5. Remarks. (a) If  is such that #(Q) = %(Q) holds then the
statement of (b) of Theorem 3.4 is seemingly weaker than that of (a).
The following properties, however, are equivalent ([6], Thm. (4.8), p. 76,

icm
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and Thm. (4.11), p. 78):
() #(2) = 4(2);
(ii) .53(!2) is a Montel space;
(iii) 2 is quasi-bounded;
(iv) 7(+) e 0p(2) (=>1jy € 0,(Q)).

Thus, if #(2) = %(Q), then the compact and bounded SFP are
identical properties for .43’(!2). .

(b) In view of Proposition 1.5 and Theorem 3.4 one wmight ask whether,
for @ # Q = o) ZR", -4;‘"‘(!2) has a factorization property for numbers

m + 00,0 (note that #°(Q) = 0,(2) has a UBAU (= BAU), and The-
orem 1.3 implies the compact SFP for (,(£2)). The following example
shows that this cannot be expected.

It fi,fo € 8'(0, o) then |f(0)l < ¢1ffl (6 = 1,2, t> 0), and there:
fore |(£uf2) (8] < 21l Ifillo- Since it is easy to find f e F(0, co) with
12 f(t)} >0 (3->0), we obtain (0, o) B'(0, o0) % (0, oo),
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Completeness type properties of
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Abstract. The main results, in the terminology of Aliprantis and Burkinshaw
[A&B], and Fremlin [F'] (this terminology has been changed for the reasons “intrinsic’
to this paper), are as follows. Let (I, v) be a Hausdorff locally solid Riesz space. It
embeds order densely into a Nakano space (I, +3) if (and only if) v is Fatou;
this embedding is unique. A Dedekind complete (L, r) embeds order densely intio
a Hausdorff locally solid Dedekind complete Riesz space (L¥, i) having the Monotone
Completeness Property if (and only if) v is pseudo-Lebesgue.

Let Q be an extremally disconnected topological space, 0°(Q) the
Riesz space of continmous functions, from 2 into the extended real line,
which take finite values on dense subsets of Q.

In the first part of this paper a theory which parallels the one of
Banach. function spaces by Luxemburg and Zaanen [4], is initiated on
0*(8). Function filters and their topological vector cores replace function
norms and their Banach function spaces. This permits to treat the general
locally solid case. In § 1 the (topological) completness properties of vector
cores are investigated.

In the second part, to an order dense Riesz subspace of ¢ with a
locally solid vector topology appropriate function filters are associated.

In the third part the previous results are applied, via the Maeda—
Ogasawara representation theorem, to general locally solid Riesz spaces.
The main results are as follows.

Let (L, ) be a Haunsdorff topological Riesz space.

(L, 7) embeds order densely into a Hausdorff locally solid- bomzdedly
order- complete (L*, v%) if (and only if) © is locally solid-order-closed; this
embedding is unique up to an isomorphism.

4 Dedelkind complete (L, ) embeds order densely inio o Hamdorff
locally solid Dedekind complete Riesz space (L™, t%) having the Monotone
Completeness Property if (and only if) = is locally solid-pseudo-order-closed.
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