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The Dunford-Peitis property for the ball-algebras,
the polydisc-algebras and the Sobolev spaces

by
J. BOURGAIN (Brussels)

Abstract. Let X be one of tho spaces considered in the title. It is proved that
then X* has Dunford-Pettis property. -

0. Tntroduction. Let us recall the definition. A Banach space X is
said to have Dunford—Pettis property (DPP) provided lim<{w,, apy =0
whenever (z,) is a weakly null sequence in X and (#}) & weakly null se-
quence in X* The best known examples of spaces having this property
are the € (K) and L*(u)-spaces [5]. It was investigated for spaces of ana-
Iytie functions by several people, was established for the disc algebra A in
[3] and for H*™ in [1]. The reader will find further details on DPP and
related properties in the survey work [4].

Our interest goes here to spaces of several variable functions, i.e.
the ball-algebras A4 (Bg), the polydisc algebras 4 (D% and spaces of smooth
functions O (IT%). Precise definitions will be stated later on. We will
prove that the dual of each of these spaces (and hence the space itself)
has DPP. This will be a consequence of

TerorEM 1. Tet X be one of the spaces A (Bg), A (D% or C® (II%). Then -
any bounded sequence (@) i X* either tends uniformly to zevo on weakly
compact subsets of X or does not tend umiformly to zero on & ¢y-sequence
in X.

This result answers questions congidered by A. Grothendieck in
51, by A. Pelozyniski in [11] (Section 8), [12] (exp. 2) and by J. Diestel
in [4].

The proof of Th. 1, which is rather soft, is based on sequence arguments
and at this point it is not clear how they can be localized in order to show
DPP of the bidual spaces.

1. A construction of ¢,-sequences. In this section we give the key
lemma to derive Th. 1, which is a simple procedure to obtain ¢,-sequences.
Let @ be a compact topological space, E a finite-dimensional Hilbert space
with norm | | = | |z and Ogx(@) the space of continuous E-valued func-
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tions on G (a vector-valued setting is only required to deal with the So-
bolev spaces). We congider a subspace X of 05 (@) and denote by ¢: X
—(x (@) the injection. In the sequel “dist” means always norm-distance.
Notice that for ¢ e C(G), multiplication by ¢ defines an operator

¢ on Cx(@). We will use the same notation for the adjoints.

PROPOSITION 2. Assume (22) 1o be a bounded sequence in X* and 6 >
such that the following property holds:

(%) For each ¢ € O(G) and each &> 0, there is a weally null sequence
(%) in the unit ball of X** such that

(i) dm|<a), a3 > 3,
n
(ii) dist{p-**(#}*), X*) < ¢ for each n.
Then there is a sequence (x,) in X, equivalent to the usual ¢,-basis such
that sup <@y, 35| > 8/2 for all k.
n

Proof. Consider for each # a norm-preserving extension u, € My(G)
of . Let (s,) be a sequence of positive numbers such that e < 6/10.

By induction on k, we-will construct a sequence of integers (),
a decreasing sequence () of infinite subsets of N, a sequence (y,) in
X and a sequence (w;) in Oy (&)

Step 1. Since (#}*) is weakly null, there is » finite convex combination
(Am)mep SUCh that
HZ amlma?:,*H < H(AdimE) e} = g
D

for all choices of signs ey, = +1.

So, by loeal reflexivity, there are elements (&,)m.p in the unit ball of
X such that
(8) By B> = (i, @, > for m e D,

(b) “2 Gmlmmml < g for all o, = +1.
D
Now (b) imphes tha't ”Z”{m[mmlb‘
D

o< & and hence || 2,7/l < &
if for each m €D one chooses 7, & O,y (@) such thatb

(¢) vy =1on [[#m] > 2¢,] and T = 0 00 [|,] < &].
‘Tt follows that for each 0y

w .
Z AT inll < 1,
which allows us to fix some n, € D and an infinite set N, = N so0 that

lpapall < & for  melNy,,

icm

©

The Dunford-Peltis property 247

where w; = 7,. Define y, =, . Thus [Kyi, @y >l >0 and p, =1 if
{91l > 2¢,. .

Inductive step. Assume the construction done up to step k. Define
@ = (L—y)...(L—y), ¢ =g, and use (x) to obtain an appropriate
sequence (¢*) in X**. Thus there are elements #z,* ¢ X™ such that
lp-z* —28*| < & for each #. Consider again a finite subset D of Ny
such that

1. oninan
D

for some convex combination (A,)mep-

By a local reflexivity argument, one can then obtain (#,)mep and
(#)mep i X satisfying

(@) llenll <1,

(1) <@, w;‘z> = <9-'"::1 mrn>7

(c) “%: O o B || << 5;¢+1 (om = +1),

< HAME) ey =ty (Op = £1)

(@) @y —2mll < Eg41-
Again || 34, @pl|lw < 41 and hence H%}.mrmum < g4 if for each
D
meD we fix some 7, €, (G) so that
(e) T = lon []mml > 28k+1:l and Tm = 0 on [[mm[ < Elc-(-l]'

For each n e Ny
D i pall < 41
D

which allows us to fix some n,,, € D for which there exists an infinite
subset Ny, of N, with

for neNppa,

Mg tonll < Egr
oy Define g, = Xyyppr Then [Kypia, m;k“}( > é, Yie+1
=1 on |yl > 26, and dist(1—wp)...(L—vp)¥en; X) < e41- This
completes the construction. . .

Consider a sequence (x;) in X taking:

By = Y1, i

#ypy Such that [[(L—ypy)...(2 — PR Y41 Tl < Epprs
Then

13 oo < | 121+ kz» (L =)o (L= i) el gak.

For fixed t € G, suppose [y (f)] > 2 for some % and leb ; be the smallest

where ., = 7,
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integer with. this property. By construction

[+ > =) oo Q=) | () <2 D) sat- Wi looe
k>1

Je>leg
This shows that
1> o], <1438 Y <2

Also, by construction, since 1, € N; for j < &,

|<m;k7 zl = K:’f‘nk’ (1 — 1) oo (l —'plc—l)‘/y/c>[ '“ak”ll'nk”
= [y i) ““Z 15 g | — &,
i<k

> (5—~2'a]-

and this clearly proves Prop. 2.

2. The ball-algebras. Let d>2 be some integer. Denote by <.,.>
the usual sealar product on C%; the unit ball B, = {t eC% L, 0 <1}
and the unit sphere Sp= {{ e €% {¢, > =1}. On §; we have the natu-
ral rotation-invariant probability messure o. Define A4 = A(B;) as
the space of functions which are continuous on B, and analytic in the
interior of B;. Equipped with sup-norm, A(B;) embeds in O(S;) re-
stricting the functions to the sphere. For f e 4, the Cauchy formula is given by

F(0) de(2)

fz) = fm,—; for |l <1.

8 ) o
The reader will find the basic theory in [14]. We will use the following
elementary fact
Lmvma 3. Let ¢ be a polynomial in 2y, ..., 24, %y, veey By For 2] < 1,
consider the fumetion
P () —9(0)
B,() =
‘ (1 ~<e, 1)
Then {D,; le| < 1} is relatively compact in It (8).
Proof. We show thm”sc JI! [P, (£)0(d)->0 uniformly in e for s—»0.
~gll<s
Clearly ’

1P() —p(0)I < Olz =l =VZ0(L—Re e, D)* <VEOR — Gz, S
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and
[ 1<z, OIT o) = 0(e)-
e £h<e
Tewva 4 If (@) is weakly null in A™
limdist (p-oit, 4*) = 0.

T~>00 ;
Proof. By density, ¢ can be assumed as in Lemma 3. From Lemma 3,
it follows that given &> 0,

and ¢ €C(8), then ’

sup K&,, i (@) > | < e
1zl<1

for » large enough. .
Fix such n. Again by Lemma 3, there is a net (2,) in A such that
(@) ol < Nzl
(b) w:* = 1imwaa(A**, A7),
E a
(¢) sup [(B,, Z.p| < & for each a.

Jol <1

Since g™ = limg-z,0(0**, 0%), it will sutfice to prove dist{g-2., A)
< ¢ for each a. Define

¢(£)w.(L)

() = JW do () 2] < 1.

for

Since «, € A, we find for z € § (a.e.)

@12, — ai(al = im| [ T o @)ao(o)] < G B
8

and thus, by (c), llp* @y —@allo < & Thus also 2, € H*(B;) and therefore
digt (- ., A) < &, proving the lemma.

Proof of Th. 1 for X = A(B,). Assume () to be 2 boun_d_ed gequence
in X* and. (%% a weakly null sequence in X*™ guch that Lim <z, o3>

n
= 0. Lemma 4 shows that () is fulfilled and it remains to apply Prop. 2.

3. The polydisc-algebras. D = {z € C; |2| < 1} is the open unit dise
and D? the subset of C? obtained by d-fold product. A (D% is the gpace
of fimetions which are continuous on D% and analytic on D4 This space
equipped with supremum norm identifies again with a closed subspace
of O(IT%), IT = circle. Our reference here is [13].
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For A c Z% let O, be the subspace of the functions f e ¢(II% with
speetrum Speec(f) eontained in A. With this notation A (D% = Oz;[.x...x P
) If J is a non-empty subset of {1,2,...,d} and M = (my);r & multji-
index, the projection P 5 on O (II%) is defined by

Pru(NO) ={f P nj(w} g

The range of the restriction of P, to .4 (D% ; Sl ns
with A (DA, 1. 50 A(D?) can obviously e identified

Fix a sequence of functions (XK,),_ on II such that K., <
and Spec(X,) is finite, e =g

'KAr (m) =1

‘We consider the measure

for |m|<er.

a
a=28 [o4)— &M,

where § stands for Dirac measure and (j) means jth variable. Let P, dénote

1f:het g-~convolution operator. Let us summarize some straightforward
acts.

Leywa 5. (i) [|P,] < 0(d).

(i) I —P, can be written as linear combination of Py projections.

(i) If (my, ..., my) € Speco,, then [my| > r for L <j<d.

To prove Th. 1 for X = A(D?), we proceed by induction on d. The
case d=1 is known. Assume the result is valid for .4 (D%1) (d>1). Let

(#7) be a bounded sequence in X* and (s+*) a weakly null sequence in X**
From a preceding observation, if for some P; 5 .

h’]iD-l(P},M(a’:); w:*>| >0,

the induction hypothesis allows us to conclud i
e. Thus, u
we can assume for some 8 >0 ¢ veing Leaima S,

B ¢, P (@)1 > 8

for each ».

Notice that by construction if # € 4 and ¢ is a trigonometric poly-

nomial on IT* with Spec(p) = {—r, —r--1 ¢
It is therefore clear that = ety fhen goFr(o) o 4.

limdist(p- B} (@), X%) = 0
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uniformly on the unit ball of X**, for given p e ¢(/I%). Thus () satisfies
(%) of Prop. 2. .

4. Spaces of smooth functicns. Let U be a d-dimensional compact
manifold. Denote by O®(U) the space of complex-valued functions on
U which are continuous with all derivatives of order < k. From a result
of [10], the space €™ (T7) is linearly isomorphic to €% (II%). We represent
latter space as a translation invariant subspace of ((/1?, B) for an appro-
priate finite-dimensional Hilbert space H, identifying fe ¥ (IT%) with
the element i

V1

where D= —-—F—,
oL 0P

(DI F,
T = oy .eyjo) and |J| =js+ ... +jq. (Details can be found in [81)
We will use the following fact:
TEMMA 6. There is a bounded sequence (P,) of convolution operators
.on IT% with finite spectrum such that °

DY (f —Pyf oo < L[rifllcty  for  |1I1<k.
Proof. Congider for instance the Jackson kernel K, on IT (seé [167)

for which [K,(6)6d0 ~ 1/r. Leb P, be the convolution operator by
I

the d-fold kernel K@ = K, ® ... @ K,. For f € 00(1I%), we find

If=PufI< L Ife—AIED PV < C(d) VSl H[z (sl +vv + lpal) P (P)
pai

and hence f
If =P flle < €'(@) 17 [VFlleo

+which clearly proves the lemma.
Let X be the representation of 0®(I1%) in O(II%, H). To obtain Th.

1 from Prop. 2, we show
Tmava 7. Assume (25%) to be a weakly null sequence in X** and ¢
@ trigonomeiric polynomial on II° Then Hm dist (@ o, X**) = 0.
n—roo

Proof. Since the P,-opei'ators are of finite rank, lim[IP:*(m:',*)||= 0
N—o0

and hence |P™(@*)| < for n suificiently large. For such n, consider
2 sequence (z,) in X satisfying

(@) [l < lon*lls

(b) &* = limw,o(X*, X*),

{¢) |P,(#,)]l < 7 for each a.
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Agsume @, to be the representation of f, € 0¥ (1%, Then

dist(p 2., X) < consm}mi lp+ D7 f. — D7 (pf)| < const @llove | Fallote-y .
<
From (c) and Lemma 6

o=y < 1Pyl Ifu— Py Fullotiony
< 7 const 1/r||fllotr) < -+ constd jrllwl |l

Sinee ¢ 2} = limp w,0(C%, Op), it follows that

Aok Hok

dist (-2, , X)) < constpllgtn (v --1 /7).

This proves the lemma.

5. Further results and remarks.
1. As a formal consequence of Th. 1, we can state

CoROLLARY 8. Any I'-sequence in the dual of one of the spaces A (By),
A(DY or O"NII% has a subsequence with w*-complemented closed linear
span. .

2. Closely related to the results presented here is the problem whether
or not the duals of these spaces are weakly complete. It can be shown
(by adaptation of G. M. Henkin’s method [6], [7]) that the dual of ¢ (I7%)
has the form §@ZL, where § is some separable gpace and L is an T2 (u)-
space (details will appear elsewhere). The reader will find a description
of A4(D%)* in [2].
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