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entropy numbers of compact operators in Banach spaces we got on thig
way again the statement of H. Kénig [8] about the behaviour of cigen-
values of r-nuclear operators in L,-spaces.

COROLLARY 2. Lot 0 <r<<1, L<p< oo. If 8 eM,(Ly, L,), then the
sequence of eigenvalues (Z,L(S)) belongs to the Loroniz sequence space 1,
where 1fs = 1[r—|[1/2 —1/p].

ey
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A theory for ungrounded electrical grids and its application
to the geophysical exploration of layered strata™

by

A, . ZEMANIAN and PRASAD SUBRAMANIAM
(Stony Brook, N.Y.)

Abgtract. A mothod is presented for solving the finite-difference approximation
to ¥y (ogg) = f ovor a half-volume, where ¢ is unknown, o and 8 are given, ¢ varies
only in the normal direction to the boundary of the half-volume, and £ is nonzero only
on that boundary. The method is based on a theory, developed herein, of infinite un-
grounded olectrical grids; no truncation of any grid is imposed. The solution is given in
terms of an infinite continued fraction of Laurent operators and yields some compu-
tational procodures that are quite efficient. The variations of ¢ in the normal direction
to the boundary arve allowed to be quite arbitrary so long as o is positive, bounded,
and bounded away from zero, The theory has significance for the resistivity method
of geophysical exploration. Formulas arve developzd for the apparent resistivity of
the carth undor various configurations of cwrrent and voltage probes. In addition,
it iy proven that the obtained solution is the unique solution for which a generalized
form of Tellogon’s theorcm is satisfied.

1. Introduction. ¥t has been some ten years now since the elements
of a rigorous and quite general theory of infinite electrical networks were
first proposed. [7]. Since that time the theory has expanded considerably,
but up until quite recently most of the results consisted of existence and
uniqueness theorems for the current-voltage regimes in infinite networks.
(See the gurvey articles [19] and [23]). There was not much information
on how those current-voltage regimes could be computed. One of the prob-
lems is that an infinite olectrical network can respond in many different
ways to o set of sources supplying a finite total amount of power. However,
for ecrtain classos of such networks, only one of those solut%ons corre-
sponds to finite power dissipation in the networks. It is that unique finite-
power golution that is the one of practical interest in most cases. )

Starting about two years ago, methods were developed for compuhgg
tho finite-power regimes in a grounded grid, that is, in & square or cubic
grid baving a branch connecting each node to a common ground [21], [22].

% This worl was supported by the T.S. National Seience Foundation under
Grant No. JiC8 8121716. ' '
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Such grids are of praetical interest, for their nodal equations represent the
finite-difference approximations of the partial-differential equation
(1.1) Vig—yp =6,
where v is a positive quantity. This is the steady-state heat-radiation equa-
tion [6]. Blectrical engineers meet up with it in the theory of solid-state
devices [13], [15] and [17], p. 99; its occurrence on & semi-infinite domain
arises from the fact that the thickness of a semiconductor chip is very much
larger than the region near one of its surfaces where the integrated eircuilry
is located.

A similar partial-differential equation is

(1.2) V-(aVp) = B

There is at least one discipline, geophysical exploration, in which practical
considerations suggest the application of (1.2) over a semi-infinite domain.
For example, one way of searching for mineral deposits is tho resistivity
method [3], [9], [18]. This consists of the injection of current into the
earth and the measurement of the resulting electric potential variations
along the earth’s surface. The earth appears as a semi-infinite medinm —
for all practical purposes. Also, f is the extracted current distribution,
@ is the electrical potential, and o is the conductivity of the carth, Tho
variations in ¢ along the earth’s surface can be used o prognosticato
about the variations in ¢ inside the earth, and the latter can be viewed
as a clue to the location of mineral ores.

A basic step in this whole process is the computation of ¢ along the
surface for given o and f. If the variations in o are sufficiently simple, ¢
can be determined analytically by using integral equations, series expan-
sions, electrical images, and so forth; see, for example, [3], [8], [9], [10],
[11], and [16]. For more complicated variations, approximate numerical
methods must be used. One important method involves the replacement of
(1.2) by its finite-difference approximation [5], [127]. To solve for the discrete
values of ¢, the usual procedure is to truncate the grid along a finite boun-
dary that encompasses a region muech larger than that being surveyed.
At this point, however, another problem arises: Appropriate boundary
conditions must be specified along the surfaces of truncation. Butb it is
not at all clear just what those boundary conditions should be.

An alternative procedure, the one that is adopted in this work, is to
analyze the infinite resistive grid without truncating it. We do so through
an analysis similar to that used for the grounded grids arising from. the
discretization of (1.1) [21], [22], but there is now a fundamental difference.
The grids corresponding to (1.1) are grounded, whereas the grids correspon-
ding to (1.2) are not. This is reflected in the fact that the operator-valued
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continued fractions for certain driving-point imittances converge readily
in the former case, whereas we seem to be working right on the borderline
of convergence in the present case. That is, a number of expressions that
we would like to use for the ungrounded grids do not converge, and we are
therefore forced to employ more delicate arguments in order to bring our
analysis to a successful conclusion.

In this work we study the ease where the conductivity oin (1.2)is a fune-
tion of depth below the earth’s surface, that function being positive, boun-
dod, and bounded away from zero. Other than these conditions and perhaps
some mild regularity assumptions, no further requirements are imposed
on 0. This allows ug to study a horizontally layered geophysical structure
where the layering is either smooth or diserete and varies in quite an
unrestricted faghior.

Our objectives herein are to construet a theory for ungrounded electri-
cal grids and to apply it to the geophysical exploration of layered strata.
With regard to the latter objective, we derive formulas for the surface
potential (more exactly, for the node voltages along the boundary of the
approximating cubic grid) for various patterns of ¢ and g, and also formulas
for apparent resistivity as measured by the Wenner, Schlumberger, and
double-dipole contigurations of probes [3]. These formulas allow very
rapid computation of the stated quantities and do so under quite arbitrary
vertical variations in ¢. This is in contrast to the customary analysis of
vertienlly varying o where o is usually restricted to being a step function
with. just a few steps or to having some simple mathematical form such as
an exponential; see, for example, [1], [2], and [4].

At the ond. of this work, we prove that the solution obtained herein
is the unique solution for which a generalized form of Tellegen’s theorem
is satisfied or, to put it another way, it is the unique finite-power solution
djctated by Theorem 2.1 of [21]. It is important that this point of rigor be
resolved, for otherwise there would be no information concerning which
one of the infinity of possible solutions our procedure generates.

%, Discretization and the ungrounded elecirical grid. We choose
a threo-dimensional rectangular coordinate system in the half-volume Q
such, that @ and y arve orthogonal horizontal distances, # is the vertical
distance measured positively into the earth, and the origin is on the plane
boundary 242 of £, To diseretize our boundary-value problem, we choose the
incroments Aw, Ay, and Az such that 4z = 4y > 0 and Az > 0 ar‘ld then
roplace ® by jide, y by jody, and 2z by kAz[2, where ji,j, = ...
vey=1,0,1... and k =1,2,3,... Following Mufti [12] and Dpy a.-nd
Morrison [5], we then replace (1.2) by @ finite-difference approximation
in such & fashion that the increments in z, y, and 2 are Az, Ay, and dz.
The result is modelled by an ungrounded resistive rectangular electrical
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grid whose nodes are indexed by (ji,Js, k) or alternatively by (4, k),
where j = (j1, j») 18 a doublet of integers and % is odd and positive. This
is shown in Figure 1.
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The values of ¢ and § at the nodes are denoted by

Qi = @(hhdz, j, Ay, kdz)

and
Bix = B(jidw, j, Ay, k Az),

where % is odd. The g, ; are measured in volts. As for the By, we note thatb
in the resistivity method of geophysical exploration B rosults from tho
applieation of current to the earth through current probes. It I is injected
at some point, we represent this as the application of a current gource
Brw = I/(4dw)*4z that extracts current from mnode (j, k) and injects it
into a hypothetical ground (in the electrical genge). B has units of
amperes /meters,
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Since ¢ varies only in the # direction, the conductances a;, in Figure 1
arc given by

(2.1) @y = (d2) o (kdz2/2) for &k =1,3,5,...
and
(2.2) ay = (42) *o(kdz/2) for &k =2,4,6,...

Sinee conductivity is measured in mhos/meter, the @, have units of
mhos/meterﬁ. The nodal equations of Figure 1 are precisely the equations
generated by our finite-difference approximation to (1.2).

Actually, we could at this point allow the earth to have an anisotropic
conductivity, so long as the conductivity tensor with respect to the z, v,
and # coordinates is diagonal. This would merely change the values of o
in (2.1) and. (2.2) and also the conductance values a; in Figure 1 in different
ways along the f,,j,, and & directions. Furthermore, another extension
we could now incorporate is unequal increments (4z), in the 2 direction;
that is, & 42/2 would be replaced by 3 (42),/2. This would only change the
values of the a;, wlere & is even. _

Throughout this work we assume that the following conditions are
satistied.

CowprTIoNs A. (i) The conductances ay, vary, if at all, only with &, not
with §. Also there ewist two numbers m and M with 0 <m < M < oo such
that m << ay, << M for every k =1,2,3,...

(i) Only a finite number of the current sources f;; are non-zero. Moreover,

=0, j= s i)

There are mo other current sources and mo voltage sources.

Condition A(i)‘ asserts in effect that the earth’s:conductivity ap-
proaches neither 0 nor oo as depth increases indefinitely. Condition A.(ii)
asserts that as much current is extracted from the earth as is injected
into it through the curvent probes; moreover, all the current probes are .
at the surface and arve finite in number.

Given the a; and the f;,, we shall solve for the node voltages v,
(k 0dd) of Figure 1. :

3. The equivalent ladder network of operators. The nodal equations
of Tigure 1 are the following.

" Tor every j = (ji,j») we have, for k=1,

(3.1} (4ay @)V, 501 — B 0py 1,550 1 Ypng1 T 0 ipga=11 T O Vipgptin T

=805 58 = —Bjisa -

5 — Studia Math. 77.2
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and for ¥ = 3,5,7...,

(8.2) (404 Gpy + 05 1) V5 g0,k B V=L ™ WUy g de T OV fp—1k

= OV o1l ™ M1 Vg g im2 ~ Ohtt Vg ks = 0.

A more concise way of writing these equations is to suppress the index
j by working with the ladder network of Figure 2 wherein the vo lhages
and currents are vectors in the form of a two-dimensional array of numbers
and the resistances and conductances are operators of a certain kind.
Let D denote the space of all ordered doublets whose entries are integers.
Thus § = (i, j) € D. 1, will denote the Hilbert space of all two-dimen-
sional arrays {u;: j e D} of complex numbers %, with the inner product

(wy,w) = Z'M’jwjy

jeD

Uy W E Ly,

A continuous linear mapping F of I, into I, can be represented by a matrix-
like notation, namely, by the four-dimensional arrary [F,,,], where
m,jeD. Indeed, for w = Fu, we have

= Zﬁ’m,ju,.

jeD

(The converse is not true: Only certain four-dimensional arrays will
represent continuous linear mappings of I, into 1,).

A useful way of manipulating these entities is. to exploit double Fourier
series. Let C be the unit cirele and € x 0 the Cartesian product of ¢ with
itself. Corresponding to any w €l,, we have the double Fourier series:

(=] oo
1 J Sl ey

J1=—0o Jy=—c0

(o) = @ = (0, w,) €0 X0,

We denote the operator that maps « into 4 by #. & is a topological linear
ismorphism of I, onto the IHilbert space ., of (equivalence classes of)
quadratically integrable functions on (' x (. Bvery continuous linear map-
ping F' of I, into I, corresponds to a unique continuous linear mapping of
I, into L, given by #FFF".

Among all the four-dimensional matrices I = [T, /], whele m,jeD,
are those that are Laurent, that is they satisfy qup,jw) = I, Ior
every p € D. If F is a continuous linear Laurent mapping of I, into 7,, then
FFF 1 is the operation of multiplying the members of I, by an essentially
bounded funetion F(w) [4]. We denote that operation by F(co) Thus
F = F-1 [ F(w) 7.

@ ©
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We return now to the matter of getting simpler representations for

the network of Figure 1 and Equations (3.1) and (3.2). To each j = (jy, j2)
€D, we assign the norm [j|| = |5,{+ jal.

For each k = 1,3,5, ..., we let g; be the Laurent operator whose
(m,j) entry in its matrix representation is

da, for |lm—j|| =0,
(gk)m,j ={ —a;, for ffm—jl =1,
0 for |m—j| > 1.

‘We think of g, s an operator-valued conductance that acts on the I,-valued
node voltage v, in Figure 2 to yield the l,-valued current g,v, flowing
downward through g,. It is easy to show that g, is a continuous linear
mapping. However, it is not invertible.’ '

Furthermore, for each &k =2,4,6,..., we let 7, be the diagonal
Laurent operator whose (m,j) entry is

et for m—j| =0,

('rh)m.]' = 0 for - |lm—jll > 0.

!

Now, we view 7, a8 an operator-valued resistance that maps the I,-valued
current i, in Figure 2 into the l,-valued voltage 7,4, in a linear continuous
fashion. r, is invertible.

Finally, h is the vector in I, whose jth entry is h; = —8; ..

With these definitions in hand, we can write the nodal equations for
Tigure 2 as the following relationships between vectors in 7,. For k = 1,

(3.3) (g1trit)os
and for k¥ =3,56,7,...,

—17' 0y = h,

(3.4) (g + 1525+ 750 Y —Toh Vpyz T Upg = O
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Upon expanding these equations in accordance with their components,
we obtain precisely (3.1) and (3.2). Hence Figure 2 truly is a concige rep-
resentation of Figure 1 so far as the computation of node voltages is con-
cerned.

4. Driving-point and characteristic resistances. Our method of solving
for the node voltages in Figure 2 makes use of the driving-point resistances
ZyyZyy Zs, ... and the driving-point conductances ¥,, ¥,, ¥4, .... Wo
need to determine these quantities.

A formal application of Kirchhoff’s and Ohm’s laws yields the fol-
lowing for Z,, namely, an infinite continuned fraction whose entries are
certain Laurent operators: ‘

1 1 1 1
wn A T T

However, since the g, are not invertible, we have to ascertain what sense
this expression can possibly have. This iy accomplished by using & to
transfer our analysis onto €' x C. As was explained in [21], g, for & odd
becomes multiplication by the function 2a;,(2 —cos o, — o8 w,) and 7, for &
even becomes multiplication by the constant b, = a;'. Consequently, Z,
becomes multiplication by the function

- 1 1
- 2a,(2 —cos wy —Co8 w,y) + E—i—

1 1
+ 2a4(2 —c0Sw; — 008 wy) A by +

This i a continuous positive function except at the point w = (wq, mz) = 0,
~where the even truncations of (4.2) converge to ba-I— bg~-bg4 oo = 00

and the odd truncations of (4.2) are all co. Thus, Z,(0) = oo,

The explanation of this singularity is that Z, is an unbounded operator.
In fact, it cannot be applied to every member of 1, However, Conditions A
ingure that & is in the domain of Z, and that Z, & e I,. This allows our analysis
to proceed.

To. see this, note that # maps h = {#;: j e D} 1nt0

2 CU) == Zhjei(j:m),

where (j, w) = jio,+j20, But, by Condition A (ii), 2y = 0, and the-
refore

(4.3)

(@) = D) et 1.

icm
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Let ol == (w;+ i)™ As o]0,
(4.4) F(w) ~ doy I, 1-iw, Hy—0,
where

H, = 2 Ejﬁhfw'z'

Iy dg

Hy = ZZjJ.ibjl,j27
Jy Jg

So, quitie possibly, zero in (4.3) might cancel the singularity in (4.2) and
thereby allow Z,(w)i (o) to remain » member of L. This is truly the case,
as can be seen by examining the behaviour of Z,(») near the origin.

Indeed since 0 << m << 4 << M < oo for all odd & and 0 < M~ < b,
< m™t < oo for all even &, it follows from. (4.2) that Z,(w) is bounded. by
,hc function obtained by replacing the a; by m and the b, by m™" in the
right-hand side of (4.2). That funection is equal to

, 1 1 1 1y
45 ~ oL [ }
(4.5) E B u e 2(2—eoswl~—00swg)]

A8 ||o||-+0, (4.5) is asymptotic to m™ e|/~*. This fact coupled with (4.4)
yields the order relation

(4.6) Zy(@)h(w) = 0 ( wlﬂ%—’-'f—”"‘ﬂa)

a8 [lw|-0. Ilence, Zl(m)%(m) is quadratically integrable at the origin
and is in fact a member of L,. So truly, when Conditions A are satisfied,
h is in the domain of Z,, and v, = Z,hel,.

If the earth becomes uniform below some depth, these formulas can
be made more concise to some extent by using the characteristic resistance
of the corresponding uniform operator-valued ladder network [24]. In
particular, if a; = a for & =1,3,5,... and b, = b for k = 2,4,6, ...,
then Z,(w) becomes the characteristic-resistance function

(4.7) Fy(w) = —

b | b2 ] b e

2 4: 20(2 — 08 0y — o8 wy) |

So, if the earth becomes uniform. just below the t]opth where F == n,
n even, wo have

. 1 1
7 = ]
Z(@) a2 —cO8wy — oS wy) -+ by -

1
284(2 —COS wy —CO8 wy) -

(4.8)

1 1 1
by A+

%01 (2 —COS g — COS Wg) + by-+-Zo(@)
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5. Formulas for the node voltages. We have shown that, under Con-
ditions A,

(5.1) 1(0) = Zy(0)h(@) € Ly

so that v, = Z,h el,. The components of v, are the node voltages at the
surface nodes of Figure 1, where & = 1, and are in fact the Fourier coef-
ficients of 4;(w);

¥ o
f J By (g, wy)e~ @t o) oy da,.

— -7

1

Uit =

—~
il
S

—

This expression in eonjunction with (5.1), (4.2), and (4.3) yields o formula
from which any desired v;, = ©;,,,, can be computed.

Furthermore, we can compute the voltages at the nodes within the
earth (i.e., for k& = 3,5, 7, ...) either through a Iimb analysis [20], once
the surface node voltages have been determined, or by using the “propa-
gation constants” 0, of the ladder network. Let us examine the latter method.

For &t =1,3,5,..., we may write ‘
Vpgr = Vo —Tpprlery  Tpgn = Xppg e
Therefore

(5.3) Vipe = Oy Op = 1—7p Yypa,y

where 1 now denotes the identity operation on I, Thus

(5.4) V= O gy e 001, 0 = Zih, k= 3,5,7,...

We can again compute the components of v, by passing to ¢ x (. irst of
all, by, Y1 (0) = Fre ¥y 70, where
1 i 1
bip1 -+ 26;,,(2 —cosw, —cCoswy) - b:,: -}
L
- uy, (2 — CO8 @y — €08 wg) -

171:-14 (w) =

It follows from ‘qhis tha‘d; brp1 Vg () i8 nonnoegative, continuous, and boun-
ded by 1, and it attains the value 0 at (w4, o) = (0, 0). Congequently,
bu(@) = 1=, iy ()

is a po§it%ve continuous function with values less than 1 except at o = 0,
where it is equal to 1. Thus 0, is a positive Laurent mapping of I, into 7,
and [0l = 1. By (5.4), v, || < ||o,]; and 80, under Condition A, the node

icm
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voltages of Wigure 1 comprise a bounded set; in addition, the node voltages
along any horizontal plane of Figure 1 are quadratically summable.
The voltage at the node (4, js, k), where & == 3,5, 7, ..., i8

L7

Vp il = T j j B (@1, @p) 61T 20 4oy, ey,

-

(5.5)

where

If the earth hecomes uniform below the depth whoere & == u, n even,
wa have for & = n-1, w43, n45, ... \

(5.6)  G(0) = 1+ ab(2 —c08 @y — o8 wy) — [a2h2 (2 — 08 wy — CO8 wy)? -

+2ab (2 — 608 w; — o8 wy) ]2,

6. Apparent resistivity., In the resigtivity method of geophysical
exploration the customary procecure is to inject and extract a current I
into tho carth through a pair of current probes and to measure the poten-
tial V' between a pair of voltage probes. The apparent resistivity o, of a
nonhomogencous earth corresponding to a given configuration of the cur-
rent and voltage probes is the resistivity a homogeneous isotropic eaxrth
would have to have were it to respond to the given impressed current I
with the same voltage V. Thus g, depends upon the relative positions of
the current and voltage probes. The earth is explored by varying those
positions. In this section we present formulas from which the apparent
resistivity of an earth. with vertically varying resistivity can be computed.

The Wenner configuration. The relative positions of the voltage and
current probes for the Wenner configuration are shown in Figure 3 (a).
The current and voltage probes lie on the same straight line, with. the vol-
tage probes straddling the current probes. The distances between adjacent
probes arve all thoe same, namely 2¢. For & homogeneous and isotropic
earth with a resistivity of g, the ratio V/I can be shown to be g,/dmw
([37, p. 9). Honce the apparent resistivity o, for an earth with a varying
resistivity is

(6.1)

The Schlumberger configuration. The probe positions are shown in
Figure 3 (b). Here the probes are all in line too, but the distance 2@ between
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voltage probes is small as compared with the distance 2w between
the current probes. The apparent resitivity for this arrangement ([37,
p. 9) is

(6.2) Qa =

) current source
(al (=¥

=

voltmeter

b v +
f |
00000000500 _
I
()
(c) s &) s
oM
/’+
v,
J/N—

TFigure 3

The double-dipole configuration. In this case, the dipoles may have
any relative positions, as is illustrated in Figure 3(c). The Wenner and.
Schlumberger configurations are special cases of the present configuration.
Let AM denote the distance between the points A and 3, and use a similar
notation for the other distances. Then

S|V

(6.3) - 04 = : : Ty
|LIAM - 1L/BN ~1[AN —1/BIM I

(See [3], p- 8).

We now employ our prior results to obtain theoretical formulas for
these apparent resistivities. Since we are using a grid to model tho ecarth,
our formulas will only be approximate ones, but they can be made as
accurate as desired by chooging the grid sufficiently fine. Wo consider
first the general casé of a. double-dipole configuration.
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Lot us assume that a current of I amperes is injected into the earth
ati the point B == (2, y, #) = (é4s, 0, A2/2), where £ is a positive integer,
and ig extracted from the earth at A = (— &4w, 0, 42/2). Let us also as-
gume that the points M and N have the coordinates

M= (pydw, pody, A2/2),
N == (qpde, nydy, Az(2)

where as always A = Ay and the u's and the 4’s ave integers. Then

(6.4) h(w) = (Ax)~2(Az) I (6018 — g nfy,
Therefore
(6.5) Fy (g, wy) = (A8)"HA2)"Zy (01, ) I2isinw, £,

where Zy(wy, wy) is given by (4.2) or (4.8). Bub a;, = o,(d)~2 for % odd
and by, == ot (Ae)? for % oven, where oy, is the earth’s conduetivity at the
depth. kAz[2. So, with oy, == g;* and ¢ = (dz/Az)?, we may write

6.8 F ) (dw) 1
(6:6) Zaloy o) = 204 (2008 w0y —COS @) + 0f +

1 1
- 204(2 008 W, — 008 wy) + 0ol +

Ilquation (5.2) determines the electric potentials at points M and N
Upon taking their difference, we obtain
(6.7) Vo= Dieguisgn ™ Vnyg,1

Edg

n
= 112 j fﬁl(am 0)2)[01(”’1"1”’2"2)-0‘i(m1"1'kw2n2)]dW1d‘w21
4

gt

where §,(wj, w,) i8 given by (6.5) in conjunction with (6.6). Also

AN == [(y 4 8202 dw,
BM = [(uy— 3] da,
BN = [(n,— &) +ng] .

(6.8)

The substitution of (6.7) and (6.8) into (6.3) yiclds the apparent re'si‘stivity
of the earth ag determined by our resistive-grid model under Conditions A.
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Formula (6.7) simplifies for the Wenner and Schlumberger configur-
ations. For the Wenner configuration, set # == uds, where u iy a positive
integer. Hence & = 3u. Also, uy = p, 7y = —f, pe = Ny = 0. Therefore

164

(6.9) &= inde

n N
f '{zl(wl, 0,)8indw, usinwud w, d w,.
0o

Similarly, for the Schlumberger eonfigumwtion, set @ = pdw and
w = EAw. Again p, = u, Ny = —u, py = Ny = 0. Consequently,

9(EL_ ) ~oL )
{6.1.0) 0 = Mfle(wl, ,)8in w, £8in o, pdwy deo.,.
0

nudx Az p

Numerical computations based upon these formulas for discrete-layor
configurations of the earth yield the same resistivity curves one finds in
the literature (see, for example, [18], p. 671) except for the fact that for
small potential-clectrede spacing the discretization has the effect of in-
creasing somewhat the apparent resistivity.

7. The uniqueness of our selution. We shall now prove that, under
Conditions A, our solution for the infinite grid of Figure 1 is precisoly that
solution dictated by Theorem 2.1 of [21]. In other words, it is the unigue
solution that satisfies a generalized form of Tellegen’s theorem, a special
consequence of which states that the power digsipated in the grid is equal
to the power supplied by the current sources. We now use the notation of
[21] and state the definitions we need.

In the following, H, denotes a real Hilbert space with the inner pro-
duct (-, +).

CoNpITIONS B. Let N be a connected countably infinite electrical nelwork
hawing no self loops. The currents and voltages of N are members of H,. Hach
branch B; of N is a parallel connection of a (possibly zero) cusrrewt souvce
h; e H, and a (nonzero) conductance g; which is a positive snvertible operator
mapping H, into H,. There are no other current sources and no voltage sources.

hy
i ()
i —/
——
&9 J SR
e/
AAAA
g, ) VWWY
+ ) 7 ‘ -
Figure 4
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By, By, By, ... denoties the branches in N. Tho typical branch By,
which we take to boe oriented, iy illustrated in Figure 4. The branch voltage
(dvop) ®; € I, and the branch current 4; € H, are measured with respect
to the orientation of B Thus & = go,—hy, ¢ = 3 i;,B; is the 1-chain
of branch currents, ©’ = 3'v,B; is the l-cochain of branch voltages, and
ho== 3 Iyl i the L-chain of current sources. Kirchoff’s node law states
that 4 18 @ cycle, and his loop law states that ' iy a coboundary.

A 1-cochain w’ = 3 wB;, where w; e Fl;, is defined as a functional
on u l-chain o == > ayl¥y, where @; € H,, by <w', &) = 3 (w;, ;) whenever
(g, ay) oxigte. Tho Jatter will cortainly be the case when @ it a finite
1-chain (i.o., when all but a finite number of a;’s are zero). We now let %~
Dbe the Hitbert spaco of all coboundaries v’ = 3 v;B; such that

(7.1) (g, gy)) < 00

The inner product of two coboundaries »' and w’ in 7" is defined to bo
a Y R A - ro
vy, gywy). Thus the norm. of ' is

ol = 3 (05, gyon)| "

Pinally, wo define the operator ¢ of N to be the mapping of any L-cochain
v = Mo into the l-chain Go' = 3 g8,

Tumoram 2.1 of [21]. Let N satisfy Conditions A, and let its branch
paramelers sakisfy

N (g7 hyy by) < oo

(1.2) pX

Then there cwisls a wnigue v' €% such that
(7.3) 'y h—Gv") =0,

Sfor all w' ¥, .

This theorem states in effect that four conditions determine a unique
sot of branch voltages: Kirchhoff’s loop law (¥’ is a coboundary), the finite-
power disgipation condition (7.1), the finite-power—a.vaila.ble. condition
(7.2), and a generalizod form of Tellegen’s theorem (7.3), which encom-
passes Kirehhotf’s node law and Ohm’s law a8 consequences.

Wao now oxamine Figure 2 with H, = Iy, being the real Hilbert space
congisting of tho real vectors in I, We let the first branch of that infinite
Indder be the parallel combination of the Iy-valued current source h and
fhe conductanco operator g, € [Te,; Iy, The other branches have no corrent
sources. Tor each branch, the hranch current ¢, and the Dbranch voltage
drop v, arve measured in the same divection; 4, is the Zg,.—w{alued current
flowing downward through gy, Also h = LB, is the 1-chain 'of current
sources, Note that (7.2) is automatically satisfied because there is only one
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current source k, it is in the first branch, and it is in the domain of g7
A review of the proofs of [21] shows that for our purposes, we do not need
the invertibility of the g; (the h; being in the domains of the g7 ! guffices)
even though that condition was assumed in Conditions B.

Let ©* = 3 v,By be the coboundary of all branch voltage drops and
let ¢ = X i, B, be the 1-chain of branch currents for Figure 2. We have
already shown that, under Conditions A, the v, and 4 are all moembers
of 1,,. Our first objective is to show that v’ e#". To do so, we neoed merely
show that

o

N .
‘}J (Vpy 1) < 00,
k=1

(7.4)

where 4, = g;,v; for every k. (Note that, for & even, g,
Kirchhotf’s node and loop laws, we may write

=L

=9t exists). By

(v1, 1) D1, B) -+ (01, 42)

=
= (V1, 41} + (Ve 1) -+ (V55 1a)

= (Vg5 &)+ oor F (Ong1y tngn) F (Vg s Gppa)
= (

Dyy ) e A (Ongry fugt) F (Vgrs Yageiia)-

Since v, and & are both members of Iy, (v, h) is finite. Also, (04, i), ...

«vy (Pug1y %p4a) ave all nonnegative finite quantities becaunse gy, for & even,
and », for % odd, are positive operators. Moreover, for every even ., X, .,
is also a positive operator as can be seen by examining its continued-frac-
tion expansion. It follows that we can let n—oo in the right-hand side of
(7.5) to conclude that the partial sums of the left-hand side of (7.4) comprise
2 monotonically increasing bounded sequence and therefore converge.
So truly »' ¥

Next we want to prove that, for every w’ e,

(7.6) w', by = <w', (v,

where & is the operator for the network of Tigure 2, that is
Lo 2y .
G’ = fz glc’”lc'Bh! == 2 /'/IzBlc == 1,
== Jors],
By the definition of the application of a coboundary to a 1~chain,

(7.7) Q' GO’ = (wy, 1)+ (W, i)+ (g Ta)+ ..
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On the other hand, the components of w’ satisfy Kirchhotf’s loop law,
whereas the components of h—4 satisfly Kirchhotf’s node law. Therefore,
we may apply the same expansion as that used in (7.5) to write

Qwy By == (wyy b) +(wy, 4) - (wy, 45)

== Wy by) - (W, 15) + (g, 1)

(1.8)

s (W y ) -+ (g, €5) - (W, o)+ oo

A eomparison. of (7.7) and (7.8) establishes (7.6). .

Thus, our solubion for Higure 2 satisfies all the conditions required in
Theorem 2.1 of [217 and is therefore the unique solution dietated by that
theorem. :

Our final objective is to trangfer that conclusion to.the network of
Tigure 1. The livst difficulty is that the current sources in Figure 1 are
not conneeted across conductances, as required in [21]. Bub, since > h; == 0
and there arve only a finite number of &;, we can replace the A; by another
entirely equivalent finite set of current sources that are connected across
the a; conductances. Thig can boe accomplished as follows. Choose any node
ainthe k == 1 plane. Then, choose any node f in that plane having a (non-
zoro) eurrent fiy fed into it. (« and p may be the same node.) Finally, choose
a Tinite path from « {0 f along the branches of the & = 1 plane and connect
a current souree of value 7y across each conductance in that path with 7,
being directed in the divection from o to f, (When o = B, omit the last step.)
1.‘)0ing"1;th:is for every nonzero component of 7, we obtain the equivalent
set of current sources. Since that set is finite, the requirement (7.2) will
bo satisfied.

Next, consider any w' e ¥ for Figure 2. Tts first element w, is a vector
in I, consisting of node voltages in the first plane (k = 1) of Figure 1.
Tt is oasy to show that the set of voltage drops for all the branches of Figure
1 due to w' is quadratically summable. Let u’ be the corresponding co-
boundary of voltage drops for Figure 1. Let f denote the equivalent 1-chain
of bramel, curront sources for Figure 1 construeted in the preceding para-
graph from J. Tt follows from that construction that {w’, hy = ', f>.
In other words, we havo converted (w’, kY into a form <{u’, f) appropri-
ate for the application of Theorem 2.1 of [91] to the grid of Figure 1.

Wo must do the same thing for {w', Gv>. Consider ¢y == g4v;, the
first component of Gw’. Bach component of ¢, i8 in trum the sum of the four
currents «, f, v, 0 being carried away from some node, say i, through
the four a, conductances incident to that node. Moreover, (w,, %;) is & sum
of terms of tho forma Ay(a-+ -y 0), where 4, is the component of w,
at nq. Lot n,y be a first-plane node adjacent to and let @ be the current
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flowing through an a, eonductance from », to n,. The same analysis at n,
shows that (w,,,) has a term A,(— o) corresponding to the current -«
flowing from n, to n;, where 1, is the component of w, at n,. Thus, the sum
(wy, %;) containg the term a(, —1,), where « is the current in the branch
connecting %, to n, corresponding to the ¢, vector and 4, — 4, is the voltage
drop in that branch corresponding to the w, vector. In fact, this decom-
position shows that (w,, 4;) is simply the sum of the products of the branch
voltage drops in the & = 1 plane due to w, with the corresponding branch
currents due to 7,. A similar conclusions ean be drawn for cach (wy, 4;)
when % is odd.

Moreover, the same can be done for each-(wy, i), where k is even,
In fact, there is nothing to demonstrate in thi case, for now the components
of w, are the branch voltage drops acrosy the ay conductances and the
components of ¢, are the branch currents in those conductances.

Thus {w', Gv"> = (W', G,v,>, where G, is the operator for Figure 1
and v, is the coboundary of voltage ‘drops for Figure 1 corresponding to
the branch ecurrents in Figure 1.

Altogether then we have shown that (7.6) can be transferred (with an
appropriate change of notation) to the grid of Figure 1; in particular,
G, fy = (', G,v,>. Consequently, Theorem 2.1 of [21] applies to that
grid and asserts that the solution for it obtained herein is the unigue sol-
ution satisfying a generalized form of Tellegen’s theorem, namely (7.3).
As a corollary, we have that the power supplied by the current sources is
equal to the power dissipated in the grid.
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