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Entropy numbers of r-nuclear operators
between L, spaces

by
BERND CARL (Jena)

Abstract. We show that the sequence of entropy numbers of r-nuclear operators
acting from Iy into Ly, 0 <7< 1, 1 < p, g< co, belongs to the Lorentz sequence
space g, where

1/s = l/r+min(1/2; 1/1))—~ma-x(1/2; 1/g).

Introduction. Since the fundamental work of Grothendieck the #-
nuclear operators (“operateurs 4 puissance r-igme” [6]) were intensively
investigated. A rvepresentation of the theory of these operators can be
found in the book Operator ideals of Pietsch [14]. A remarkable fact about
the distribution of eigenvalues of r-nuclear operators was proved. by
H. Konig [8].

The aim of this paper is to determine the “degree of compactness”
of r-nuelear operators in terms of entropy numbers. As an application
we also get once more Konig’s result about the behaviour of eigenvalues
of r-nuclear operators acting in I, spaces.

Let 0<<#»< 1. An operator S e % (¥, F) from a Banach space H
into a Banach space F is called r-nuclear if it admits a representation

0
8=20,04, @k, y,cF
=1

with 3 fja, [ 9,17 < oo. Let

fs=l
N,(8): = int (Z laall iy 1),

where the infimum is taken over all possible representations of S. The class
of these nuclear operators is denoted by 9, (&, F'). [N, N,] forms an »-
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normed operator ideal (cf. [14], (18.5)). For every operator 8 e (H, I
the nth entropy number ¢, (8) is defined to be the infimum of all & 2= 0 such
that there exist ¥ ,...,¥m-1 € F for which

8(Uy) s U {yit+e U}

Here Uy and Uy arve the closed unit balls of I and F, respectively. Roughly

speaking, the asymptotic behaviour of e,(8) characterizes the “degree of

compactness” of 8. In particular, § iz compact iff lime,(S) = 0. Further-
n

more, let us mention the multiplicativity of the e,’s:

tnomes (ST) < 04 (8)en(T)  for TeZ(B,F), 8 e (¥, @),

Put
Lt = (8 e2: (64(8)) €1y}
and

Ly o(8): = epoll(en(S)[],, for SeLy,
where 1,4 *lpoly 0<< P,y ¢ < 00, Iyt =1, ,, stands for the quasinormod
Lorentz sequence spaces (ef. [15]) and ¢, , is a norming constant (ef. [14],
(14.3)). Then [#,,; L, ,] becomes a quasinormed operator ideal ([14],
(14.3.5)). From the multiplicativity of the entropy numbers we get the
useful product formula

Z

pl’qlo,‘f

P

1fp = 1jpo+1/p1, 1/g = 1/gs+1/ts.

The definition of the product of quasinormed operator ideals i3 taken
from [14], (7.1).

Moreover, we neced the following mnotions. The n-th approwimation
number of an operator S e ¥ (F, I is defined by

& Ly, for

0,(8): = inf {||§ —A||: rank(A)< n}.

Define for S e £ (I3, B), n = 1,2, ...,

II(8): = (f [|Sh||2dsn(h)>”*,

l?'l/

where s, is the n-dimensional standard normal dlsmbubmn on the n-
dlmensmnal space Iy. For 8 e ¥ (E,F) we pub
IT(8): = sup {II,(8X):

1X: BB <1, n=1,2,..).

icm
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An operator 8§ € Z(H, F) is called s-Radonifying if it is the limit of finite
rank operators with respect to IT,. The class of these operators, denoted
by #,, is a normed operator ideal.

The definition of an absolutely (p, ¢)-summing operator can be found
in [14], (17.2). The ideals consisting of these operators are denoted by
P (Ppt =Py ). For the definition of Banach spaces of type p we refer
to [12]. It should be mentioned that the spaces L,: = L,(x) have the type
min(p,2) if 1< p< oo,

The eigenvalues 4,(S) of a compact operator § € # (B, E) ave ordered
in non increasing absolut values and counted according to their algebraic
multiplicities. By ¢, ¢,, ... we mean always positive constants not depen-
ding on the natural numbers =, and on the operators.

The main theorem. We start our considerations with a series of lemmas.
The first result goes back to Chevet et al. [4].

Levva 1. Let T € & (H, E) be an operator from a Hilbert space into
a Banach space. Then

Ted, if and only if T’ eP,.

The next statement due to Dudley [5] and Sudakov [16] was trans-
ated by Kiihn [10] into the “operator language?”.

LevmA 2. Let T € £ (H, E) be an operator from o Hilbert space into a
1Banach. space. Then

T e,

implies T'e%, ..

These two lemmas are used in order to prove
LuvmA 3. (i) Let B be a Banach space such that B’ is of type 2. Then

P8, F) € £, (H, F).

(ii) Let 2 < p < oo; then

Po(Lyy F) S Ly p( Ly, F).

Proof. Given 8 € #,(E, ). By Pietsch’s factorization theorem [14],
(17.3.7), we have § == YX with X e #,(¥, H) and Y e ¥ (H, F), where H
Iy o Hilbert space. From [13] we know that X' e 2, too. Since B’ is of
type 2, Lemma 1 implies X' € £,, and Lemma 2 implies X''€.%, .. The
1n3<ect1v1ty of the ideal %, yields X €%, ,, and thus 8 €%, ., which
proves (i). Let us turn to the second assertion. For S e 2,(L,, F) we
have again a factorization 8 = YX through a Hilbert space H with
Xe#(L,,H) and Y e Z(H, F).
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Using once more Pietsch’s factorization theorem we get for the dual
operator of X the factorization

X

H e L
\
L

A result of Kwapien [11] states that B e, and thervefore X'e#,,.
Since X’ is defined on a Hilbert space, a result of Konig [7] yields that
the sequence of approximation numbers (a,(X")) belongs to 7, and hence
(@, (X)) €1, (ef. [14], (11.7.4)). Consequently, by Theorem 2 of [1] (6,(X))
€l,, which implies (¢,(8)) €7,,.

Finally, the following statement is a recent result of [3].

LeMMA 4. Let F be o Banach space of type q and S € Z (1, F) an oper-
ator admitting a foctorization S = TD, where D e Z (L, 1,) is a diagonal
operator, D(&): = (0, &), generated by o sequence (o) €l,,, 0<Cr< co,
0<t<< oo, and T e % (1, I"). Then

'
B

1

8e%eyl, F) for Ljs=1jr+1—1/g.

Now we are able to prove the main theorem.
THBOREM. Let 0 <r<<1 1< p,q< oo, 1/s = Ljr-+min(1/2,1/p)—
—max(1/2,1/q). Then .

N, (L, Ly € 2, (L, Lq) .

Proof. Given 8 e, (L,, L,). It is well-known that the r-nucloar
operators may be factorized

»

8§

Lﬁ —— L’J
* 1=
D
lm ————— Z:L

where X, ¥ are bounded operators, and D is a diagonal operator, D (&)

= (0;§;), with a generating sequence (s;) €1,. We may write the diagonal
operator D in the form
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D
| — I
Iy

where the generating sequences (o2) of D, and (o}) of D, belong to I, and
Ly reSpectively. Obviously, D, e #y(lo,l;), hence D X Po(Ly, 1y)-
Lemma 3 implies DoX € Lpoci ol Lpy b). Sinee Ly,1< g< oo, is of
type min(2, ¢), by Lemma 4 we have ¥D; € Lo ity Lg) & Loy oo (lay Lg)
with 1./sy = 1/r—1 41 —max(1/2,1/q) = 1/r —max(1/2, 1/q). Thus

8 = YD, Dy X € 2 40 (Lnpy L),
1/s =1[r+min(1/2;1/p)—max(L/2,1/q).

Finally, this result can be improved by real interpolation: Combining
the well-known interpolation formulas (ef. [9], [11)

R,(E,F) < (R, (T, F), R, (B, Ty,
Lfr = (L—=0)fry-+0fry, 0<O<L, O<r,<r<<r;<1, and
(gso,ﬁo (B, F), Lo, (B, By s Lou(B, F),
1fs = (1 —0)/sy+0/[sy, 0< <L, 0<TH,8,9< co, with the inclusions.
N, (Lyy L) S Loyn(Lpr )

proved above, 1/s; = 1/7"q:+n1in‘(1/2: 1/p)—max(1/2,1/g), + =1,2, we
arrive atb

R (L L) S (M, Ly Lg)y Ry (s L))o ﬂ
= (ﬂ(/'/su,oo(];pa Lg)7 ‘gsl,w(Lpi I’q))o,r-c— gs,r(l;p; I’q):

completes the proof.

Finally, it remaing to show that the conclusion of the theorem cannot
bo improved.

guppramuNnt. Let 0<r<1, 1<p,q< oo, 1fs = 1jr-+min(1/2,
1/p) —max(1/2,1/q). If re<7, then Ru(lps lg) & Lorollys l)-

Proof. Wor arbitrary r,p, ¢ with 0<» <1, 1< p, g< oo, We. con-
struet operator S such that SeR,(y, 1) and 8 ¢ L, (L, L), where 1/s-
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= 1/r<4-min(1/2,1/p)—max(1/2,1/qg) and r,<<r. For this purpose we
write the desired operator §:17,—1, as a telescopic sum

S: = 2 D8n: lp(lf,n)"> b leln>

n=0

of operators Sy: 1'—12" defined by

0, (2") "V Lyn, 1<gg2sp < oo,
' 0, (2")THHPTI [y, 1< p <2< < 00,
B = 0, (2" Ay, 2<p,q< oo,
0, (2") VTP A, 1<p,0<2,

where (0,) is a sequence belonging to I\, and iy ordered in non-increas-
ing absolute values, In: 15'—12" is the identity operator, and Ay: 1 12"
stands for the Littlewood (Walsh) matrix of rank 2”. These matrices are

defined inductively by

~A2n .Ag'n,.
Ago: = (1) and A1 = .
| A — A
From
n gmyir 1 €2
Ny(Ls 2y < | )1 ’ sasEsp= e
@myr-tetlie . <o pL2Kg< oo
and
omn 1r+1lg 9 <
NT(A?_nI l?,n—%lzn)é |( )] . ly S P< o,
(Zn)/r-f-—lp’ 1<p,q<2
it follows ‘
NSy ') < oy, 1<p,q< .
Since N, is an r-norm, we have
e S S
Ni8) < zolmsms Do, < oo
Toms el

Consider the operator T,, defined by the following diagram:

1,

o m o 12
B (Iy) ——— > I ()
| I(m)
g(m) ;
an(lén)

l

L) —————>1,@&")

icm®
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where J™ and P™ are the natural injection and projection, respectively,
and I® ig the identity operator. Since |Am—1,;(T,)| = |4(Ssm)] and
|4 (Agn)] = 2"*, § = 1,...,9", we get for the ecigenvalues of the Spn’s:

[2:(8gn)| = [oy|(@m)7 Mok, g =1, .., 2",

1/8 = 1[r-+min(1/2, 1/p) —max(1/2,1/q). Using a well-known inequality
between eigenvalues and entropy numbers [1], and :
ey (I™: 12" 2" < gy (24,

[2], we obtain

o | (2™) M= HEHIP — 17 (8ym)] = Agm (T < 26,41 (Ton)
2119 llegm(S)IP™ ozm (1)

<
< 26m(8) 05 (2™)P7HE,
Hence eym(S) = ¢|o,,[(2™) ™. This yields

L1, (8) 2| (e, = > eio(8) ol
am—1

2 3 D) ()@ Ry

m k=1

2 D eh(8)2mr
m

> 2 ia,m!rozm(—rals)zmrﬂ/s
m

2 ) loale = oo
m
it #,< r, which completes the proof.
Remarks. Tn another paper we will show that the preceding theorem
can bo generalized as follows:
1OROLIARY 1. Let B be of type p and F of type q. If 1/r > 1/p +1/2,
Ljs = 1fr-b-L—1/p—1[g, then
N0, F)s &, (B, F). ;
ITowever, in the above statement there is the addﬂ.;iona,l condition
1/r> 1/p-+-1/2, we do not know wether it is necessary. Finally, ﬁom’our
theorem and the inequality |4,(S) < V2e,(8) between eigenvalues and
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entropy numbers of compact operators in Banach spaces we got on thig
way again the statement of H. Kénig [8] about the behaviour of cigen-
values of r-nuclear operators in L,-spaces.

COROLLARY 2. Lot 0 <r<<1, L<p< oo. If 8 eM,(Ly, L,), then the
sequence of eigenvalues (Z,L(S)) belongs to the Loroniz sequence space 1,
where 1fs = 1[r—|[1/2 —1/p].

ey
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A theory for ungrounded electrical grids and its application
to the geophysical exploration of layered strata™

by

A, . ZEMANIAN and PRASAD SUBRAMANIAM
(Stony Brook, N.Y.)

Abgtract. A mothod is presented for solving the finite-difference approximation
to ¥y (ogg) = f ovor a half-volume, where ¢ is unknown, o and 8 are given, ¢ varies
only in the normal direction to the boundary of the half-volume, and £ is nonzero only
on that boundary. The method is based on a theory, developed herein, of infinite un-
grounded olectrical grids; no truncation of any grid is imposed. The solution is given in
terms of an infinite continued fraction of Laurent operators and yields some compu-
tational procodures that are quite efficient. The variations of ¢ in the normal direction
to the boundary arve allowed to be quite arbitrary so long as o is positive, bounded,
and bounded away from zero, The theory has significance for the resistivity method
of geophysical exploration. Formulas arve developzd for the apparent resistivity of
the carth undor various configurations of cwrrent and voltage probes. In addition,
it iy proven that the obtained solution is the unique solution for which a generalized
form of Tellogon’s theorcm is satisfied.

1. Introduction. ¥t has been some ten years now since the elements
of a rigorous and quite general theory of infinite electrical networks were
first proposed. [7]. Since that time the theory has expanded considerably,
but up until quite recently most of the results consisted of existence and
uniqueness theorems for the current-voltage regimes in infinite networks.
(See the gurvey articles [19] and [23]). There was not much information
on how those current-voltage regimes could be computed. One of the prob-
lems is that an infinite olectrical network can respond in many different
ways to o set of sources supplying a finite total amount of power. However,
for ecrtain classos of such networks, only one of those solut%ons corre-
sponds to finite power dissipation in the networks. It is that unique finite-
power golution that is the one of practical interest in most cases. )

Starting about two years ago, methods were developed for compuhgg
tho finite-power regimes in a grounded grid, that is, in & square or cubic
grid baving a branch connecting each node to a common ground [21], [22].

% This worl was supported by the T.S. National Seience Foundation under
Grant No. JiC8 8121716. ' '
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