©

m STUDIA MATHEMATICA, T. LXXVI. (1983)

The Bergman and Schiffer transforms
on weighted norm spaces

by
JACOB BURBEA (Pittsburgh, Ieun.)

Adstract. ' Wo charnotorize thoe woighted measures A on a plane region D ¢ Oy fox
which the Borgman projection and the Bergman-Schiffer transform are bounded on
Ly(Did), L p << oo

§1. Introduction. Lot D ¢ Og (i-c., D has a nontrivial Green’s function)
be a plane region and let A be a non-negative locally integrable function
on D. This paper is concerned with the question of the boundedness of
the Bergman projection P, and the Bergman—Schiffer transform Qp in
Ly(D: 4), 1< p << oo. This is done by introducing two classes of weights
I, (D) and M, (6D) in terms of a universal cover mapping of D and non-
euclidean (hyperbolic) sectors. In this way weare able fo generalize the results
of Bekollé and Bonami [1] and also extend our previous results in [3], [4].
The question of the boundedness of the Bergman projection has been
congidered in the past by several authors. The reader is referred to the
articles [1], [2]-[4], [6]-[7], [9], [10] for details.

§2. Preliminaries. Let 4 = {z: |2 < 1} denote the unit disk in the
plane. We recall several known facts about the noneuclidean geometry
on 4 which is known as the Poinearve’s model of hyperbolic geometry.

The Bergman and the Hilbert kernel of 4 are given by

(2, f) = —7];— (L—2f™% = led,
and by
Mo d) = =0 mied, s #L
respectively. The line element in this Foincaré geometry is given by
a(e) = V(= B) 2|
and the surface element is
ds(2) = nl(z, Z)do(e),
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where do(z) = dody, # = z-+14y, denotes the arvea Lebesgue measure.
The above line and surface elements are invariant under the action of
the group Méb(4), where each A e Mob(4) is given by

f—
A =afTh =1, e,

If L is a circle orthogonal to the boundary of 4, 04, then the part of
L in 4 is called a noneuclidean line (or geodesic) in the Poincaré geomotry,
Naturally, a diameter of 4 is also a noneuclidean line and every mnon-
euclidean line separates the noneuclidean plane 4 into two noneuclidean
half planes. Any part of a noneuclidean line is called a noneuclidean
Ssegment.

By a noneuclidean sector in A we shall mean a subset § of 4 bounded
by a simple curve consisting of finitely many noneuclidean segments and
Dossibly a part of 94. We distinguish two special families ¥ (94) and ¥ (4
of noneueclidean sectors in 4 ag follows: -

8 eN(84) it § is bounded by a simple curve consisting of (i) an arc
of 94 with the possibility that this arc can be reduced to g point,
(ii) from the end points of this arc in 94 we have a finite number of non-
euclidean segments arranged in conjugated pairs, (iii) the lagt conjugated
pair is joined by a mnoneuclidean segment ingide 4.

The family N (4) consists of all 8 e N{84) and also similar gectors as
in N¥(94) but, where the “first” conjugated pair is joined by a non-
euclidean segment inside 4. Bvidently, these families remain invariant
under the action of any 4 e Mob(4) and they cover A.

Let D be a meagurable subset of the plane and let 1 be a non-negative
locally integrable function on D. The space L, (D: A) stands for the class of
functions f on D for which ‘

”f”Lz,(D:l) = { fff(z)m(z)dcr(z)}llp< 00
D

is finite. We write L, (D) for Ly (D:1) and |fll, for ||l
assume that 1< p< co and that g = p/(p—1).

Let 4 be a non-negative locally integrable funetion on 4. 2 is said to
belong to I, (4) if it satisfies the Muckenhoupt condlition:

@ We shall always

1 1 -1
SEP {TSTS[/'I(z)dcr(z)} . {‘E- Sfﬂ(z)“"/(”‘”dcr(z)} <00,

where t].1e supremum is taken over all § e ¥ (4). Here |8] = ¢(S), When,
the family N(4) is replaced by the subfamily N (04), 2 is then said to
belong to M, (24). Clearly, M,(4) < M,(24).

icm°®

The Bergman and Schiffer transforms

The Bergman projection on 4 is defined by
PaN ) = [h, O f(2)doe)
4

and the Hilbert transform on 4 is given by

where the lagt integral is taken. in the prineipal value sense. It is well known
that these operators are bounded on L, (4). For fature reference we shall
record the following two propositions:

ProvosreioN 1. The Hilbert transform Ty is o bounded operator from
Ly, (2 2) dimto Lo, (A: 3) if and only if 2 e M, (A).

P'ROPOSINION 2. The Bergman projection Iy is @ bounded operator
Jrom Ly (A: 2) dnto Ly (A:2) if and only if e M,(04).

Proposition 1. is essentially due to Coifman and Fefferman [5] while
the proof of Proposition 2 is analogous to one given in Bekollé and Bonami
[1]. The families N (4) and N (84) can be, of course, replaced by a variety
of other families (see for example [1] and [57). It is, however, more adyan-
tageous, as we shall see later, to use the present families of noneuclidean
gectors instead. :

§3. The Bergman ~Schiffer transform. Let D ¢ O, be a plane region
and let G = Gy(2, £) be its Green’s function. Thus

G (2, §) = H(e, ) —logle—{],

where H (z, {) is symmetric and harmonic in 2» x.D. The Bergman kernel
of D, K (2, f) = Ky( &), is given by

‘ 2
(=, F) = — — 0,0;G
ko)
and its “adjoint” T(z, &) = Tpyle, &) by
9
Lz, £) s - - 0,0, G
In analogy to the Bergman projection
(Pu @) = [ Kz E)f(2)do(2),
b

wo also consider the Bergman-Schiffer transform

@u(8) = [ L, O f()do (),
£
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where the integral is taken in the principal value sense. The operators P,
and @, are always bounded on I, (D) and, moreover, the following relation-
ships

(3.1) Qp =Tp—TpPy
and
(3-2) ID ‘PD = Q;QD

hold on Iy (D). Here I, is the identity operator on L, (D), @% is the adjoint
operator of @, and 7, is the Hilbert transform

(33) @) == [ =8 feio(e)
D

on D. The above relationships and other related results were established
in [4]. :

Since D ¢ Oy, D has the unit disk 4 = {w: jw]< 1} as its universal
cover. Let 7: A—D be a universal covering map for D. Let I" be the co-
vering group of =, that is, I" consists of all those y € Mob(4) for which
w0y = m. Then, as is well known,

ol ) = hog 0t

yel’
wWith & = 7 (w), { = (r); w, v € 4. On the wnit-disk 4,
1—wz
w—t

G4 (w, 7) = log

’

Ky (w, T) = k{w, )

and
Ly(w, 7) = h(w, 7).
Therefore,
G2y 0) = D Gy (y(w), ),
yel'
(34) Ep(ey D' (w)a' (v) = ' oy (w), %)y’ (w)
yvel

and

(8.5) Lol D' w)a' (1) = ) hlyw), 1)’ (w).

yel'

The above representations are evidently well defined and they are indo-
pendent of the choice of the projection map .
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§4. The classes M, (D) and M,(0D). Let m: A—D be a universal

cover map for the region D ¢ 0, and let I" be the covering group of s.

Let Q = 4/I' be a normal fundamenta] region of I" (see Siegel [8], p. 38).

Thus, 4 = | (), where this union is disjoint and the boundary of Q
wel'

consists of finite or denumerable number of noneuclidean segments ar-
ranged in pairs conjugated by elements of I' and touches 24, and so it
has zero plane measure. In this case m|, is (modulo a set of measure
zero) a homeomorphism of Q onto D and we write ¢ = (mlg)™%

We shall write N (2) = {SnQ: S eN(4)} and N(0Q) = {8n0: 8
e ¥V (04)}. Bvidently, IV () is a subfamily of ¥ (4) and it eovers £. Similar-
Iy, ¥(6Q) is a subfamily of N(84) and, of course, N(02) « N(Q2). We
define N (D) = x[N(2)] and ¥ (8D) = [N (0£)]. This definition. of the
familiey N (1)) and N (&D) is independent of the projection map n as the
first part of the next theorem shows. Clearly, N (6D) = N (D).

Let 2 be a non-negative locally integrable function on D. For g
measurable subset U of D we write

1wy = | Jw@ripae)®

and
”¢’”p:l’7 = II‘/”IILﬁ(U:I)'
The weight function A is said to belong to class M, (D) if

Sup {”‘ISIHLJ,(U:A)} . {ll(ﬁ'llz,p(v:m_q,}
U ][¢’]IZ:U ”‘75’”2:1/‘
where the supremum is taken over all U e N (D). When the supremurn
is taken over the subfamily ¥ (0D), 1 is then said to belong to M, (0D).
Again, these definitions are independent of the projection = as the following
theorem shows:

TrmsoREM 1. Let swy: 4—D be another covering map and let I'y be its
cover group. Leb also Ly = A|I'y be a (normal) fundamental region of I'
with = (wyla,)™ Then,

N(D) = a[N(Q)] = my [N ()]

0,

and
N(0D) = n[N(8Q)] = my [V (02,)].

Moreover, for any non-negative locally intograble fumction u on D,

—t o 17
1Ty A PRCPES ) PREEES i

Jor all measurable subsets U of D. Here, v is o constant in [0, 1) which is
independent of U.

”¢'”Lp(U‘:ﬂ)
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Proof. There exists an 4 e Mob(4) so that m04 = x and hence
I'= A7 A. Therefore, 2, = A(Q) and p = Adod. Kvidently, A LNV (£2)]
= N (&) and A[N(0Q)] = N(0£2,). Oonsequently, =[N (2)] = m; [N(2:)]
and w[N(9Q)] = =, [N (6£,)], proving the first part. of the theorem.
Next, v'(2) = A’(¢(z))¢’(z) and _

Juo

for a subset U of D. Since 4 e Mob(4), 4 is given by

$RIP 16 (#)" ule)do(2)

”'IP'”@,(U:;:)

W —T,

‘ A(w)-:almfow; la] == 1, |zy| << 1.
Consequently ‘
A () = a1~ [r,]?) (1 —7yw)~
and, therefore,
11wl 1 f lfol
— A
Tl S ONSToR
for each w e 4. Using the fact that w = d(2)e 2 <= 4 thig, therefore,

yields
JT [ ‘I'IT I ' ’
1+ Irol Wbz < 1Lz 070 < m:l’r—:I_ Pl

The theorem now follows by setting 7 = |al.

It is evident that M,(D) < M,(8D) and that if Ae M, (D), then
M~%e M, (D). Similarly, if A € M,(dD), then A'~%e M, (2D).

We now prove:

TEHEOREM 2. The Bergman projection Py, is a bounded operator from
L,(D: 4) into Ly (D: A) if and only if A e M, 2(0D).

Proof. By definition and by virtue of (8.4) we have

(Pof)(C f&%.mwu
= [ 5o
=wm*f5

R yel

)|z’ (w)]* do (w)

T {3w), 7] V() f (o) (0) der ()

=@ [ 3 k), 7] ¥’ w) g(w)do(w)
2 yel
with ¢ = (fom)n'. Here, ¢ is an automorphic form satistying

g(w) = g(yw)y’ (w)
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for each we 4 and all yeI. Also

191z, a:) = Wllzpoiy; 1) = |a" () P22 () g0 (w)

where g, is the characteristic function of Q. In what follows, the inter-
change of sum and integral is justified by virtue of Fubini’s theorem,
and, we find that

(Ppf)IE) = o' (z)™* 5“ fk y(w ) w g (w)do(w
1«‘1 ¥
2_/ f/:; U, ) g () do ()
yel' y&t
= ' (¢) ' 7{;“(71;,:55 g@)do(v).
4
Consequently,
(4.1) (Ppf)(2) = o' ()™ (Pag)(w); 2 == a(w)eD.
Therefore,

P ol oy = SR @R i)

H

f () 0PI )PP 4 (mww) dos (1)

The norm inequality ||[P,f ”L,,(m

J1Psg)(w
4

aif H.r,‘,,(z; 4 I8 therefore equivalent to

Oflg

NP w(w)de(w) < w) [P () do ()

with the weight
u(w) = |’ ()22 () g0 (w).

This, in view of Proposition 2, iy equivalent to

N n=-1
Sup {[r f M(w)c{a(w)} . {lgg»[« fﬂ(w)‘”(”“”da(w)} < o0
S . YN

or

Sup n.g.'.;l.‘.. | f ln’(w)P“ﬂA(nw)dry(w)l X
5 18] lﬁ?r‘w!) . J
p-1

x{ f [n’(w)l(”’z)’(“’”l)Z(nw)‘”‘”””da(w)} << oo,

SAn
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where the supremum is taken over all § e N (04). Thig evidently is equi-
valent to

X

e

1 o
(4.2) Sl;p—l—ﬂ{ Vf o’ ()2~ A () do (1)

lm—1
x{f[n'(w)]“"g)/(”"”Z(nw)'”(‘"l)do'(w)J < oo,
4

where the supremum iy taken over all Ve N (9Q). We write U = = (V),
V e N(6Q). Then U eN(8D) and

VI = [dow) = [1¢'()do(2) = 1§ I
v U

Also
J 1w @) 2w do () = '3,y
v

and
{ f ]nl (w)](@'—i’a)/(ﬂ—l)z (ﬂw)'-ll(!’-l) do (w)}ﬁ-l - “¢,|[2‘Z(U:11"'“) .
14

Therefore, condition (4.2) is equivalent to the condition that A € M,,(8D).
This concludes the proof.
Similarly to (4.1) we can also show that

Qo) () = o' (w) " (Tag)(w);

with ¢ = (for)n’. Using this relationship, (3.5) and Proposition 1 we can
show, exactly as in Theorem 2, the following theorem:

TEEOREM 8. The Bergman—Schiffer transform @y, is a bounded operator
from Ly, (D: 2) into Ly(D: A) ¢f and only if A e M, (D).

¢ =am(w)eD

§5. The class W,. We now make some applications of Theorems 2
and 3 when the weight function 2 is identically 1. Let .D ¢ Oy be a plane
region, D is said to belong to ‘dass W, if

W o\ [\
Sup { 1) { 77 At

where the supremum is taken over all U e N (D). The region I ¢ Oy is
said to belong to class W, when the supremum is taken over all U e N (8D).
According to Theorem 1, these definitions are independent of the projection
map z. We shall also show that in fact W}, = W, Clearly, 1) ¢ W,, if and
only if D e W, and always D e W,. Using Theorems 2 and 8 we obtain
(see also [4], [9]):
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CoROILARY. 1. Py, 18 a bounded operator from L, (D) into L, (D) if and
only if D e W,

COROLLARY 2. @p 18 @ bounded operator from Ly (D) into Ly,(D) if and
only if DeW,.

‘We now refer to the formulae (3.1)~(3.3). It is well known that the
Hilbert transform T, is & bounded operator from L, (D) into L, (D). Con-
sequently, using (3.1) and (3.2) we conclude (see also [4]) the following
proposition:

PROPOJILION 3. On T, (D) the boundedness of Py is equivalent to the
boundedness of ().

Using this proposition and the previous corollaries we obtain:

Oororieany 8. The classes Wy amd W, are identical, and the following
statements are equivalent:

(1) DeW,.
(2) Py, is a bounded operator from I, (D) into L, (D).
(8) @p 48 o bounded operator from L,(D) into L, (D).
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