The Bergman and Schiffer transforms on weighted norm spaces

Ъy

JACOB BURBEA (Pittsburgh, Penn.)

Abstract. We characterize the weighted measures λ on a plane region $D \notin O_G$ for which the Bergman projection and the Bergman–Schiffer transform are bounded on $L_p(D:\lambda)$, 1 .

- §1. Introduction. Let $D \notin O_G$ (i.e., D has a nontrivial Green's function) be a plane region and let λ be a non-negative locally integrable function on D. This paper is concerned with the question of the boundedness of the Bergman projection P_D and the Bergman–Schiffer transform Q_D in $L_p(D;\lambda)$, $1 . This is done by introducing two classes of weights <math>M_p(D)$ and $M_p(\partial D)$ in terms of a universal cover mapping of D and non-euclidean (hyperbolic) sectors. In this way we are able to generalize the results of Bekollé and Bonami [1] and also extend our previous results in [3], [4]. The question of the boundedness of the Bergman projection has been considered in the past by several authors. The reader is referred to the articles [1], [2]-[4], [6]-[7], [9], [10] for details.
- §2. Preliminaries. Let $\varDelta=\{z\colon |z|<1\}$ denote the unit disk in the plane. We recall several known facts about the noneuclidean geometry on \varDelta which is known as the Poincare's model of hyperbolic geometry. The Bergman and the Hilbert kernel of \varDelta are given by

$$k(z,\,\xi)\,=\,\frac{1}{\pi}\,(1-z\,\xi)^{-2}\,;\quad z,\,\zeta\in\varDelta\,,$$

and by

$$h(z,\zeta) = \frac{1}{\pi} (z-\zeta)^{-2}; \quad z,\zeta \in \Delta, z \neq \zeta,$$

respectively. The line element in this Poincaré geometry is given by

$$dl(z) = \sqrt{\pi k(z, \bar{z})} |dz|$$

and the surface element is

$$ds(z) = \pi k(z, \bar{z}) d\sigma(z),$$

where $d\sigma(z)=dxdy$, z=z+iy, denotes the area Lebesgue measure. The above line and surface elements are invariant under the action of the group $\text{M\"ob}(\Delta)$, where each $A\in \text{M\"ob}(\Delta)$ is given by

$$A(z) = a \frac{z-\zeta}{1-z\zeta}; \quad |a|=1, \ \zeta \in \Delta.$$

If L is a circle orthogonal to the boundary of Δ , $\partial\Delta$, then the part of L in Δ is called a *noneuclidean line* (or *geodesic*) in the Poincaré geometry. Naturally, a diameter of Δ is also a noneuclidean line and every noneuclidean line separates the noneuclidean plane Δ into two noneuclidean half planes. Any part of a noneuclidean line is called a *noneuclidean segment*.

By a noneuclidean sector in Δ we shall mean a subset S of Δ bounded by a simple curve consisting of finitely many noneuclidean segments and possibly a part of $\partial \Delta$. We distinguish two special families $N(\partial \Delta)$ and $N(\Delta)$ of noneuclidean sectors in Δ as follows:

 $S \in N(\partial \Delta)$ if S is bounded by a simple curve consisting of (i) an arc of $\partial \Delta$ with the possibility that this arc can be reduced to a point, (ii) from the end points of this arc in $\partial \Delta$ we have a finite number of non-euclidean segments arranged in conjugated pairs, (iii) the last conjugated pair is joined by a noneuclidean segment inside Δ .

The family $N(\varDelta)$ consists of all $S \in N(\partial \varDelta)$ and also similar sectors as in $N(\partial \varDelta)$ but, where the "first" conjugated pair is joined by a non-euclidean segment inside \varDelta . Evidently, these families remain invariant under the action of any $\varDelta \in \text{M\"ob}(\varDelta)$ and they cover \varDelta .

Let D be a measurable subset of the plane and let λ be a non-negative locally integrable function on D. The space $L_p(D:\lambda)$ stands for the class of functions f on D for which

$$||f||_{L_p(D;\lambda)} = \left\{ \int\limits_{D} |f(z)|^p \lambda(z) \, d\sigma(z) \right\}^{1/p} < \infty$$

is finite. We write $L_p(D)$ for $L_p(D:1)$ and $||f||_p$ for $||f||_{L_p(D)}$. We shall always assume that 1 and that <math>q = p/(p-1).

Let λ be a non-negative locally integrable function on Δ . λ is said to belong to $M_p(\Delta)$ if it satisfies the Muckenhoupt condition:

$$\sup_{S} \left\{ \frac{1}{|S|} \int_{S} \lambda(z) d\sigma(z) \right\} \cdot \left\{ \frac{1}{|S|} \int_{S} \lambda(z)^{-1/(p-1)} d\sigma(z) \right\}^{p-1} < \infty,$$

where the supremum is taken over all $S \in N(\Delta)$. Here $|S| = \sigma(S)$. When the family $N(\Delta)$ is replaced by the subfamily $N(\partial \Delta)$, λ is then said to belong to $M_p(\partial \Delta)$. Clearly, $M_p(\Delta) \subset M_p(\partial \Delta)$.

$$(P_A f)(\zeta) = \int\limits_A \overline{k(z,\xi)} f(z) d\sigma(z)$$

and the Hilbert transform on A is given by

$$(T_{\Delta}f)(\zeta) = \int\limits_{\Delta} \overline{h(z,\zeta)} f(z) d\sigma(z),$$

where the last integral is taken in the principal value sense. It is well known that these operators are bounded on $L_p(A)$. For future reference we shall record the following two propositions:

PROPOSITION 1. The Hilbert transform T_A is a bounded operator from $L_p(A:\lambda)$ into $L_p(A:\lambda)$ if and only if $\lambda \in M_p(A)$.

PROPOSITION 2. The Bergman projection P_{Δ} is a bounded operator from $L_p(\Delta;\lambda)$ into $L_p(\Delta;\lambda)$ if and only if $\lambda \in M_p(\partial\Delta)$.

Proposition 1 is essentially due to Coifman and Fefferman [5] while the proof of Proposition 2 is analogous to one given in Bekollé and Bonami [1]. The families $N(\Delta)$ and $N(\partial \Delta)$ can be, of course, replaced by a variety of other families (see for example [1] and [5]). It is, however, more advantageous, as we shall see later, to use the present families of noneuclidean sectors instead.

§3. The Bergman-Schiffer transform. Let $D \notin O_G$ be a plane region and let $G = G_D(z, \zeta)$ be its Green's function. Thus

$$G_D(z,\zeta) = H(z,\zeta) - \log|z-\zeta|,$$

where $H(z, \zeta)$ is symmetric and harmonic in $D \times D$. The Bergman kernel of D, $K(z, \zeta) = K_D(z, \zeta)$, is given by

$$K(z,\xi) = -\frac{2}{\pi} \partial_z \partial_{\bar{\xi}} G$$

and its "adjoint" $L(z, \zeta) = L_D(z, \zeta)$ by

$$L(z,\zeta) = -\frac{2}{\pi} \partial_z \partial_\zeta G.$$

In analogy to the Bergman projection

$$(P_D f)(\zeta) = \int_D \overline{K(z,\zeta)} f(z) d\sigma(z),$$

we also consider the Bergman-Schiffer transform

$$(Q_D f)(\zeta) = \int\limits_D \overline{L(z,\zeta)} f(z) d\sigma(\zeta),$$

where the integral is taken in the principal value sense. The operators P_D and Q_D are always bounded on $L_2(D)$ and, moreover, the following relationships

$$Q_{D} = T_{D} - T_{D}P_{D}$$

and

$$(3.2) I_D - P_D = Q_D^* Q_D$$

hold on $L_2(D)$. Here I_D is the identity operator on $L_2(D)$, Q_D^* is the adjoint operator of Q_D and T_D is the Hilbert transform

(3.3)
$$(T_D f)(\zeta) = \frac{1}{\pi} \int_D \overline{(z-\zeta)}^{-2} f(z) d\sigma(z)$$

on D. The above relationships and other related results were established in [4].

Since $D \notin O_G$, D has the unit disk $\Delta = \{w : |w| < 1\}$ as its universal cover. Let $\pi \colon \Delta \to D$ be a universal covering map for D. Let Γ be the covering group of π , that is, Γ consists of all those $\gamma \in \text{M\"ob}(\Delta)$ for which $\pi \circ \gamma = \pi$. Then, as is well known,

$$G_D(z, \zeta) = \sum_{\gamma \in \Gamma} \log \left| \frac{1 - \gamma(w)\overline{\tau}}{\gamma(w) - \tau} \right|$$

with $z = \pi(w)$, $\zeta = \pi(\tau)$; w, $\tau \in \Delta$. On the unit disk Δ ,

$$G_{\Delta}(w, \tau) = \log \left| \frac{1 - w\overline{\tau}}{w - \tau} \right|,$$

$$K_{A}(w, \bar{\tau}) = k(w, \bar{\tau})$$

and

$$L_{\Delta}(w,\tau)=h(w,\tau).$$

Therefore,

$$G_D(z, \zeta) = \sum_{\gamma \in \Gamma} G_\Delta(\gamma(w), \tau),$$

(3.4)
$$K_{D}(z,\xi)\pi'(w)\overline{\pi'(\tau)} = \sum_{\gamma \in \Gamma} k(\gamma(w), \overline{\tau})\gamma'(w)$$

and

$$(3.5) L_D(z,\zeta)\pi'(w)\pi'(\tau) = \sum_{w \in \Gamma} h(\gamma(w), \tau)\gamma'(w).$$

The above representations are evidently well defined and they are independent of the choice of the projection map π .

§4. The classes $M_p(D)$ and $M_p(\partial D)$. Let $\pi\colon A\to D$ be a universal cover map for the region $D\notin O_G$ and let Γ be the covering group of π . Let $\Omega=\Delta/\Gamma$ be a normal fundamental region of Γ (see Siegel [8], p. 38). Thus, $\Delta=\bigcup_{y\in\Gamma}\gamma(\Omega)$, where this union is disjoint and the boundary of Ω consists of finite or denumerable number of noneuclidean segments arranged in pairs conjugated by elements of Γ and touches $\partial \Delta$, and so it has zero plane measure. In this case $\pi|_{\Omega}$ is (modulo a set of measure zero) a homeomorphism of Ω onto D and we write $\phi=(\pi|_{\Omega})^{-1}$.

We shall write $N(\Omega) = \{S \cap \Omega \colon S \in N(\Delta)\}$ and $N(\partial \Omega) = \{S \cap \Omega \colon S \in N(\partial \Delta)\}$. Evidently, $N(\Omega)$ is a subfamily of $N(\Delta)$ and it covers Ω . Similarly, $N(\partial \Omega)$ is a subfamily of $N(\partial \Delta)$ and, of course, $N(\partial \Omega) \in N(\Omega)$. We define $N(D) = \pi[N(\Omega)]$ and $N(\partial D) = \pi[N(\partial \Omega)]$. This definition of the families N(D) and $N(\partial D)$ is independent of the projection map π as the first part of the next theorem shows. Clearly, $N(\partial D) \in N(D)$.

Let λ be a non-negative locally integrable function on D. For a measurable subset U of D we write

$$\|\phi'\|_{L_p(U;\lambda)} = \left\{ \int\limits_U |\phi'(z)|^p \lambda(z) \, d\sigma(z)
ight\}^{1/p}$$

and

$$\|\phi'\|_{p:U} = \|\phi'\|_{L_p(U:1)}.$$

The weight function λ is said to belong to class $M_n(D)$ if

$$\sup_{U} \left\{ \frac{\|\phi'\|_{L_{p}(U:\lambda)}}{\|\phi'\|_{2:U}} \right\} \cdot \left\{ \frac{\|\phi'\|_{L_{p}(U:\lambda^{1}-2)}}{\|\phi'\|_{2:U}} \right\} < \infty,$$

where the supremum is taken over all $U \in \mathcal{N}(D)$. When the supremum is taken over the subfamily $\mathcal{N}(\partial D)$, λ is then said to belong to $M_p(\partial D)$. Again, these definitions are independent of the projection π as the following theorem shows:

THEOREM 1. Let $\pi_1: \Delta \to D$ be another covering map and let Γ_1 be its cover group. Let also $\Omega_1 = \Delta/\Gamma_1$ be a (normal) fundamental region of Γ_1 with $\psi = (\pi_1|_{\Omega_1})^{-1}$. Then,

$$N(D) = \pi[N(\Omega)] = \pi_1[N(\Omega_1)]$$

and

$$N(\partial D) = \pi[N(\partial \Omega)] = \pi_1[N(\partial \Omega_1)].$$

Moreover, for any non-negative locally integrable function μ on D,

$$\frac{1-r}{1+r} \|\phi'\|_{L_p(U:\mu)} \leqslant \|\psi'\|_{L_p(U:\mu)} \leqslant \frac{1+r}{1-r} \|\phi'\|_{L_p(U:\mu)}$$

for all measurable subsets U of D. Here, r is a constant in [0,1) which is independent of U.

Proof. There exists an $A \in \text{M\"ob}(A)$ so that $\pi_1 \circ A = \pi$ and hence $\Gamma = A^{-1} \Gamma_1 A$. Therefore, $\Omega_1 = A(\Omega)$ and $\psi = A \circ \phi$. Evidently, $A[N(\Omega)] = N(\Omega_1)$ and $A[N(\partial\Omega)] = N(\partial\Omega_1)$. Consequently, $\pi[N(\Omega)] = \pi_1[N(\Omega_1)]$ and $\pi[N(\partial\Omega)] = \pi_1[N(\partial\Omega_1)]$, proving the first part of the theorem. Next, $\psi'(z) = A'(\phi(z))\phi'(z)$ and

$$\|\psi'\|_{L_{\mathcal{D}}(U;\mu)}^p = \int\limits_{U} |A'(\phi(z)|^p |\phi'(z)|^p \mu(z) d\sigma(z)$$

for a subset U of D. Since $A \in M\ddot{o}b(\Delta)$, A is given by

$$A(w) = a \frac{w - \tau_0}{1 - \bar{\tau}_0 w}; \ |a| = 1, \ |\tau_0| < 1.$$

Consequently

$$A'(w) = \alpha (1 - |\tau_0|^2) (1 - \overline{\tau}_0 w)^{-1}$$

and, therefore,

$$\frac{1 - |\tau_0|}{1 + |\tau_0|} \leqslant |A'(w)| \leqslant \frac{1 + |\tau_0|}{1 - |\tau_0|}$$

for each $w \in \Delta$. Using the fact that $w = \phi(z) \in \Omega \subset \Delta$ this, therefore, yields

$$\frac{1-|\tau_0|}{1+|\tau_0|}\,\|\phi'\|_{L_p(U:\mu)}\leqslant \|\psi'\|_{L_p(U:\mu)}\leqslant \frac{1+|\tau_0|}{1-|\tau_0|}\,\|\phi'\|_{L_p(U:\mu)}\,.$$

The theorem now follows by setting $r = |\tau_0|$.

It is evident that $M_p(D) \subset M_p(\partial D)$ and that if $\lambda \in M_p(D)$, then $\lambda^{1-q} \in M_q(D)$. Similarly, if $\lambda \in M_p(\partial D)$, then $\lambda^{1-q} \in M_q(\partial D)$.

We now prove:

THEOREM 2. The Bergman projection P_D is a bounded operator from $L_p(D:\lambda)$ into $L_p(D:\lambda)$ if and only if $\lambda \in M_p(\partial D)$.

Proof. By definition and by virtue of (3.4) we have

$$\begin{split} (P_D f)(\zeta) &= \int\limits_D \overline{K_D(z,\,\xi)} \, f(z) \, d\sigma(z) \\ &= \int\limits_D \overline{K_D(z,\,\xi)} \, f(z) |\pi'(w)|^2 \, d\sigma(w) \\ &= \pi'(\tau)^{-1} \int\limits_D \sum\limits_{\gamma \in \Gamma} \overline{k\left(\lambda(w),\,\overline{\tau}\right)} \, \, \overline{\gamma'(w)} \, f(\pi w) \pi'(w) \, d\sigma(w) \\ &= \pi'(\tau)^{-1} \int\limits_D \sum\limits_{\gamma \in \Gamma} \overline{k\left(\gamma(w),\,\overline{\tau}\right)} \, \, \overline{\gamma'(w)} \, g(w) \, d\sigma(w) \end{split}$$

with $g = (f \circ \pi)\pi'$. Here, g is an automorphic form satisfying

$$g(w) = g(\gamma w)\gamma'(w)$$

for each $w \in \Delta$ and all $\gamma \in \Gamma$. Also

$$||g||_{L_n(A:\mu)} = ||f||_{L_n(D:\lambda)}; \quad \mu(w) = |\pi'(w)|^{2-p} \lambda(\pi w) \chi_{\Omega}(w),$$

where χ_{Ω} is the characteristic function of Ω . In what follows, the interchange of sum and integral is justified by virtue of Fubini's theorem, and, we find that

$$\begin{split} (P_D f)(\zeta) &= \pi'(\tau)^{-1} \sum_{\gamma \in \Gamma} \int_{\gamma} \overline{k(\gamma(w), \overline{\tau})} \, \overline{\gamma'(w)} \, g(w) \, d\sigma(w) \\ &= \pi'(\tau)^{-1} \sum_{\gamma \in \Gamma} \int_{\gamma D} \overline{k(v, \tau)} \, g(v) \, d\sigma(v) \\ &= \pi'(\tau)^{-1} \int_{\overline{A}} \overline{k(v, \tau)} \, g(v) \, d\sigma(v) \, . \end{split}$$

Consequently,

$$(4.1) (P_D f)(z) = \pi'(w)^{-1} (P_A g)(w); z = \pi(w) \in D.$$

Therefore,

$$\begin{split} \|P_D f\|_{L_p(D;\lambda)}^p &= \int\limits_{\mathcal{D}} |\pi'(w)|^{-p} |(P_\Delta g)(w)|^p \lambda(z) d\sigma(z) \\ &= \int\limits_{\mathcal{D}} |(P_\Delta g)(w)|^p |\pi'(w)|^{2-p} \lambda(\pi w) d\sigma(w). \end{split}$$

The norm inequality $\|P_Df\|_{L_p(D;\lambda)}^p \leqslant C \|f\|_{L_p(D;\lambda)}^p$ is therefore equivalent to

$$\int\limits_{A} |(P_{A}g)(w)|^{p} \mu(w) d\sigma(w) \leqslant C \int\limits_{A} |g(w)|^{p} \mu(w) d\sigma(w)$$

with the weight

$$\mu(w) = |\pi'(w)|^{2-p} \lambda(\pi w) \chi_{\Omega}(w).$$

This, in view of Proposition 2, is equivalent to

$$\sup_{S} \left\{ \frac{1}{|S|} \int\limits_{S} \mu(w) d\sigma(w) \right\} \cdot \left\{ \frac{1}{|S|} \int\limits_{S} \mu(w)^{-1/(p-1)} d\sigma(w) \right\}^{p-1} < \infty$$

or

$$\sup_{S} \frac{1}{|S|^{p}} \left\{ \int_{S \cap \Omega} |\pi'(w)|^{2-p} \lambda(\pi w) d\sigma(w) \right\} \times \left\{ \int_{S \cap \Omega} |\pi'(w)|^{(p-2)/(p-1)} \lambda(\pi w)^{-1/(p-1)} d\sigma(w) \right\}^{p-1} < \infty,$$

where the supremum is taken over all $S \in N(\partial A)$. This evidently is equivalent to

J. Burbea

(4.2)
$$\sup_{V} \frac{1}{|V|^{p}} \left\{ \int_{V} |\pi'(w)|^{2-p} \lambda(\pi w) d\sigma(w) \right\} \times \\ \times \left\{ \int_{V} |\pi'(w)|^{(p-2)/(p-1)} \lambda(\pi w)^{-1/(p-1)} d\sigma(w) \right\}^{p-1} < \infty,$$

where the supremum is taken over all $V \in N(\partial\Omega)$. We write $U = \pi(V)$, $V \in N(\partial\Omega)$. Then $U \in N(\partial D)$ and

$$|V| = \int_{V} d\sigma(w) = \int_{U} |\phi'(z)|^2 d\sigma(z) = ||\phi'||_{2:U}^2.$$

Also

$$\int\limits_{V} |\pi'(w)|^{2-p} \lambda(\pi w) d\sigma(w) = \|\phi'\|_{L_{p}(U;\lambda)}^{p}$$

and

$$\left\{\int\limits_{V}|\pi'(w)|^{(p-2)/(p-1)}\lambda(\pi w)^{-1/(p-1)}d\sigma(w)\right\}^{p-1}=\|\phi'\|_{L_{Q}(U;\lambda^{1}-\theta)}^{p}.$$

Therefore, condition (4.2) is equivalent to the condition that $\lambda \in M_p(\partial D)$. This concludes the proof.

Similarly to (4.1) we can also show that

$$(Q_D f)(z) = \overline{\pi'(w)}^{-1}(T_\Delta g)(w); \quad z = \pi(w) \in D$$

with $g = (f \circ \pi)\pi'$. Using this relationship, (3.5) and Proposition 1 we can show, exactly as in Theorem 2, the following theorem:

THEOREM 3. The Bergman-Schiffer transform Q_D is a bounded operator from $L_p(D:\lambda)$ into $L_p(D:\lambda)$ if and only if $\lambda \in M_p(D)$.

§5. The class W_p . We now make some applications of Theorems 2 and 3 when the weight function λ is identically 1. Let $D \notin O_G$ be a plane region, D is said to belong to class W_n if

$$\sup_{U} \left\{ \frac{\|\phi'\|_{p:U}}{\|\phi'\|_{2:U}} \right\} \cdot \left\{ \frac{\|\phi'\|_{q:U}}{\|\phi\|_{2:U}} \right\} < \infty,$$

where the supremum is taken over all $U \in N(D)$. The region $D \notin O_G$ is said to belong to class W_p^1 when the supremum is taken over all $U \in N(\partial D)$. According to Theorem 1, these definitions are independent of the projection map π . We shall also show that in fact $W_p^1 = W_p$. Clearly, $D \in W_p$ if and only if $D \in W_q$ and always $D \in W_2$. Using Theorems 2 and 3 we obtain (see also [4], [9]):

COROLLARY 1. P_D is a bounded operator from $L_p(D)$ into $L_p(D)$ if and only if $D \in W_n^1$.

COROLLARY 2. Q_D is a bounded operator from $L_p(D)$ into $L_p(D)$ if and only if $D \in W_n$.

We now refer to the formulae (3.1)–(3.3). It is well known that the Hilbert transform T_D is a bounded operator from $L_p(D)$ into $L_p(D)$. Consequently, using (3.1) and (3.2) we conclude (see also [4]) the following proposition:

Proposition 3. On $L_p(D)$ the boundedness of P_D is equivalent to the boundedness of Q_D .

Using this proposition and the previous corollaries we obtain:

COROLLARY 3. The classes W_p^1 and W_p are identical, and the following statements are equivalent:

- (1) $D \in W_p$.
- (2) P_D is a bounded operator from $L_p(D)$ into $L_p(D)$.
- (3) Q_D is a bounded operator from $L_p(D)$ into $L_p(D)$.

References

- D. Bekollé and A. Bonami, Inégalités à poids pour le noyau de Bergman,
 C. R. Acad. Sci. Paris 286 (1978), 775-778.
- [2] J. Burben, Projections on Bergman spaces over plane domains, Canad. J. Math. 31 (1979), 1269-1280.
- 3] The Bergman projection on weighted norm spaces, ibid. 32 (1980), 979-986.
- [4] The Bergman projection over plane regions, Ark. f. Mat. 18 (1980), 207-221.
- [5] R. R. Coilman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
- [6] A. M. Shikhvatov, Spaces of analytic functions in a region with an angle, Mat. Zamet. 18 (1975), 411-420.
- [7] L_p -spaces of functions analytic in a region with piecewise analytic boundary, ibid. 20 (1976), 537-548.
- [8] C. L. Siegel, Topics in Complex Function Theory, Vol. II, Wiley-Interscience, New York 1971.
- [9] A. A. Solov'ev, L_p-estimates of integral operator associated with spaces of analytic and harmonic functions, Dokl. Akad. Nauk SSSR 240 (1978), 1301-1305 (= Soviet Math. Dokl. 19 (1978), 764-768).
- [10] V. P. Zaharjuta and V. I. Judovič, The general form of a linear functional in $H'_{\mathcal{D}}$, (Russian) Uspehi Mat. Nauk 19 (1964), 139-142.

Received April 15, 1982 (1752)