Finally, since \(v \in L_w^+(x) \) is finite a.e., then taking \(w(x) = \tilde{v}(x) + (1 + |x|)^a \),
with \(a > n(p-1) \), (2), (3) and (4) imply (i). We observe that for \(a < 2n(p-1) \)
the weight \(w \) is smaller than that in Wo-Sang Young’s paper.

Acknowledgement. It is a pleasure to thank Prof. R. L. Wheeden
for introducing us to weight function problems and his generous support.

References
[1] A. P. Calderón, Notes of the course “Análisis Real Avanzado” given at the
University of Buenos Aires, 1979.
[2] L. Carleson and P. Jones, Weighted norm inequalities and a theorem of
Koenigs, preprint.
107–115.
integrals in weighted \(L^p \) spaces, preprint.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY
New Brunswick, New Jersey 08903

Received February 10, 1983

Equivalent Cauchy sequences and contractive fixed points
in metric spaces

by

SOLOMON LEADER (New Brunswick, N.J.)

Abstract. The sequences \([x_i], [y_j]\) in a metric space \((X, d)\) are equivalent Cauchy
sequences if and only if given \(\varepsilon > 0 \) there exist \(\delta \) in \((0, \infty)\) and a positive integer \(r \)
such that \(d(x_i, y_j) < \delta \) for all \(i, j \) with \(d(x_i, y_j) < \varepsilon + \delta \). As a typical application
let \(f: X \to X \) with complete graph such that given \(\varepsilon > 0 \) there exist \(\delta \) in \((0, \infty)\) and an
integer \(r \) with \(d(f^n x, f^n y) < \delta \) for all \(n \), \(y \) with \(d(x, y) < \varepsilon + \delta \). Then \(f \) has a unique
fixed point \(u \) and \(f^n u \to u \) as \(n \to \infty \) for all \(u \).

1. Introduction. Let \((X, d)\) be a metric space, \(f: X \to X \), and \(N \) be the
natural numbers. We call \(w \) in \(X \) a contractive fixed point of \(f \) if \(f = w \)
and \(f^n x \to w \) as \(n \to \infty \) in \(N \) for all \(x \) in \(X \). For the existence of a contractive
fixed point it is necessary (and under certain mildly restrictive conditions,
sufficient) that all orbits \([f^n x]\) be equivalent Cauchy sequences. Sequences
\([x_i]\) and \([y_j]\) in \(X \) are called equivalent if \(d(x_i, y_j) \to 0 \) as \(i \to \infty \). Equivalent
Cauchy sequences converge to a common point in the completion of \(X \).

Our basic contribution here (Theorem 1) is a characterization (EC)
of equivalent Cauchy sequences. Application of (EC) to two identical
sequences yields a refinement of the Cauchy convergence criterion (Corol-
ary 1) with correspondingly refined estimates for \(d(x_i, w) \) as \(x_i \to w \)
(Theorem 2). (EC) is applied to orbits for single and multivalued mappings
to yield fixed points. Theorem 3 subsumes a body of fixed point theorems.
In particular, it easily yields the theorems in [1], [2], [4] and Theorem 1.2
in [3].

The author is gratefully to Richard T. Bumby for several useful discus-
sions.

2. Sequences in metric spaces.

Theorem 1. Two sequences \([x_i]\) and \([y_j]\) in a metric space \((X, d)\) are
equivalent-Cauchy if and only if

\[d(x_i + r, y_j + r) < \varepsilon \quad \text{for all } i, j \text{ with } d(x_i, y_j) < \varepsilon + \delta. \]

(1)
Proof. Given (EO) define

\[d_k(n) = \max\{d(x_i, y_j) : n \leq i, j \leq n + k\}. \]

Lemma 1. For all \(k \) in \(N \), \(\inf[d_k(n) : n \in N] = 0. \)

Suppose \(\inf[d_k(n) : n \in N] = e > 0 \) for some \(k \). Apply (EO) to get \(e \), so that (1) holds. Then choose \(e \) so that \(d_k(n) < e + \varepsilon \). By (1) and (2) \(d_k(n + r) < e \), contradicting the definition of \(e \). So Lemma 1 holds.

Lemma 2. Let \(e, \varepsilon, \delta, \tau \) satisfy (1). In terms of (3) let \(n \) satisfy

\[d(n) < \min\{e, \delta, \tau\}. \]

Then

\[d(x_i, y_j) < 3e \quad \text{for all} \quad i, j \geq n. \]

We contend that the assumption

\[d(x_{i+r}, y_{j+r}) \geq e \quad \text{for some} \quad j \geq n \]

yields a contradiction. Take the smallest \(j \) satisfying (5). Then

\[d(x_{i+r}, y_{j+r}) < e \quad \text{for} \quad n \leq i < j. \]

By (2) and (3), \(j > n + r \). So \(n < j - r < j \). Hence (6) with \(i = j - r \) implies

\[d(x_{i+r}, y_{j-r}) < e. \]

So \(d(x_{i+r}, y_{j-r}) < d(x_i, y_j) + d(y_j, y_{i+r}) + d(x_{i+r}, y_{j-r}) < 2d(x_i, y_j) + e < 2e + \varepsilon \)

by (2), (3), (7). That is, \(d(x_{i+r}, y_{j-r}) < \delta + e \), which implies \(d(x_{i+r}, y_{j-r}) < e \) by (1), contradicting (5). So (5) is false. That is,

\[d(x_{i+r}, y_{j-r}) < e \quad \text{for all} \quad i \geq n. \]

Similarly,

\[d(x_i, y_j) < e \quad \text{for all} \quad i \geq n. \]

For \(i, j \geq n \) we have \(d(x_i, y_j) \leq d(x_i, x_{i+r}) + d(x_{i+r}, y_{j+r}) + d(y_{j+r}, y_j) < 3e \) by (8), (9), which gives (4). So Lemma 2 holds.

Given \(e > 0 \) apply (EO) to get \(e, \varepsilon, \delta, \tau \) so that (1) holds. Lemma 1 gives \(n \) such that (3) holds. So Lemma 2 implies \([x_i] \) and \([y_j] \) are equivalent Cauchy sequences.

The converse, that equivalent Cauchy sequences satisfy (EO), is trivial with \(\delta = \infty \). Indeed, in all the results of this section the case \(\delta = \infty \) is the corresponding standard result.

Corollary 1 (Cauchy Sequences). A sequence \([x_i]\) in \((X, d)\) is Cauchy if and only if given \(e > 0 \) there exist \(\delta \) in \((0, \infty)\) and \(r \) in \(N \) such that

\[d(x_{i+r}, x_{j+r}) < e \quad \text{for all} \quad i, j \text{ with} \quad d(x_i, x_j) < e + \delta. \]

Proof. Apply Theorem 1 with \(y_i = x_i. \)

Corollary 2 (Convergent Sequences). \(x_i \to w \) in \((X, d)\) as \(i \to \infty \) if and only if given \(e > 0 \) there exist \(\delta \) in \((0, \infty)\) and \(r \) in \(N \) such that

\[d(x_{i+r}, w) < e \quad \text{for all} \quad i \text{ with} \quad d(x_i, w) < e + \delta. \]

Proof. Apply Theorem 1 with \(y_i = w. \)

Corollary 3 (Equivalent Sequences). \(d(x_i, y_i) \to 0 \) as \(i \to \infty \) if and only if given \(e > 0 \) there exist \(\delta \) in \((0, \infty)\) and \(r \) in \(N \) such that

\[d(x_{i+r}, y_{i+r}) < e \quad \text{for all} \quad i \text{ with} \quad d(x_i, y_i) < e + \delta. \]

Proof. Apply Corollary 2 to the real sequence \([d(x_i, y_i)]\) converging to 0.

Theorem 2. Let \(x_i \to w \) in \((X, d)\) and \(e, \delta, \tau \) satisfy (10). Then

\[d(x_{i+r}, w) < e \quad \text{for all} \quad i \text{ with} \quad d(x_i, w) < e + \delta. \]

Proof. We get (13) by letting \(k \to \infty \) in the following lemma.

Lemma 3. Under (10) if \(d(x_i, x_{i+r}) < e \), then

\[d(x_{i+r}, x_{i+2r}) < e \]

for all \(k \) in \(N \).

To prove the lemma we use induction on \(k \). (14) is trivial for \(k = 1 \).

Given (14) for \(k = m \), let \(j = i + mr \), so \(d(x_i, x_j) < e \).

Thus \(d(x_i, x_j) < d(x_i, x_{i+r}) + d(x_{i+r}, x_{i+2r}) < e + e \)

by (6), (10), (11). Applying (10) we get (14) with \(k = m + 1 \).

3. Contractive fixed points.

Theorem 3. Let \((X, d)\) be a metric space and \(f: X \to X \) with complete graph (i.e. closed in \(X^2 \), where \(X \) is the completion of \(X \)). Then

(i) \(f \) has a contractive fixed point if and only if given \(x, y \) in \(X \) and \(e \) in \(X \) there exist \(\delta \) in \((0, \infty)\) and \(r \) in \(N \) with \(d(f^{i+r}x, f^{i+r}y) < e \) for all \(i, j \) with \(d(f^i x, f^j y) < e + \delta \).

(ii) \(f \) has a fixed point if and only if there exists \(x \) in \(X \) such that given \(e > 0 \) there exist \(\delta \) in \((0, \infty)\) and \(r \) in \(N \) with

\[d(f^{i+r}x, f^{i+r}x) < e \quad \text{for all} \quad i, j \text{ with} \quad d(f^i x, f^j x) < e + \delta. \]

Moreover, if \(f^i x \to w \) as \(i \to \infty \) and \(e, \delta, \tau \) satisfy (10), then \(d(f^{i+r}x, w) \leq e \) for all \(i \) with \(d(f^i x, w) \leq e + \delta. \)

Proof. The contraction condition in (i) is just (EO) in Theorem 1 applied to the \(f \)-orbits of \(x \) and \(y \). The contraction condition in (ii) is the convergence criterion in Corollary 1 applied to the orbit of \(x \). Now \((x_i, y_i) \) is in the graph of \(f \) for any \(f \)-orbit \([x_i]\). Hence, since the graph is
complete, a Cauchy orbit converges to a fixed point of f. The final state-
ment in Theorem 3 follows from Theorem 2.

The next result is a trivial consequence of Theorem 3.

Corollary 4. Let \((X, \delta)\) be a metric space and \(f: X \to X\) with complete graph. Assume that given \(\varepsilon > 0\) there exist \(\delta > 0\) and \(\tau > 0\) in \(X\) such that

\[
\delta(f^n x, f^n y) < \varepsilon \quad \text{for all} \quad x, y \in X \text{ with } d(x, y) < \varepsilon + \delta.
\]

Then \(f\) has a contractive fixed point \(w\) in \(X\). Moreover, if \(\varsigma, \delta, \tau\) satisfy

\[
\delta(f^n w, w) < \varepsilon \quad \text{for all} \quad x \in X \text{ with } d(x, f^n x) < \delta.
\]

The special case of Corollary 4 with \(\tau = 1\) gives the Meir-Keeler
contraction theorem [4]. The essential novelty of Corollary 4 is that \(\tau\)
may vary with \(\varepsilon\). Indeed, the case with \(\tau\) constant follows from the case
with \(\tau = 1\) since a contractive fixed point of an iterate \(f^n\) is a contractive
fixed point of \(f\). (See Lemma 3 in [5].)

4. Fixed points for multifunctions. Theorem 1 can also be used to get
fixed points for multifunctions. Our final result is an extension of Corollary 4 to multifunctions.

A multifunction \(F\) in \(X\) is a subset of \(X^2\). Let \(F^0\) be the set of all \(y\) with
\((x, y)\) in \(F\). For \(x\) in \(X\) define \(F^0\) by

\[
(x, y) \in F \text{ if there exist } s_0, a_1, \ldots, a_r \text{ with } s_0 = x \text{ and } a_r = y \\
\text{such that}
\]

\[
(a_{i-1}, a_i) \in F
\]

for \(i = 1, \ldots, r\). A sequence \([x_0, x_1, \ldots]\) is an \(F\)-orbit of \(x\) if \(x_0 = x\) and

\[
(x_{i-1}, x_i) \in F
\]

holds for all \(i \in N\).

Theorem 4. Let \((X, \delta)\) be a metric space. Let \(F\) be a multifunction in
\(X\) with complete graph such that \(F\) is nonempty for all \(x\) in \(X\) and given
\(\varepsilon > 0\) there exist \(\delta > 0\) and \(\tau > 0\) in \(X\) so that for all \(x, y, u, v \in X\)

\[
\delta(x, y) < \varepsilon + \delta, \quad u \in F^0 x, v \in F^0 y \quad \text{implies} \quad \delta(u, v) < \varepsilon.
\]

Then there exists a unique \(w\) in \(X\) to which all \(F\)-orbits converge. Moreover, \(Fw = w\) and if \(\varepsilon, \delta, \tau\) satisfy (18), then

\[
\delta(x, w) < \delta, \quad u \in F^0 x \quad \text{implies} \quad \delta(u, w) < \varepsilon.
\]

Proof. Since \(Fw\) is nonempty, every point \(x\) is the initial point of some
\(F\)-orbit. (18) gives (1) of Theorem 1 for all \(F\)-orbits \([x_0], [y_0]\). So all \(F\)-orbits
are equivalent Cauchy sequences by Theorem 1. Hence, by (17) and the
completeness of \(F\), all orbits converge to a common point \(w\) with \((w, w)\)
in \(F\). So \(w \in Fw\). We need only to show that \(Fw = w\).

Now (18) applies with \(y = x\) implies \(\delta(x, w) < \varepsilon\) for all \(x\). Since
\(w\) is in \(Fw\), \(Fw\) is contained in \(F^n w\) for all \(n \in N\). Hence, \(Fw = w\).

Finally, (19) follows from Theorem 2.