

- [30] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris 1968.
- [32] S. M. Nikol'skij, Approximation of functions of several variables and embedding theorems, Nauka, Moskva 1977.
- [33] S. Schonefeld, Schauder bases in spaces of differentiable functions, Bull. Amer. Math. Soc. 75 (1969), 586-590.
- [34] V. A. Solonnikov, A priori estimates for second order differential equations of parabolic type, Trudy Mat. Inst. AN SSSR 70 (1964), 132-212.
- [35] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton 1970.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Received December 10, 1981

(1728)

On weighted norm inequalities for the maximal function

by

ANGEL E. GATTO* and CRISTIAN E. GUTIÉRREZ
(New Brunswick, N. J.)

Abstract. We give a refinement of a lemma of C. Fefferman and E. Stein, and we show an application to weighted norm inequalities.

The lemma of C. Fefferman and E. Stein given in [3], p. 111, states that

$$\int\limits_{\mathbb{R}^n} Mf(x)^p g(x) \, dx \leqslant C \int\limits_{\mathbb{R}^n} f(x)^p Mg(x) \, dx \, ,$$

where 1 , M is the Hardy-Littlewood maximal function, and <math>f and g are positive measurable functions.

In this note we show that by restricting the radius in the definition of the maximal function a similar inequality holds. This inequality can be used as a substitute for (1) in weighted norm inequalities when the assumption $Mq < \infty$ cannot be made.

LEMMA. Let f be a measurable function and define

$$\bar{f}(x) = \sup_{r < (|x|+1)/2} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(t)| dt,$$

where $B_r(x)$ is the ball of center x and radius r, and

$$\tilde{f}(x) = \sup_{\substack{x \in B_r \\ r \le |x| + 1}} \frac{1}{|B_r|} \int_{B_r} |f(t)| dt,$$

where B_r is a ball of radius r. If g > 0 almost everywhere, then

$$\int\limits_{\mathbb{R}^n} \overline{f}(x)^p g(x) \, dx \leqslant C \int\limits_{\mathbb{R}^n} |f(x)|^p \overline{\widetilde{g}}(x) \, dx \, .$$

^{*} Supported by Consejo Nacional de Investigaciones Cientificas y Técnicas, República Argentina.

Proof. This proof is inspired by [1]. We shall first show that the operator $Tf = \bar{f}$ is of weak type (1, 1) with respect to the measures $\bar{g}(x) dx$, g(x) dx. Let E_{λ} denote the set $\{x: \bar{f}(x) > \lambda\}$, and $E_{\lambda}^m = E_{\lambda} \cap \{|x| \leq m\}$, m > 0. Then for each $x \in E_{\lambda}^m$ there exists $B_r(x)$, r < (|x|+1)/2, such that

$$\frac{1}{|B_r(x)|} \int_{B_r(x)} |f(t)| dt > \lambda.$$

By Besicovitch's covering lemma we can extract a subfamily $\{B_{r_i}(x_i)\}_{i=1}^\infty$ whose union covers E_k^m and

$$\sum_i \chi_{B_{r_i}(x_i)} \leqslant C_n,$$

where χ_A denotes the characteristic function of the set A. Then

$$\begin{split} |E^m_{\lambda}|_{g \; dx} &= \int\limits_{E^m_{\lambda}} g(x) \, dx \leqslant \sum_{i=1}^{\infty} \int\limits_{B_{r_i}(x_i)} g(x) \, dx \\ &\leqslant \sum_{i=1}^{\infty} \left(\frac{1}{|B_{r_i}(x_i)|} \int\limits_{B_{r_i}(x_i)} g(x) \, dx \right) \frac{1}{\lambda} \int\limits_{B_{r_i}(x_i)} |f(y)| \, dy \; . \end{split}$$

Observe that for all $y \in B_{r_i}(x_i)$ we have

$$r_i < (|x_i|+1)/2 = (1+|x_i|)-(1+|x_i|)/2 < 1+|x_i|-r_i < 1+|y|,$$

and consequently

$$\frac{1}{|B_{r_i}(x_i)|} \int_{B_{r_i}(x_i)} g(y) \, dy \leqslant \overline{\overline{g}}(y).$$

Therefore

$$|E_{\lambda}^m|_{g\ dx}\leqslant \frac{1}{\lambda}\sum_{i=1}^{\infty}\int\limits_{B_{T_i}(x_i)}|f(y)|\overline{g}(y)dy\leqslant \frac{C_n}{\lambda}\int\limits_{R^n}|f(y)|\overline{g}(y)\,dy\,.$$

Letting $m\to\infty$, the weak type (1,1) follows. On the other hand, since g>0,

$$\|\vec{f}\|_{\infty,g\,dx} = \|\vec{f}\|_{\infty,dx} \leqslant \|f\|_{\infty,dx} = \|f\|_{\infty,\overline{g}\,dx}.$$

Now the lemma follows from Marcinkiewicz's interpolation theorem.

We shall prove now the following theorem that has also been obtained independently by Wo-Sang Young.

THEOREM. Let v be a non-negative function, Mf be the Hardy-Littlewood maximal function, and 1 . The following conditions are equivalent:

(i) There exists $w(x) \ge 0$ and finite a.e. such that

$$\int\limits_{\mathbb{R}^n} Mf(x)^p v(x) \, dx \leqslant C \int\limits_{\mathbb{R}^n} |f(x)|^p w(x) \, dx \, .$$
 (ii)
$$\int\limits_{\mathbb{R}^n} \frac{v(x)}{(1+|x|)^{np}} \, dx < \infty \, .$$

Proof. (i) = (ii): We take a function $f \neq 0$ and a ball B such that $\int |f(x)|^p \ w(x) \, dx < \infty$ and $0 < \int_B |f(x)| \, dx < \infty$. Then there exists C > 0 such that

$$Mf(x) \geqslant \frac{C}{(1+|x|)^n} \int\limits_B |f(y)| dy.$$

Therefore

$$\int\limits_{\mathbb{R}^n} \frac{v(x)}{(1+|x|)^{np}} dx \leqslant C \int\limits_{\mathbb{R}^n} Mf(p)^p v(x) dx \leqslant C \int\limits_{\mathbb{R}^n} |f(x)|^p w(x) dx < \infty.$$

(ii) \Rightarrow (i): Since v+1 satisfies (ii), we may assume v>0. Observe that

$$\begin{split} (2) \qquad Mf(w) &\leqslant \sup_{r < (|x|+1)/2} \frac{1}{|B_r(x)|} \int\limits_{B_r(x)} |f(y)| \, dy \, + \\ &\quad + \sup_{r \geqslant (|x|+1)/2} \frac{1}{|B_r(x)|} \int\limits_{B_r(x)} |f(y)| \, dy = \bar{f}(x) + \stackrel{*}{f}(x) \, . \end{split}$$

For f(x), applying the lemma we have

(3)
$$\int\limits_{\mathbb{R}^n} \bar{f}(x)^p v(x) dx \leqslant C \int\limits_{\mathbb{R}^n} |f(x)|^{n} \bar{\tilde{v}}(x) dx.$$

On the other hand, taking $\beta > n/q$, 1/p + 1/q = 1, and using Hölder's inequality, we get

$$f(x) \leq \frac{C}{(1+|x|)^n} \int_{\mathbb{R}^n} |f(y)| \, dy \leq \frac{C'}{(1+|x|)^n} \left(\int_{\mathbb{R}^n} |f(y)|^n (1+|y|)^{\theta p} \, dy \right)^{1/p},$$

where $C' = C(\int (1+|y|)^{-\beta a} dy)^{1/a}$. Then

$$(4) \qquad \int\limits_{\mathbb{R}^{2n}}^{*} f(x)^{p} v(x) dx \leq C \left(\int\limits_{\mathbb{R}^{2n}} \frac{v(x)}{(1+|x|)^{np}} dx \right) \left(\int\limits_{\mathbb{R}^{2n}} |f(y)|^{p} (1+|y|)^{pp} dy \right).$$

(1736)

Finally, since $v \in L^1_{loo}\overline{v}(x)$ is finite a.e., then taking $w(x) = \overline{v}(x) + (1 + |x|)^{\alpha}$, with a > n(p-1), (2), (3) and (4) imply (i). We observe that for a < 2n(p-1) the weight w is smaller than that in Wo-Sang Young's paper.

Acknowledgement. It is a pleasure to thank Prof. R. L. Wheeden for introducing us to weight function problems and his generous support.

References

- [1] A. P. Calderón, Notes of the course "Análisis Real Avanzado" given at the University of Buenos Aires, 1979.
- [2] L. Carleson and P. Jones, Weighted norm inequalities and a theorem of Koosis, preprint.
- [3] C. Fefferm an and E. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
- [4] B. Muckenhoupt, Weighted norm inequalities for classical operators, Proc. of Symposia in Pure Math., vol. XXXV, part 1, 68-83.
- [5] J. L. Rubio de Francia, Boundedness of maximal functions and singular integrals in weighted L^p spaces, preprint.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY New Brunswick, New Jersey 08903

Received February 10, 1982

Equivalent Cauchy sequences and contractive fixed points in metric spaces

by

SOLOMON LEADER (New Brunswick, N.J.)

Abstract. The sequences $[x_i]$, $[y_i]$ in a metric space (X,d) are equivalent Cauchy sequences if and only if given $\varepsilon > 0$ there exist δ in $(0, \infty]$ and a positive integer τ such that $d(x_{t+r}, y_{t+r}) < \varepsilon$ for all i, j with $d(x_t, y_t) < \varepsilon + \delta$. As a typical application let $f \colon X \to X$ with complete graph such that given $\varepsilon > 0$ there exist δ in $(0, \infty]$ and an integer r with $d(f^*x, f^*y) < \varepsilon$ for all x, y with $d(x, y) < \varepsilon + \delta$. Then f has a unique fixed point w and $f^tx \to w$ as $i \to \infty$ for all x.

1. Introduction. Let (X,d) be a metric space, $f\colon X\to X$, and N be the natural numbers. We call w in X a contractive fixed point of f if fw=w and $f^i x\to w$ as $i\to\infty$ in N for all x in X. For the existence of a contractive fixed point it is necessary (and under certain mildly restrictive conditions, sufficient) that all orbits $[f^i x]$ be equivalent Cauchy sequences. Sequences $[x_i]$ and $[y_i]$ in X are called equivalent if $d(x_i,y_i)\to 0$ as $i\to\infty$. Equivalent Cauchy sequences converge to a common point in the completion of X.

Our basic contribution here (Theorem 1) is a characterization (EC) of equivalent Cauchy sequences. Application of (EC) to two identical sequences yields a refinement of the Cauchy convergence criterion (Corollary 1) with correspondingly refined estimates for $d(x_i, w)$ as $x_i \rightarrow w$ (Theorem 2). (EC) is applied to orbits for single and multivalued mappings to yield fixed points. Theorem 3 subsumes a body of fixed point theorems. In particular, it easily yields the theorems in [1], [2], [4] and Theorem 1.2 in [3].

The author is grateful to Richard T. Bumby for several useful discussions.

2. Sequences in metric spaces.

THEOREM 1. Two sequences $[x_i]$ and $[y_i]$ in a metric space (X, d) are equivalent-Gauchy if and only if

(EO) given $\varepsilon > 0$ there exist δ in $(0, \infty]$ and r in N such that

(1)
$$d(x_{i+r}, y_{j+r}) < \varepsilon \quad \text{for all } i, j \text{ with } d(x_i, y_j) < \varepsilon + \delta.$$