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On weighted norm inequalities for the maximal function

by

L. GATTO* and CRISTIAN E. GUTIERREZ
(Now Brungwick, N. J.)

ANGLEL

Abstract, Wo give a refinement of o lemma of C. Fefferman and E. Stein, and
wo show an applieation to weighted norm inequalitics.

The lemma of C. Fefferman and X. Stein given in [3], p. 111, states
that

) [ Mi@rg@)de <0 [ @) My(o)d,

F i ="

where 1< p<< oo, M is the Hardy-Littlewood maximal function, and
fand g are positive measurable functions.

In thig note we show that by restricting the radius in the definition
of the maximal funetion & similar inequality holds. This inequality can
Do used ag a substitute for (1) in weighted norm inequalitics when the
apgumplion Mg < co cannot be made.

LmmmA. Let f be a measurable function and define

Fw) = [ isa,

1
sup -
3 B,(»
< (| +1)/2 I r( )I Bz

where B, () is the ball of center » and radius r, and

. 1

fy = sup == [ la,
wald, l]j«,l 7
r<|e] L r

where B, ig a ball of radius r. If g > 0 almost everywhere, then

[Fapg@de< o [ 1f@)P§@)ds.
R

nw

* Gupported by Consejo Nacional do Invoestigaciones Cientiffeas y Téenicas,
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Proof. This proof is inspired by [1]. We shall fivst show that the
operator If = f is of weal type (1, 1) with respeet to the measures g (@) da,
9 (w)dw. Let 1, denote the set {z: F(#) > 4}, and B} = B, n{jx]| <m}, m > 0.
Then for each » e B} there exists B, (2), r < (Jo|-F1)/2, such that

1
— F(6)|dt > 2.
!BAw)IBrg SO

By Besicoviteh’s covering lemma we can extract o subfamily {B,, ()13,
whose union covers TP and ‘

-
2‘ Xy fuep) < O,
7

where z, denotes the characteristic function of the set A. Then

T=1 By

By = [ s@ao< 3 [ g
B}

. 1 1
< —— dm| — () dy
2w, o), [, e

Obiservé that for all y e B, (z;) wehave
7 << (|2 +1)/2 = (14 |o]) = (L4 1)) /2 < L+ oy — 1, << 1+ yl,

and consequently

gNdy<gy).
1B, @l 5,0
Therefore
1 5”% 15}
B g an < - PGy <~2 | 151G dy.
Hdm\lmlﬁr%) 7 mf‘ F)lg (y) dy

Letting m-»o0o, the weak type (1, 1) follows. On the other hand, sinew
g>0, ‘

”]”oo,ydm = ”f”oc,(lx < ”f”oo,(la; = ”f”oo,;dm‘

Now the lemma follows from Marcinkiéwics’s interpolation theoren.

©

On weighted norm inequalitios 61

We shall prove now the following theorem that as also been obtained
independently by Wo-Sang Young. , )

TumonruM. Let v be ¢ non-negative Sunction, JFf be the Hardy-Littlewood
mamimal function, and 1 < p < co. The Jollowing conditions are equivalent:

(i) There ewists w(®) 2 0 and finite a.e. such thet

[ Mt (@) o (@) dw < ¢ [ 1f(@)[Pw(@)do.

i "
(i) ‘f T o dw < oo,

N ¢
LProol, (i) = (i) We take a funetion f % 0 and a ball B such that
SIA@" w(m)de << oo and 0 < [ 1f(@)|de < co. Then there exists 0> 0
. . £ .

gueh that

o .
Mf(w) 3 T ;f ) dy.

Therefore
f(i,v(,f,))l do <0 [ Mf@rein<c [ If@ree)is< .
nh R"" i

(i) - (i): Sinee o1 sabisfios (i), we may assume o > 0. Observe that

@ M o = [+

) e
re(ie 402 B, ()] e

4 s 1 f]f(y){d{f/=f(£c)+;;(w)~

S 1) | JE——
o102 1By ()] 3,1
Tor fe), applying the lemama wo have

) [ F@yo(@)dn < ¢ [ 1f (@)% (@) do.
et R—?

On the ofher hand, taking f3> njg, 1/p--L/g = 1, and using Folder’s

inequality, we geb

e [irras ly])%)m
Ly Y ’

e () ~ .
Py e e [ Iy < -
& o

(11 ol ) (
where ¢ G (L1 y))~Pdy)He, Then
@ [Frowao - (( P dm)( [ 1rwra-+iyray),
piik

. T i
I S (L) o
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Finally, sinee v e I} # () is finite a.e., then taking w(s) = B (@) 1.+ ),

with a> n(p—1),(2), (3) and (4) imply (i). We observe that for a << 2n(p—1)

the weight w is smaller than that in 'Wo-Sang Young’s paper.
Acknowledgement. It is a pleasure to thank Prof. R. L. Wheeden

for introducing us to weight function problems and his generous support.
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Equivalent Cauchy sequences and contractive fixed points
in metric spaces

by

SOLOMON LEADER (New Brunswick, N.J.)

Abgieact. The sequences [«;], [9;] in & metric spaco (X, d) are equivalent Cauchy
soguences it and only if given e = 0 there exist 6 in (0, o] and o positive integer »
sueh thab d(®e.p, 91400 < e fov all 4, § with d (@, y5) < e-- 6. As a typical application
lot f: XX with complete graph such that given & > 0 there exist & in (0, c0] and an
integer 7 with d(f*s, fy) < e for all @,y with d(x, y) < s+ J. Then f has a unique
fixed point w and fla—>w ug i oo for all x.

1. Introduction. Let (X, d) be a metric space, f: X— X, and N be the
natural numbers. We eall w in X a contractive fiwed point of f it fw = w and
flo —w ay ¢ > co in N for all # in X, FPor the existence of a contractive
fixed point it is necessary (and under certain mildly restrictive conditions,
sufficient) that all orbits [f%#] be equivalent Cauchy sequences. Sequences
[, ] and [y,]in A7 ave called equivalent it d(wy, y;) — 0 a8 4 —co. BEquivalent
Cauchy sequences converge to a common point in the completion of X.

Our basie contribution here (Theorem 1) is a characterization (EC)
of equivalent Caunchy sequences. Application of (BC) to two idemtical
sequences yields o refinement of the Caunchy convergence criterion (Corol-
lary 1) with corvespondingly refined estimates for d(w;, w) as a—>w
(Theorem 2). (BO) is applied to orbits for single and multivalued mappings
to yield fixed points. Theorem 8 subsumes a body of tixed point theorems.
In particular, it casily yields the theorems in [1], [2], [4] and Theorem 1.2
in [3].

The anthor iy grateful to Richard T, Bumby for several useful dis-
CUsKioNs,

2. Sequences in metric spaces.

Toworun Lo Two sequences [w;] and [y, in o melwic space (X, d) are
equivalent-Canely if and only if

(BOY) given e = O there exist d in (0, o] and r dn N such that
(1)

AWy Yyup) < & for alb 4, j with d(x,, y;) < e--0.
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