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F = Rad, n) (E) for some B < X and a positive integer n. Then the factor-
ization of iy gwen in. (iii) yields a factorization of iy, ip = Bod such that
J4)- []]3”uncJ,:V,,;V,}ij,\I < 0

<N

(ii) = (i). This implication is obvious. m
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On impudsive control with
long run average cost eriterion

by
UKABZ BTETTNER (Warszawn)

Abstract. Diserolo and eontinuons time fmpulsive eontrol probloms with long
runaverngo cosd eritevion wee considored. The paper gonoralizes the resulés obtained
by M. Robin in [#]. The mothods of the proofls are difterent from thosoe of [91.

Inteoduetion. Imnpulsive control, introduced first by Bengoussan
and. Lions in [1], is the one of the most applicable types of stochastic
control. This control consistis in shifting current states of a Markov process
(#,) to now random stabes &,4 = 1,2,..., at moment v;, respectively.
With each strabegy Vo= (7 &)y is associatod the long run average cost

Tunetional J (V) consisting of the “bolding eowt” f(») and “replacement

cost” K (wy, &) - (e(.'u,,t) d(&) por unit time

Jo(V) - limint (1 Y { [ 1( f () ds - Z Femelo(w) 1 (£}

it oo il

The studios of impulsive control problems with such functional were origi-
nabed by M. Robin in [9] for Markov processes having nice ergodic proper-
ties. This paper generalizes his results. We complete and extend his
results o Tellerian Markov processes with general state space H. In parti-
wlar, wo show that the value function is constant. and find optimal or
e=oplimal shratiegies. Weo also prove that the use of general stopping times
Ty gtead of those of the form 2, - .1 gy O, , a8 in the paper [9],
doey not ehange the optimal value of the Lunvtlmml

Wo start with the diserele time impulsive contirol, Thue to the spocial
form of the contreolled system wo oblain results more general and comploto
than thoge which follow from the existing theory of the long run averago
conby see |31 Naxh we consider condinuous timoe impulsive eontrol. Methods
of somo of the proofs ave similar fo the martingale ones introduced by
o Mandl in the context of adaptive control (4], [5]).

L. Diserete timo case. Lot 2 == BV be the spaco of all sequences with
values in 1, where (H, B) denotos a measurable state space. Suppose thatb
for any w ¢ Q, v, (@) = a@®) and L, = ofw,, m<sn}, T = F.

T - gindla Maih, 70.3
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Let X = (@, F,, O, o, P,) be the disereto time homogeneous Markov
process with the state space F and the trangition funection P (x, I"),
xel, I"eB. : o

Tt us agsume that we have opportunity to control the process A with
the help of impulses. This means that at a Markov time 7 we can ghif
the process to the random point £ The choice of v and & iy done with
a view to our knowledge about the controlled process X till time v. The
impulsive strategy V = (v, &)y consisty of pairs of Markov times 7,
and ¥, meagurable random variables &. Without loss of genoralily woe can
assume thab ab each time v only one shift can be done. A strategy V' can
be equivalently written as a sequence

IT == (thoy Ugy Uy o Dy
where w; are measurable transformations from B into B oof the form
7 () # % for i =1,2,...,

W (g o oiy ) = @y, I

Up(Boy ey @) = & I 7(0) = k.
Then the corresponding probability measure P (which there existy by
I. Tuleea theorem [7]) has the property

(11) Pn(wn—)-l € FIFW) = P(un(mm RN} w? ); F)

for n e N, I'e B.

On the other hand, with the controlled Markov process with the
transition probabilities defined in (1.1) we can associate the impulsive
strategy V in the following way:

vy = Inf{k > 0: uy(wy ..., %) # @},
(1.2) T = IME{ > 70 (@ o0y @) # W},
& = Up(®yy ooy m)  for 4 eN.

Let us introduce the following long run average cost functional

(1.3) JT) = limint (1 /) B g, (1),
l-00
where
-1 {1
(1.4) g.(IT) = Zf(%i)“|" 2%1(.,;7’::1:,;[0(‘7;«5)‘|‘d("’bi).]
§=0 ==l

and funetions f, ¢, d ave nonnegative, bounded, measurable, ¢ i & strictly
positive function (i.e. da >0 ¢(®) = a for # ¢ B).
Suppose that y,,

Yy(w) =z, (w) for
Yp,(0) = &,(o),

(1.5) telvy [ON, 7 =0,
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dqno@os the i]’l’!pll]HiVQ control trajectory. Subsequently the measure P¥
will be denotied by ¥ to underline the impulsive strf;btegy V.
Then the functional (1.3) has the equivalent form

(1.6) o (V) = limint (1./0) BY g,(V),
it oo
where
W &
(1'7) gl( V) %f@/t) I "2{ xrf’r&:t [(5 (mr,l) "‘l“ d (yrf)]'
Wo want (o mininize tho funetional J,(V), find the value (@),
(1.8) w{w) = intJ (V),
i
and. optimal or e-optimal stratogies.
Lot
) et
(1.9) B 3 (@) -+ e(w,)) + d ()
‘ Aoeinfinge 0
e 1,7}

We will assume henccforth that for =, such that ¥,z = oo, the notation

o]
B3 f@p) e (@)}

im0
or
Tl
1, {iZZ NCARTICY
e
means
7‘/\!;-1
limint 7, @) - ¢ (e,
i {% Flo) o)
or

AL
{3 flo)tolen)

Liminf - "0
1t ]da,{'r/\‘lv} !
respectively, Suppose that
el
(1.10) () = ind 1, { 3 (fo) —A) 4w},
¥ Jua)
(1.11) o s ind{s 2 0 w(w,) > (@)}
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. nobes i ive strateey consisting of the times 7, of the form Since the last inequalily is also satistied for v = 0, 80 reealling the remarlk
Let ¥ (7, ) denotes impulsive strategy ® after definition (1.9), wo have 7
nEn L.17)
< A
112 Ty == T 700, , ( u(w) < A
@12y We will prove the reverse inequality, We start with the following
( Tp= Tp1+700,,_, Lisvesid Lo For cach bounded measurable funetion #
and deterministic fix point y. . i ‘ I :
The following theorem is the main result of this sechion. . (1.08) My 2(y,)- ,,_},, (1 D)2 (yy) ~ \ Fage ( (&) —# (o )—z (@)
THROREM 1. The optimal value w(-) is constant and equals 4. Moroover, el o)
(a) of there exists y € T sueh that B = oo, then the strategy V(" 9) is PV martingade,
is optimal one, The proof of Lemma 1 i an casy consequence of the well-known
() if for cach y e, Ba*< oo, and result stating thai
(1.13) mf[w(y) +a(y)] = 0,
#lan) - >" Dbt e T) g ()
then the strategy V (v, ©°), where o° is such that w(z®) -+ d (") S e, 8 & /7' {2} i=i
optimal; moreover, t* is optimal Markov time én the de ffbmmm of w, is P7 martingale.
() if _ Noxt we define tho function
. t—1 () J Y o 4
(1.14) suplimint B, {2 (f(:vi)ul)»l»-c(art)} <% 00, (1.19) By (V) () e Y {g (V) —tA 42 (y)},
z  teo =0

. , . . where # is o bounded measurable function. Then by Lemma 1
them the strategy “not to do impulses” V(co,¥) is optimal one.

Proof. Let us first define the following impulsive strategy V = (v, #), (L20) §,(V)(w) - B { !/;(V) e B - Sj’ (L — ey -1
‘where ~ L
7y =1,
(1.15) 7y = 141700, - %, Kegea (#(8) =2 (@)} 2 ()
Ty = T+706,, iel. 1
7 ig an arbitrary Markov time such that 0 < B,v < co. Then trajectory ¥ -1y { f%; [P~y (ys) + 1 () — A1+

for ¢ < 7;, together with the random variable @, is independent of tho
trajectory 9., for 1> 0 with respect fo the probability measure P7, N ( (601 d(&) () |- (o )} (e
Similarly, for each ¢ e N, the stopping times 7; and vo &, are IV inde- = Krpt (Bl Ny "Tt) 1z ().
pendent. Thus

2]

Ho il wo find the funetion 2z for which the following inequalities are sat-
J (V) /hmmt(] 1) PV{Z%: q}]o,,{ \ Tyt elw) |- dle )\ iutied :
ala) -+ dw) =0,
(1.21) o) —2(w) = 0, zel,
T=-1
By{ S f @) +e@}-+a) (P —TYe(o)+ f(0) A3 0,

B,{r} ) then. wo obiain

anfd uging the Blackwell renewal theorvemn we obfiain

(1.16) T (7)<
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(1.22) liminf (1 /)8, (V) (z) = lirlnTin:f(l/t)z(m) == ),
ttoo [+
Since
(1.23) liminf (1) 8, (V) (2) = lil;r}rinf(l /I)T’]f {0, (V)} —
iteo o0

and the strategy V can be chosen arbitrarily, we have from (1.22)
(1.24) w(r) = A.

It remains to find the desired function z

LeMMA 2. For function z(x) == w(x), where w s defined by (1.10),
the inequalities (1.21) are satisfied.

Proof. Let v be such that 0 < Bz < co. Then

Eﬂc{ gf(w@) + 0(03,)} +d ()

A

B {z}
and
(1.25) B,{ Y (f@)—4)+o(a )} +a@) 0.
=0

Sinee for v = 0 the imequality (1.25) is also satistied, we have w (w)-|-
-d (@) = 0.
The second inequality (1.21) is trivial by the definition of the function
w. We will prove the third one.

We have
(1+-0. @)1
(1.26) W@ < B Y (f@) =i +e(@praey)
g1
= 1) =2+ BB, {3 ()~ )+ e(@a)})
A=)

for arbitrary Markov time o, B o< oo. Moreover
’ @ H

a=—1

(1.27) essint B, { 37 (f(@) ~ 1)+ o(.)} < el

and there exists a sequence o,, for which we have
Op =1 o-1

(128) B, { 3 (f(@)—2)+o(w,) N essint B, { 3 (F(w) —2) -+ o(@,)}-
i=0 o im0

icm
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8o summarizing (1.26)~(1.28), we obtain
(1.29) wx) < f@)—A+Pw(z).
Finally, from (1.17) and (1.24), u(x) = A.
Now we deal with finding out the optimal strategies characterizing

the value w. To do this we have to prove some lemmas associated with
the function w.

LmwvA 8. The following identity holds:
(1.30) ‘ w () == min{e(w), f(w) —A-+Pw(@)}.
Proof. Suppose for gome @ e B, and &> 0
ww) <o) —s w@) < fle)—i+Pwls)—e.

=1
Since w(w,)— 3 (P-—Iw(m,) is P,-martingale, for a bounded Markov
te=0)

time = we have

w (@) = {w ;) —-i)’ Iyw(m) } By {dewot ()} -+
+ B, {X:>0(0 '"‘9'[‘;:,: )}
<3 () 1) +ola) .

But a bounded Markov time 7 can be chosen arbitrarily, so the lagt
inequality contradicts the definition of function w.

LimvmA 4. The function w salisfies the identily

Tl
(1.31) (o) = int, {3 (fa)—2)+w ()}
T
Proof. Let usy write
=1 '
W(w) w]]ﬂ'lﬂ {Z(] [—w(m,)}
w0

Immediately, we have @(w) < w (). On the other hand, for each Markov
time 7, v < oo, using the same consideration as in (1.26)-(1.29), we
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obtain
(z+0-67)—~1
0@ <iB{ 3 (fo) =)+ (s
e =0
7~1 o1 1
= B,{ 3 (7o)~ A} +int B {8 3 (7o) =) eto))
1= i=0
7—1
< B (fle)—2)+w (@)
=0
Thus w(z) < B(x), and (1.31) is samisfied..
Levva 5. Let for s 20
(1.32) 7, = inf{s = 0: w(w,) > ¢(x,) —e}.
If for some e, By, < oo, then
g1
(1.38) =7 {2 (F(2) —2) + 02}

and T, is e-optimal stopping time in the definition (1.10) of f@mc"t'ion w ().
Proof. Suppose ¢ > 0, and H,z, << co. Let, for 6 > 0, v(J) denote a
bounded §-optimal stopping time from the definition of function w. Then

z(8) =1

lim E, ;) ~— A+ ¢, = ()
(1.34) in 7| __}j (£ —2) + c(@))
and
#(8)—1
(135) w(@) <B,{ D' (Fla)—1)+wlwg))
i=0
©(8)—1 .
< B {pnes (D) (1@ =2+ clany) —e)} +
" 7(@)~1
+ 1, Hmn, ) (Fl0) =)+ ()}
()
(8)~1
= _EEw{XT(5)<15} '{‘Em{z (f(‘%) ""}‘) -+ ("(mr(d))}'
=0
Letting 60, we obtain ]
(1.36) ldi}nEm{x,(ﬁ)«a} = 0.
|0

Thus§ %u(s)<z,~>0 in probability as 8 | 0, and there exists a sequence 6,0
such that e )<r,~>0 @.8. This implies ©(5,) A 7, 1 7, &.8. a8 n—>o0.
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Sinee without any trouble one can check that

=1
(1.37) W) = w(@)+ 3 (Fla) —2)
i=0
is submartingale, we have
(1.38) w (@) < B,¥ (v, AT(8 ) < 2, ‘If(-r(an))
Letting n-—>oco and using (1.34), we obtain
(1.39) w{w) = B, ¥(x,)

80 (1.33) is sabistied, and from definition -, is roally ¢ optimal stoppmg
time.

Assume now B,y < co. Then M7, < co for s > 0, since r, troag el 0.
Putting in (1.39) £} 0, we obtain
(1.40) w(z) = B, ¥(1,)
which implies that 7, is optimal stopping time in the definition of function
w. This completes the proof of Lemma 5.

Using Lemmas 3, 4, 5, we can finish the proof of Theorem 1. Let us
have a look at (1. 90) For the strategy V(v*,y), where H,z* = oo, using
Lemma 3 we obtain,

(Ld1) 8y (V (e ) () = BY | 2 Trget) (0 @)+ (@) + w (@),

qea]

Let us fix real nwumber 7 > 0. Then
(L42) 8, (V(z*, 1)) (@) < 8, (V(v* AT, 1)) (2)

o0
S BN, Ny} 2Ll 4 1]+ el + 0 (2)
Al

and, with the help of classical renewal theorem, we have the estimation
(1.43) o (V (2%, 9)) (@) == ].im:in:f(l. BV (v, 9)) () -+ A

,w‘)llwll el
SR, AT '

Letting 100, we obtain TV (v, :e/)) () == A Thuy V(+*, ) is optimal.
The proof of (b) is similar, so can be omitied.
Suppose now that (1.14) is satisfied. Then, wo take as a function 2 in
(1.20) the following

i

1

(1.44) #(2) & limint 7, {2 (£ @) —2)+ o).

(oo =0
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Using Fatou’s lemma, one shows without difficulty that 2 satisfies tho
inequality
(1.45)

Hence

(P —I)w(®)+f(®)—A<0.

8,(V (00, 1)) (%) < w0()
and u (@) = J,(V (oo, ¥)) = A The proof of the theorem is thus complebe.
As an example, we consider a special class of Markov processes
having “nice ergodic properties”. Let (B, B) be a compact state space, and
let there exist invariant measure m such that

(1.46) |P,(, e I)—m (I < Kp* for each I'eB,

where 0 < g <1, and B, KX are independent of I Tet us write [

=1{f(a:)m(dw).

THEOREM 2. Under assumption (1.46) one of conditions (:l:.l,‘%) or_:(l..'blv)
is satisfied. If A< J, then (1.13) and Bg* < oo for y e B; if A == f, then
(1.14) holds.

Proof. From (1.46)

v(®) = Z(f“fff(w))
i=0

is the bounded function (see Lemma A.2, [9], for the conlinuous time
case). Hence for any Markov time 7, H,r< oo,

(1.47)

7—1
(1.48) v() = B, 3 (F-flw) + 2.}
' 7=0
and ) .
(1.49) 4w infint B {fr+v(z,) —}};(g}?} J-d () —n (&) )

From the definition of inf, there exists a sequence (w,, ©"), Jb‘,.”l{r”} < 0o,
guch that

7y

A, }jn Fla) -+ e@a)} -+ dm,)

A = lim Emn 0

N-r00

(1.50)

and. we have two situations:
(1) B, " is bounded as n->co; then

LY

0 =1lm®, {2 (F () — 2) -+ 0 () + d(mn)}

2N->00 =0

icm°®
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and
int (w () + d(@)) = 0
well
or

(2) B, 2" is unbounded as m-»oco, and then from (1.49) A = f and
since » iy bounded, (1.14) is satisfiod.

Tinally, let us note that it < f then we Lave situation (1) and gz
<< oo for y el

We close Section. 1 with the remark associated with assumption (1.46).

Romark 1. If the Markov kernel P (v, dy) is of the form

(1.51) P(m, dy) = r(m, y)u(dy),

where s ig a probability measure on (Z, B), 7(®, y) is nonnegative and
continuous, and there exists ball U such that

(1.52) uw(Uy>0

then assumption (1.46) is satisfied.
The proof of thiy fact can be found in Doob [2].

and  #(x,y)>0 for wmeByel

2. Continuous time case. This scction presents the completion of
the regult due to M. Robin [9]. Methodologically, it is very similar to the
previous one.

Let @ = D(R*, B) be the space of right continuous left limited fune-
tions from R into 2, a locally compact with countable bage state space.

Let w(0) = w(t) for any we R, F} = ofz, s<1}, I° =TF%, and
1ty I be universally completed o-fields of 9, P, respectively. We will
denote by ¢(C,) the Banach space of continuous bounded (vanishing at
infinity - in addition) functions on B. Suppose X = (@, ¥, 0, z, P,)
is a homogeneous Markov process with the semigroup (cb(t)),w We as-
gume
(2.1) QN0 <= C 10
(2.2) D)0y = Oy

To describe the evolution of the controlled process we have to recall the
congtruction of the new probability space due to M. Robin [8].

Lot @ = QF, The impulsive strategy V == (7, &)y consists of pairg
of Markov times =, and random variables & such that

7y I8 F® {0, 2} ... 0 {0, 2}® ... Murkov time,
& I8 I, ®{0, 2}® ... ®{0, 2} ® ... measurable random variable,

.......

for (Treller. property),

for ¢t>=0.

7, 8 I ®{0, }®... ®{@, 2}® ... Markov time,
&, is 11’%@{0, Q... ®{0, 2} ® ... measurable random variable,
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where I = Iy '@ F, and I} = F;. So for w 6 2, = (@y; @y +rvy Wpy )

we have
& (w) = &(wy),

Ex(w) == Ey{wy, wy),

........... s h s e e e

and the trajectory of the controlled process X iy of the form

g (w) = o} Hew,) for telr,y, 7l 7 =0,

2.3
( ) ?/zn(w) = En(wl’ teey a)n)'

The impulsive control V generates a probability measure P¥ on the space
3. Let us denote by Grpy Gopyeoy Gy the following o-fields on the spaces

n4-1
=X 2n=12,..,
j=1
GT; = { 71? F%@{Q 'Q}}
G, = o|[FE, I @ {9, o).
The projections P* of the measure PV on the spaces Q% o == 0,1, ..., have
the following properties:
Pg = P,

Pl o= Pil@yg on G,

7y
Pn( Ty BlGrn) == E‘Pwl(,l)(wl) ®... ® E‘ﬂ‘”n—x(fnmﬂ(m“’"’l) ®])£(m1,...,w“) (-B)’

where ¢, (t) = y for 1> 0 denotes the constant trajectory, and B e i
The continuous time analog of the long run average cost functional
is of the form

vl’ r
(2.4) I (V) = liminf -~J‘(p) ,
1o
where
(2.5) wW(V) = ff(m @51 3 g lelaly) Hily,),

Te=]

fre,deC, f=0,d>0, ¢is strictly positive, ¢() 2> ¢ > 0. Our aim ix a
minimization of Jx(V), and characterization of u (@) = infd (V).
VvV

In this section we will congider first impulgive control consigting of
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the wpecial form stopping times. Namely, similarly as in {9], the times =,
" will be of the form

2.6)  r(0) = (@ ey 0p) oy () O ooy 622,
where o, is an arbitrary I, Markov time. Lot

T
B [ flag)ds+ e(a,)) -+ d ()

{

2.7 A cinding - e
( ) : w Ir 1’]3(.{1‘} ’

T

it B [ (f,) ) ds + o)}

0

(2.8) 0 (i)
and
(2.9) T, o dnf{s = 01 w(w,) = e(w,) —e}  for e 0.

Nuppose V(r, y) denotes similarly as in Seetion 1 impulsive strategy con-
gisting of the timoe 7, where 7, == v == o; for ¢ e N, and deterministic
fix point .

The following theorem holds:

Tuworsv 1. The optimal value w(z) with respect to stratogies with
Markov times satisfying (2.6) is constant and equals A. Moreover,

() if, for some y & 1, B,{r} 1t oo as &0, then the strategy V (v*, y),
with the stopping time «* = limrz, is optimal;

)0

() ify Jor each y e B, Hr* < oo, and
(2.10) mew('I/) +dy)] =
then the strategy V (v, w), fwhm ¢ & b such that w () -+ d (2°) <

optimal;

e) if
1
(2.11) m1p11m intl, {f

® i

&, 18 2e/H , {v;}

A)ds -+ o )}<oo

then the stralegy “do not interfere in the run of process” V (oo, y) is optimal.

Proof. We will follow the proof of Theorem 1.1, The identical con-
sideration as in (LAB)=(1.17) leads Lo the inequality u(e) < A
Mo prove the roverse inequality we have to introduce the function

NV ()
, |
(212) S(V)() - BE{[Tds -1 wa[(» al) - d(8)] 12+ w ()]

0 )

I3
Al Jlrto) = s+
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+ 2.01 Koyt [0 (wii—l) —w(€)]+wly)—w (.71«‘)} +

i=1
+{ 3 tral(8) —w @) + 0@ + A8 0 @)
Te=]

Let us denote by 4, the first expression in the brackets:

dof

11
(218)  A(V) (@) = BY{ [ (Fly,) —2)ds

718

+ ) T (@) = w ()] 410 () — w0 (@)
4=l

and by N (0,1) the number of impulges in. the time interval [0, t]. Since

c(w) 2z o> 0 and u(z) < |fll, we can restrict in future to such impulsive

strategies 7 for which

(2.14) liming (1/8) BYN (0, 1) -a < 2|)f].
ifoo

This means that z,-+00 a.5. a8 i-—>oco. Then

(2.15) 8y(V) = lim§,,, (V)
7} oo
and
ne- % i1 AL i N
(216) Ay, (V)(2)= BY {‘}J xw[ [ () —2)ds (@, yn) ~»»w(m’r',lt)J}.
=0 Ty

Further on we will study the properties of the function w defined in (2.8).
ProposirtonN 1. The function w is %, continuous, that is for each @ ¢ B

217y P, (limuw(z) = w() = 1.
b0
Moreover,
i
(2.18) () = [ (f(@,)— 1) ds-+w(m)

is the right continuous submartingale.

Troof. The proof will follow from some lemmas. We begin from the
discounted, finite time optimal stopping problem. The following lemma
is proved in [8]:

icm°®
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Tmmma 1. If X ds @ vight continuous, homogeneous Markov process on
the state space B, and assumptions (2.1), (2.2) are satisfied, then

dot . o AL , p
a u:iﬁw{ f e () ~ Z) ds -} xr,ﬂy,,_,a““’o(mr)}

0

(249wl @, )

is the continnous funckion on [0, 1T x B.
Then
Lmma 2.

ALt
' (i o) dor irrL"]d.,,{ f {f(2,)~ 2)(18 | xmzy_,,c(m,)}

[

(2,20)

g the continuous funetion on [0, 1) x H.

Proof. We have wl“»w! uniformly as a->0 gince
T A(T~1)
b (1 ) 0] (y )] < DB [ (L= 0™ s s (L — 0~ el
” 0

I
S (L6 ™) ds el (L—¢™)->0 a5 a=>0.
0

Tlenco
LimMnmA 3.

¥ A(T~1)
W (1, @) & iu‘f]ﬂm{ j (f(,)--2)ds -+ ‘/‘(WM(zv-—n)}
T

0

(2.21)

ts the continuous function on [0, T] % H.
Proof. This Lollows from Lemma 2 if we note that

TAQL 1)
hll‘r"[/}w { f (f(i”u) """ l) ds ‘l‘(“(mu\(aw)) - “(’“}

T A (T=1)
. iIl;l?E’m{ f (S () = A) s + Lo (c:((t;,,)—-—i]a]])}.

0

Taking into aceount the previous rewull, we easy assure that
[
(2.22) W) = [ (o) —3)ds 0" (1 @)
[]

is for 1[0, ] the right continuous  submartingale,
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On the other hand,

T

2.2: T(t,2) = inf B 1) — A)ds |- ¢ (w,
(2.23) w? (t, ©) rirﬂl,'»tﬂx{;,[(f(%) )ds -] ((1)}
so w?(t, ®) | w(z) as T—>o0, and
(2.24) w(@) = k1, | [ (f(2) —4)ds - o(,)}.

T 0

This imply that (7 (1))..p presents a family of decreasing (on cach finito
interval [0, 7], for 7' > T,) right continuous submartingales. Then using
Theorem VI 16, [6] we finally obtain that (¥(¢),.., is almost surely the
right continuous submartingale. Tence w(x) is %, continuous. In order
to characterize the function % we need the next three lemmas. Since proofs
of Lemmas 4 and 5 are very similar to those from Section 1, they will
not be given here.
LEMMA 4. The function w satisfies the inequalitics

w(@) < ofx),

(2.25) (
w(@)+d(@) = 0.

LummA 5. The function w is a solution of the equation,
T
(2.26) w(w) = it B, { [ (f(2g) ~2)ds +w (@)}
z 0

The next lemma is a continuous-time analog of Lemma 1.5.
LemmaA 6. If

(2.27) 7, = 1Inf{s = 0: w(w,) > clw,) ~e} for &30
and B, << oo, then =, is & optimal stopping time in the definition of
Sunction w. Morcover,

(2.98) w(a) = B, | f (F () =) ds -+ (@, )}

4

Proof. We follow the proof of Lemma 1.5. From (1.38), (1.36), using
the fact that Xe(6,)<z, >0 8. a8 n->oc0, we obtain

icm°®
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(2.29)  w(w) - lmEW(w(8,) A,

w1t oo
7:((9,,)/\1',,
- lim 77, (i)~ A)ds |-
lim o f (F(r,) ) ds |
I Lr( )20 (m,(,,“)) -} Arzn( )20 (“%e )}
e

[ () A)as | ().

[

Henee 7, is s~optimal stopping time.

Now wo ean reburn to the proof of Theorem 1. We will use the same
method as in the proof of Theorem 1.1, Taking into account the submartin-
gale property (2.18) and the inequalities (2.25) with (2.12), (2.13), (2.18),
(2.16), wo obtiain u (@) 2= 4. Thus the first part of the proof is establighed.

Tho proof of pointy (a), (b), () i3 similar as in Section 1. The only
nonirivial one is the fact that the time (#"), when the process starts
from a*, iy .. positive for sufficiently small > 0. Tn fact, suppose w (#*)
= o(@')—e Then sinee w(@") |-d(»") <e, wo have ¢(0°) 4 d (2°) < 28,
which contiradicts the strict positivencss of e So 7, (@*) > 0 a.e. because
the funelions w and ¢ arve %, econtinuous,

The next theorem completos Robin’s result.

Tuwonrsm 2. Suppose that H is compact and there exists invariant
probabilily measure m, constants K, y > 0 such that

(2.80) IPy(y & ') —m (I7)] < Ko

for any Borel set I,

Lt f = [ f(@w)ym (dw). Then one of conditions (2.10) or (2.11) is satisfied.

o] .

Moreover, if A< f then (2.10) and 7, {r*} < oo, y € H; if 2 = f then (2.11)
holds.

Proof, See Theorem 1.2.

So far wo congiderod impulsive control with the Markov times of
tho fornm (2.6), Now wo will be inferosted in the general case; the times v,
will bo ahitrary Markov times,

Tumoruw 3, Lhe use of the general impulsive control does not change the
optimal value w(m) of the funotional (2.4), w(w) == A,

Iroof. Lot us define fivgt tho finite time fanctional

4 o0
@81) (V1) = (AL {[F@ds-+ 3 segealo @l +dy,)1).
] ) )

8 ~ Btudia Math, 76.3
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Suppose % (z) denotes now the optimal value of the functional (2.4) with
respect to arbitrary impulsive controls. Then there exists an e-optimal
strategy V,,

(2.32) I (Vs < u(@)+e.

Moreover, from the definition of liminf, there exists a sequence &, f,—>co
as§ n—>oc such that

(2.33) o Ves b)) > I (V).

The following result will play an imiportant role in the proof of this thoovem.
LEMMA 7. For each t there exists the impulsive sirateqy V, consisting
of the times of the form (2.6) such that
(2-34) J:c(Vt) t) ""Jac(va’ t) < %‘B'
Proof. We have to recall the finite time discounted impulsive control
problem. The following proposition is a consequence of the results from [8]:
PROPOSITION 2. Let

(2.35) Uy (@) = infJg(V, ?),
v

where

(2.36) TV, 1) = (1ft) DV{ f Flyg)e~*ds+ Zxr <o~ o (@) + dly.) 15
P=1
then there exists the optimal impulsive strategy of the form (2.6).

Since JL(V,t)—dJ,(V, 1) as a—0, using Proposition 2 we assure that
(2.34) is satisfied for a strategy V,. Taking into account these facts we
will construct the strategy V,, consisting of the stopping times of the form
(2.6), such that

(2.37) T V) < o+-d,(V).
‘We choose the subsequence (¢,,).y from the sequence (f,)ney fuccossively
in the following way

tnl == ly,

(2.38) for given t,, we take {, such. that

g1
g < Bag y

2 1flling -+ Lliol 4 12N N 3, (0, 1)) < Fet, 1,
where N, (0, 1) denotes the number of shifhts in the time interval [0, ¢].
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Let ug denote by V¥rhl the impulsive strategy restricted to the time
inferval [ty %[, Next we define tho strategy 7

o
(2.39) [ (V,EZ’:M[, V,rfgl’lﬂz[ vy Vi ’ﬂh tngly ).
This moeans that in the time interval [t ¢ o b 4L the impulsive strategy

V[“ . defined by (2.34) is adopted.
Tt remaing to choek that 7, is sufficiently good, indeed, We have

‘ T,
(2.40) Jm( 1;“ 'l"uH J) ; r"f ’ (Jw( VM tw) ""‘Jw(vn 1’n.,; )) +

e 41
“F ('Tm(vl,,,[ o tn,H.I) ““J',(.l 12} tn“ 1)) -+

7

g

.Iw -

i ' (Jm(vm tni) - J.L(V

,7,& 1 TIi)) IJ (V&J inﬂ_l)'

N5 -1
Recalling the definition of V, and (2.38), we easily obtain
(2.41) Ta(Vay by 1) S e+ T (Vay by, )

Using (2.33) wo see that (2.37) ig satisfied. Since ¢ is arbitrary, the optimal
value u () can be approximated with the use of strategies ¥, of the form
(2.6). The proof of theorem iz complete.
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